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A B S T R A C T

We study the existence and propagation properties of chirped localized pulses in a highly nonlinear fiber
medium exhibiting self-steepening, self-frequency shift, and quintic non-Kerr nonlinearities. Pulse evolution in
such fiber system is governed by a higher-order nonlinear Schrödinger equation incorporating the derivative
Kerr and non-Kerr nonlinear terms. We show that bright, dark and kink type solitary waves exist in the
presence of all physical processes. A special ansatz is introduced to analyze the existence of solitary waves on a
continuous-wave background in the optical fiber medium. It is shown that the obtained localized pulses exhibit
a nonlinear chirp which has a quadratic dependence on light intensity. We also find that the magnitude of
the associated frequency chirp can be controlled effectively by varying the parameters of self-steepening, self-
frequency shift, and derivative non-Kerr nonlinearity effects. The restrictions on the optical fiber parameters
are also extracted for the existence of these nonlinearly chirped solitary waves. Results in this study may be
useful for experimental realization of shape-preserved pulses in optical fibers and further understanding of
their optical transmission properties.
Introduction

Femtosecond light pulses through optical fibers have been widely
addressed due to their diverse applications in ultrahigh-bit-rate optical
communication systems [1]. It should be noted that their applications
also include infrared time-resolved spectroscopy, optical sampling sys-
tems, as well as ultrafast physical processes [1,2]. These femtosecond
light pulses may thus pave way to generate several important phe-
nomena in field of nonlinear optics. But, experimental and theoretical
results have demonstrated that higher-order physical processes of both
nonlinear and dispersive nature take place when femtosecond optical
pulses propagate inside monomode optical fibers [3]. In particular,
when pulses of less than 100 fs duration are injected in the fiber
medium, the higher-order nonlinear effects such as the delayed non-
linear response and the self-steepening become significant and should
be taken into account [4]. Moreover, the nonlinear refractive index
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of several optical materials may deviate from the Kerr dependence
at higher light intensities, which leads to the appearance of quintic
nonlinearity. Experimental results for nonlinear fibers showed that this
kind of nonlinearity appears for example in chalcogenide glasses [5],
semiconductor-doped glasses [6], and organic polymers [7].

Theoretical descriptions of femtosecond pulse evolution through
optical fibers in the presence of these effects support use of the higher-
order nonlinear Schrödinger (HNLS) equation to describe the pulse
dynamics in such optical media [1]. This model incorporates additional
higher-order terms, which describe the influence of different physical
phenomena on ultrashort pulse propagation and generation. In general,
both the soliton shape and stability properties can change due to
such higher-order effects. It is relevant to mention that the NLS-type
equations [8] together with other prototypical equations [9–16] have
been analyzed from different points of view because of their extensive
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use to describe the soliton dynamics in a wide variety of real physical
systems.

Recently, a kind of HNLS equation with quintic non-Kerr terms
has been shown to support a new type of Dark-in-the-Bright solitary
wave solution also called dipole soliton under some parametric condi-
tions [17]. Due to its physical importance in describing sub-10-fs-pulse
propagation in highly nonlinear optical fibers, such equation has been
analyzed from different points of view. For instance, Choudhuri and
Porsezian [18] have analytically solved this model and obtained results
for bright and dark solitary wave solutions with a functional form
different from the traditional sech and tanh bright and dark solitons.
These authors have also studied the modulational instability (MI) of
this HNLS equation in an optical context and presented an analytical
expression for MI gain [19]. In addition, Sharma and Goyal [20] have
found different types of soliton solutions including bright, dark, double-
kink and algebraic solitons of this equation. Moreover, the propagation
properties of the dipole solitons have been recently studied in the
framework of this model in presence of additional septic non-Kerr
nonlinear terms [21,22]. However, for all the studies mentioned above,
the solitary wave solutions with nonlinear chirp to this HNLS model in
the absence of third-order dispersion have not been recovered yet.

Recently, considerable attention has been focused on the propaga-
tion of the nonlinearly chirped soliton pulses through optical fibers [23–
26]. The main characteristic of the frequency chirping is amplifying and
compressing solitary pulses in nonlinear fibers, and it can have applica-
tions in the design of optical fiber compressors, optical fiber amplifiers,
and solitary-wave-based communications links [27]. In this setting,
physically important chirped solitons has been found in optical media
governed by the NLS equation with a source [23] and different HNLS
family of equations [2,24,25]. The study of the frequency chirping
property has been also extended to chirped Peregrine solitons described
by the cubic–quintic NLS equation [26] and chirped dissipative solitons
governed by the complex cubic–quintic nonlinear Ginzburg–Landau
equation [28].

It is of interest to search for nonlinearly chirped envelope solitons
in optical materials exhibiting other types of higher-order nonlinear
effects such as the non-Kerr quintic nonlinearities. Recent results in-
dicated that these non-Kerr nonlinear effects are significant in order to
adapt to the current progress in high-repetition-rate (beyond ultrashort,
even attosecond) optical systems [19,29]. It is interesting to note that
the exact balance between different higher-order effects gives rise to
a rich variety of nonlinear waveforms that are desired to understand
widely different physical phenomena governed by the model equation.
In the current study, we analyze the propagation properties of localized
pulses with nonlinear chirp under the influence of non-Kerr quintic
nonlinearities. In particular, the results presented below demonstrate
the possibility of chirped bright, dark and kink solitons existence
in optical fibers exhibiting self-steepening, self-frequency shift, and
derivative non-Kerr nonlinearities, which may have potential applica-
tion for the further experiments and research in nonlinear optics. These
nonlinearly chirped solitary waves are obtained in the presence of all
physical processes. We find that the associated frequency chirp depends
quadratically on the intensity of the wave and its amplitude can be
controlled efficiently by varying the parameters of derivative Kerr and
non-Kerr nonlinearities.

The plan of the current study is drafted as follows. The governing
HNLS equation is presented in Section ‘‘Evolution equation for the
pulse intensity’’ and the nonlinear equation depicting the dynamics
of the pulse intensity in a highly nonlinear optical fiber medium is
also derived. Results for analytical chirped bright solitary waves on
both zero and on continuous-wave (cw) backgrounds as well as dark
and kink solitary wave solutions are presented in Section ‘‘Results
for chirped solitary waves’’. We also propose here a special ansatz,
whereby it becomes possible to determine the closed form chirped
solitary wave solution on cw background of the model. In addition, we
present here the frequency chirp related to each of these propagating
nonlinear waves and the parametric restrictions for their existence.
2

Finally, Section ‘‘Conclusions’’ concludes the paper.
Evolution equation for the pulse intensity

We describe the transmission of an ultrashort optical pulse inside a
highly nonlinear fiber medium when the effect of third-order dispersion
is negligible by the HNLS equation [17,18],

𝑖
𝜕𝜓
𝜕𝑧

+ 𝛼
𝜕2𝜓
𝜕𝑡2
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𝜕𝑡
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𝜕(|𝜓|4)
𝜕𝑡

= 0, (1)

where 𝜓 is the complex envelope of the electric field, and 𝛼, 𝛾, 𝜖, and
𝜇 are real parameters related to group-velocity dispersion (GVD), self-
phase modulation (SPM), self-steepening, and self-frequency shift due
to stimulated Raman scattering, respectively. Also, the terms propor-
tional to the coefficients 𝜐, 𝛿, and 𝜎 are the quintic non-Kerr terms.
It is relevant to mention that the third-order dispersion effect can be
neglected for light pulses whose width is of the order of 100 fs or more,
having power of the order of 1 W and GVD far away from zero [2,24].

It is interesting to search for analytic solitary wave solutions with
nonlinear chirp of the HNLS Eq. (1). To obtain these chirped wave-
forms, we use an envelope traveling-wave solution of the form [2,23–
25],

𝜓(𝑧, 𝑡) = 𝜌 (𝜉) 𝑒𝑖[𝜑(𝜉)−𝜅𝑧]. (2)

ere the two real quantities 𝜑 and 𝜌 representing the phase distribution
nd field amplitude are functions of the traveling coordinate 𝜉 = 𝑡− 𝑢𝑧,
here 𝑢 = v−1 with v being the group velocity of the light pulse
nvelope. The accompanying chirp is given by the expression 𝛿𝜔 (𝑧, 𝑡) =
(𝜕∕𝜕𝑡) [𝜑 (𝜉) − 𝜅𝑧] = −𝑑𝜑∕𝑑𝜉.

Substitution of Eq. (2) into the model (1) and separation of the real
nd imaginary parts yield the following coupled equations in 𝜌 and 𝜑,
(

𝜅 + 𝑢
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]
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−𝛿𝜌5
𝑑𝜑
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= 0, (3)

and

𝛼
(

𝜌
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𝑑𝜉2

+ 2
𝑑𝜑
𝑑𝜉

𝑑𝜌
𝑑𝜉

)

− 𝑢
𝑑𝜌
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+ (2𝜇 + 3𝜖) 𝜌2
𝑑𝜌
𝑑𝜉

+ (4𝜎 + 5𝛿) 𝜌4
𝑑𝜌
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= 0. (4)

The multiplication of Eq. (4) by 𝑑𝜌∕𝑑𝜉 and integration with respect to
𝜉 yields an evolution equation for 𝜑 as,
𝑑𝜑
𝑑𝜉

= 𝐴𝜌4 + 𝐵𝜌2 + 𝐶, (5)

where the coefficients 𝐴, 𝐵 and 𝐶 are expressed in term of the fiber
parameters as

𝐴 = −4𝜎 + 5𝛿
6𝛼

, 𝐵 = −
2𝜇 + 3𝜖

4𝛼
, 𝐶 = 𝑢

2𝛼
. (6)

Thus the resultant frequency chirp takes the form of 𝛿𝜔 (𝑧, 𝑡) =
−
(

𝐴𝜌4 + 𝐵𝜌2 + 𝐶
)

, in which 𝐴 and 𝐵 are the nonlinear chirp pa-
rameters, while 𝐶 accounts for the constant chirp parameter. This
latter expression shows that the associated frequency chirp possesses a
nontrivial structure that includes two intensity dependent contributions
apart from the linear chirp.

As it is seen from Eq. (6), the parameters of self-steepening and
self-frequency shift effects (also called the derivative Kerr nonlinear
terms) 𝜖 and 𝜇 and the derivative quintic non-Kerr nonlinear terms
𝜎 and 𝛿 strongly affect the amplitude and shape of the frequency
chirp. A linearity in pulse chirp can be obtained in the absence of the
Kerr and non-Kerr nonlinearities. This allows us to conclude that the
nonlinearity in the pulse chirp depends crucially on the contribution
of the derivative Kerr and non-Kerr nonlinearities in the nonlinear
response of waveguiding media.

Placing Relations (5) and (6) into Eq. (3), one obtains the nonlinear
differential equation,

𝑑2𝜌
+𝑀𝜌 +𝑁𝜌3 +𝑄𝜌5 + 𝑅𝜌7 + 𝑆𝜌9 = 0, (7)
𝑑𝜉2
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Fig. 1. (a) Evolution of the bright solitary wave (14) and (b) the corresponding chirp profile for 𝛼 = 0.25, 𝛾 = −0.1, 𝜖 = 0.5, 𝜐 = 0.1, 𝜇 = −0.4, 𝛿 = 0.6, 𝜎 = −0.3, and 𝜅 = −0.075.
where

𝑀 = 𝑢2 + 4𝛼𝜅
4𝛼2

, 𝑁 =
2𝛼𝛾 − 𝑢𝜖

2𝛼2
, 𝑄 =

16𝛼𝜐 + (2𝜇 + 3𝜖)(𝜖 − 2𝜇) − 8𝑢𝛿
16𝛼2

,

𝑅 = −
(2𝜇 + 3𝜖)(2𝜎 + 𝛿)

6𝛼2
, 𝑆 =

(4𝜎 + 5𝛿)(𝛿 − 4𝜎)
36𝛼2

. (8)

The multiplication of Eq. (7) by 𝑑𝜌∕𝑑𝜉 and integration with respect to
𝜉 leads to the following nonlinear differential equation,
(

𝑑𝜌
𝑑𝜉

)2
+𝑀𝜌2 + 𝑁

2
𝜌4 + 𝑄

3
𝜌6 + 𝑅

4
𝜌8 + 𝑆

5
𝜌10 + 2 = 0, (9)

with  being an arbitrary constant of integration that corresponds to
the energy of the anharmonic oscillator [18,30].

With the transformation 𝜌2 = 𝐹 , the preceding Eq. (9) transforms
into the following differential equation,
(

𝑑𝐹
𝑑𝜉

)2
+ 4𝑀𝐹 2 + 2𝑁𝐹 3 + 4𝑄

3
𝐹 4 + 𝑅𝐹 5 + 4𝑆

5
𝐹 6 + 8𝐹 = 0. (10)

This nonlinear differential equation describes the dynamics of field
intensity in an optical waveguiding medium governed by the HNLS
Eq. (1). In the present study, we focus on the analytic localized wave
solutions of Eq. (10), when all the physical processes contribute to the
nonlinear response of the material. Such analytical solutions will enable
us to understand efficiently the transmission properties of nonlinear
waves in the optical media.

Results for chirped solitary waves

Having obtained an evolution equation for the pulse intensity [Eq.
(10)], we now search for certain solitary waves of the Model (1)
through solving that Eq. (10) analytically. Solitary waves on a cw
background are also derived by using a special ansatz in the presence
of all physical processes.

Bright solitary waves on a zero background

We first analyze the existence of chirped bright solitary waves on
a zero background for the model (1). Here we consider the parametric
conditions 𝑁 = 𝑅 = 0, which implies that 𝑢 = 2𝛼𝛾∕𝜖 and (2𝜇 + 3𝜖)(2𝜎 +
𝛿) = 0. We obtain a bright-type solitary wave of Eq. (10) with zero
energy ( = 0) in the following form,

𝐹 (𝜉) =
[

𝑃
cosh2 (𝜂𝜉) +𝐷

]1∕2
, (11)

where

𝑃 = −
3𝑀 (2𝐷 + 1)

𝑄
, 𝜂 = 2

√

−𝑀, (12)

2𝐷 + 1 =
[

1 − 36𝑀𝑆
]−1∕2

, (13)
3

5𝑄2
provided that 𝑀 < 0, 𝑄 > 0 and 𝑆 <
|

|

|

|

5𝑄2

36𝑀

|

|

|

|

.
Hence, we obtain a chirped localized solution for the HNLS equation

(1) as,

𝜓(𝑧, 𝑡) =
[

𝑃
cosh2 (𝜂𝜉) +𝐷

]1∕4
𝑒𝑖[𝜑(𝜉)−𝜅𝑧]. (14)

The associated frequency chirp takes the form,

𝛿𝜔 (𝑧, 𝑡) = −𝐴
(

𝑃
cosh2 (𝜂𝜉) +𝐷

)

− 𝐵
(

𝑃
cosh2 (𝜂𝜉) +𝐷

)1∕2
− 𝐶. (15)

Shown in Figs. 1(a) and 1(b) are the intensity and chirp (for 𝑧 = 0)
profiles of solitary wave solution (14), respectively. Parameter values
we used in the figure are 𝛼 = 0.25, 𝛾 = −0.1, 𝜖 = 0.5, 𝜐 = 0.1, 𝜇 = −0.4,
𝛿 = 0.6, 𝜎 = −0.3, and 𝜅 = −0.075. From Fig. 1(a), we see that the bright
solitary wave profile appears on a zero background. We also observe
that the pulse profile remains unchanged during evolution. We have
found that the numerical results obtained by solving the model (1) by
means of the split-step Fourier method and using the analytic solitary
wave solution as an initial condition, also confirm this behavior. In
addition, we see that the chirp 𝛿𝜔 is also localized, as the solitary wave
is, but on a nonzero background [Fig. 1(b)].

If we change the values of derivative non-Kerr nonlinear coefficients
as 𝛿 = −0.6 and 𝜎 = 0.3, we see that the solitary wave keeps the same
characteristic intensity profile [Fig. 2(a)] while the chirp presents a
shape like a “M”which has two symmetrical humps and one valley in
the middle of the chirp profile [Fig. 2(b)]. Therefore the parameters
of derivative non-Kerr nonlinearities have a strong influence on the
amplitude of the pulse chirp.

Choosing the values of the self-frequency shift and self-steepening
coefficients as 𝜇 = −0.45 and 𝜖 = 0.1, we observe that the chirp profile
takes the shape of a “W” which contains one hump and two valleys
on the hump’s two sides [Fig. 3(b)], while the solitary pulse keeps its
bright localized structure on a zero background [Fig. 3(a)]. Thus, in or-
der to control the frequency chirp associated with the obtained solitary
wave, one should vary the parameters of self-steepening, self-frequency
shift, and derivative non-Kerr nonlinearities.

Kink solitary waves

We now find the kink-type solitary wave solutions with nonlinear
chirp for Eq. (1) under the same parametric conditions as in the
previous solution (11). We should note that these solitary waves are
of particular significance in optical fibers [3].

We have found that Eq. (10) for zero energy ( = 0) satisfies a kink
solitary wave solution of the form,

𝐹 (𝜉) = 𝛬
[

1 +
tanh (𝑤𝜉)

]1∕2
, (16)
1 + sech (𝑤𝜉)
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Fig. 2. (a) Evolution of the bright solitary wave (14) and (b) the corresponding chirp profile for 𝛿 = −0.6 and 𝜎 = 0.3. The other parameters are the same as given in Fig. 1.
Fig. 3. (a) Evolution of the bright solitary wave (14) and (b) the corresponding chirp profile for 𝜖 = 0.1 and 𝜇 = −0.45. The other parameters are the same as given in Fig. 1.
where

𝑤 = 4
√

−𝑀, (17)

𝛬 =
( 5𝑀
4𝑆

)1∕4
, (18)

under the parametric condition,

𝑄 = −
√

36𝑀𝑆
5

, (19)

with 𝑀 < 0 and 𝑆 < 0.
Hence, the chirped kink solitary wave solution of Eq. (1) takes the

form,

𝜓(𝑧, 𝑡) =
√

𝛬
[

1 +
tanh (𝑤𝜉)

1 + sech (𝑤𝜉)

]1∕4
𝑒𝑖[𝜑(𝜉)−𝜅𝑧]. (20)

In this case, the chirping reads as,

𝛿𝜔 (𝑧, 𝑡) = −𝐴𝛬2
(

1 +
tanh (𝑤𝜉)

1 + sech (𝑤𝜉)

)

− 𝐵𝛬
(

1 +
tanh (𝑤𝜉)

1 + sech (𝑤𝜉)

)1∕2
− 𝐶.

(21)

It is worthy to mention that the existence of the preceding kink solitary
wave is based on the constraint condition (19) which describes the
balance among GVD, quintic nonlinearity, self-frequency shift, and
derivative quintic non-Kerr nonlinearities. Unlike the conventional dark
solitary wave in Kerr media, the amplitude of the kink solution (20)
4

may approach nonzero when the variable 𝜉 approaches infinity (|𝜉| →
∞).

The intensity and chirp (for 𝑧 = 0) profiles of the kink solitary wave
(20) are depicted in Figs. 4(a) and 4(b), respectively. Here, we have
taken the parameter values as 𝛼 = 1, 𝛾 = −0.1, 𝜖 = 2, 𝜐 = 0.1, 𝜇 = −3,
𝛿 = 0.1, 𝜎 = 0.2, and 𝜅 = −0.065. From Fig. 4(b), one can see that the
chirp saturates at two different finite values as 𝑡 → ±∞.

Chirped solitary waves on a cw background

A challenging problem is the search for different types of solitary
waves in the presence of all physical processes involved in the propaga-
tion Eq. (1). No doubt, the finding of analytical localized wave solutions
under the influences of various higher-order effects will help one to
understand the transmission properties of nonlinear waves propagating
through the nonlinear fiber medium.

To find the analytic solitary wave solution of Eq. (10) in the general
case when the coefficients 𝑀 , 𝑁 , 𝑄, 𝑅, 𝑆, and  have nonzero values,
we introduce a special ansatz as

𝐹 (𝜉) = 𝜆 + 𝛤 sech1∕2 (𝑞𝜉) , (22)

where 𝜆, 𝛤 and 𝑞 are real parameters to be determined.
Here, in the ansatz (22), the parameter 𝜆 decides the strength of the

background in which the solitary pulse propagates in the optical fiber,
and 𝛤 determines the pulse amplitude while 𝑞 denotes its width.
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Fig. 4. (a) Evolution of the kink solitary wave (20) and (b) the corresponding chirp profile for 𝛼 = 1, 𝛾 = −0.1, 𝜖 = 2, 𝜐 = 0.1, 𝜇 = −3, 𝛿 = 0.1, 𝜎 = 0.2, and 𝜅 = −0.065.
Inserting this ansatz into Eq. (10) and setting the coefficients of
sech𝑛 (𝑞𝜉) (with 𝑛 = 0, 1

2 , 1, 3
2 , 2, 5

2 , 3) to zero, we get the following
set of algebraic equations:

𝜆
[

4𝑀𝜆 + 2𝑁𝜆2 + 4𝑄
3
𝜆3 + 𝑅𝜆4 + 4𝑆

5
𝜆5 + 8

]

= 0, (23)

𝛤
[

8𝑀𝜆 + 6𝑁𝜆2 + 16𝑄
3
𝜆3 + 5𝑅𝜆4 + 24𝑆

5
𝜆5 + 8

]

= 0, (24)

𝛤 2
[

𝑞2

4
+ 4𝑀 + 6𝑁𝜆 + 8𝑄𝜆2 + 10𝑅𝜆3 + 12𝑆𝜆4

]

= 0, (25)

𝛤 3
[

2𝑁 + 16𝑄
3
𝜆 + 10𝑅𝜆2 + 16𝑆𝜆3

]

= 0, (26)

𝛤 4
[

4𝑄
3

+ 5𝑅𝜆 + 12𝑆𝜆2
]

= 0, (27)

𝛤 5
[

𝑅 + 24𝑆
5
𝜆
]

= 0, (28)

𝛤 2
[

𝑞2

4
− 4𝑆

5
𝛤 4

]

= 0. (29)

These equations can be solved to obtain the solitary wave parameters
𝜆, 𝛤 and 𝑞 as,

𝜆 = − 5𝑅
24𝑆

, (30)

𝛤 = ±𝜆, (31)

𝑞2 = 16𝑆
5
𝜆4, (32)

together with the energy value,

 = −2𝑆
5
𝜆5, (33)

and the parameters,

𝑀 = 14𝑆𝜆4
5

, 𝑁 = −8𝑆𝜆3, 𝑄 = 9𝑆𝜆2. (34)

Equating the parameters in (8) and (34), we get the expressions of the
inverse group velocity 𝑢 as,

𝑢 =
2𝛼

(

𝛾 + 8𝛼𝑆𝜆3
)

𝜖
, (35)

and the wave number 𝜅,

𝜅 = 56𝑆𝛼2𝜆4 − 5𝑢2
20𝛼

, (36)

together with the value of parameter 𝜐,

𝜐 =
8𝑢𝛿 − (2𝜇 + 3𝜖)(𝜖 − 2𝜇) + 144𝑆𝛼2𝜆2

. (37)
5

16𝛼
Hence, we get the following analytic nonlinearly chirped solitary wave
solution on a cw background for Eq. (1),

𝜓(𝑧, 𝑡) =

√

√

√

√𝜆 ± 𝜆sech1∕2
[
√

16𝑆𝜆4
5

(𝑡 − 𝑢𝑧)

]

𝑒𝑖[𝜑(𝜉)−𝜅𝑧]. (38)

The corresponding chirp is given by,

𝛿𝜔 (𝑧, 𝑡) = −𝐴

(

𝜆 ± 𝜆sech1∕2
[
√

16𝑆𝜆4
5

(𝑡 − 𝑢𝑧)

])2

− 𝐵

(

𝜆 ± 𝜆sech1∕2
[
√

16𝑆𝜆4
5

(𝑡 − 𝑢𝑧)

])

− 𝐶. (39)

From the relations (30)–(32), we see that the solitary wave parameters
𝜆, 𝛤 and 𝑞 are uniquely dependent on the parameters 𝑅 and 𝑆. This
implies that the parameters related to the derivative Kerr and non-
Kerr nonlinear terms are thus essential in obtaining the nonlinearly
chirped solitary wave solution (38) for Eq. (1). It is apparent from
Eq. (32) that the reality of pulse width 𝑞 requires 𝑆 > 0, thus implying
(4𝜎 + 5𝛿)(𝛿 − 4𝜎) > 0.

Additionally, the expression (38) demonstrates the existence of two
different types of solitary waves for the model (1). A first solution with
the top sign describes a bright solitary pulse on a cw background and
a second solution with bottom sign depicts a dark-type solitary wave.
Figs. 5(a) and 5(b) show the intensity and chirp (for 𝑧 = 0) profiles of
the bright solitary wave on a cw background [Eq. (38) with the top
sign] for the material parameters 𝛼 = 0.25, 𝛾 = −0.485, 𝜖 = 0.105,
𝜐 = 0.549, 𝜇 = 0.05, 𝛿 = 0.5, 𝜎 = 0.1, and 𝜅 = 0.529. The results
of the nonlinear evolution of the dark solitary wave [Eq. (38) with
the bottom sign] and its corresponding chirp profile (for 𝑧 = 0) are
shown in Figs. 6(a) and 6(b) respectively, by using the same material
parameters as those in Fig. 5. We should note that these nonlinearly
chirped solitary waves characteristically exist due to a balance among
GVD, cubic and quintic nonlinearities, self-steepening, self-frequency
shift, and derivative non-Kerr nonlinearities.

For the completeness of the investigation, we now analyze the
stability of the obtained chirped solitary waves with respect to the
finite initial perturbations. Note that only stable optical solitary waves
can be observed experimentally. It is therefore crucial to analyze the
stability of the optical localized waves with respect to the finite initial
perturbations. These may be random noises, amplitude perturbation,
and the slight violation of the parametric conditions [17]. It is relevant
to mention that significant results have been obtained with previous
theoretical studies concerning stability properties of solitary pulses in
systems exhibiting cubic nonlinearity [31]. In addition, it was found
that competing nonlinearities occurring in cubic–quintic media can
stabilize soliton solutions [32]. In what follows, we analyze the stability
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Fig. 5. (a) Evolution of the dark solitary wave (38) and (b) the corresponding chirp profile for 𝛼 = 0.25, 𝛾 = −0.485, 𝜖 = 0.105, 𝜐 = 0.549, 𝜇 = 0.05, 𝛿 = 0.5, 𝜎 = 0.1, and 𝜅 = 0.529.
Fig. 6. (a) Evolution of the bright solitary wave on a cw background (38) and (b) the corresponding chirp profile for 𝛼 = 0.25, 𝛾 = −0.485, 𝜖 = 0.105, 𝜐 = 0.549, 𝜇 = 0.05, 𝛿 = 0.5,
𝜎 = 0.1, and 𝜅 = 0.529.
of the obtained chirped solitary wave solutions with respect to the finite
perturbations by employing numerical simulations. Here, we performed
a direct numerical simulation of Eq. (1) using the standard split-step
Fourier method [33], to test the stability of solutions (14), (20) and
(38) with initial white noise, as compared to Figs. 1(a), 4(a), 5(a) and
6(a) respectively. As usual, we put the noise onto the initial profile,
then the perturbed pulse reads [34]: 𝜓 pert = 𝜓(𝑡, 0)[1 + 0.1 random(𝑡)].
The numerical results of bright pulse on a zero background, kink pulse,
bright pulse on a cw background, and dark pulse solutions under the
perturbation of 10% white noise are displayed in Figs. 7(a), 7(b), 7(c)
and 7(d) respectively. From Fig. 7, we can see that under finite initial
perturbations of the additive white noise, the solitary waves can still
propagate very stably for a rather long distance, with profiles agreeing
very well with the analytical solutions. Therefore, we can conclude that
the solutions we obtained are stable and should be observable in optical
fibers with quintic non-Kerr nonlinearities.

Before we leave this section, we would like to compare the obtained
chirped bright solitary waves (14) and (38) with the bright solitons that
are experimentally observed in single-mode silica-glass fibers by Mol-
lenauer et al. [35]. Different from the bright soliton with a sech-type
wave form obtained within the framework of the cubic NLS equation
in the anomalous dispersion regime [36,37], the bright solitary waves
presented here possess a nonlinear chirp which depends on the intensity
of the pulse. This interesting frequency chirping property may find
various practical applications in achieving effective pulse compression
or amplification. Noting here that, the formation of the NLS bright
soliton in a pure Kerr medium occurs in conditions where only the
two basic effects, which are the self-phase modulation nonlinearity and
6

anomalous group velocity dispersion may be balanced. This differs from
those determined in the present study where their existence in the
fiber medium requires a balance among higher-order effects of different
nature.

Conclusions

In conclusion, we have analyzed the existence and propagation
properties of chirped solitary pulses in a highly nonlinear optical
fiber exhibiting quintic non-Kerr nonlinearities. The transmission of
femtosecond light pulses inside such system is described by the HNLS
equation combining the derivative Kerr with non-Kerr nonlinear terms.
We have found that the evolution equation for the pulse intensity
obeys a first order nonlinear ordinary differential equation with at
most a sixth-degree nonlinear term. Various types of chirped localized
waves including chirped bright, dark and kink solitary wave solu-
tions have been identified in the presence of all physical processes. In
addition, nonlinearly chirped bright solitary waves on a continuous-
wave background have been obtained by using a special ansatz. The
formation conditions of the chirped localized structures have been also
presented. It is demonstrated that the frequency chirp accompanying
these localized structures has a quadratic dependence on light intensity
and its amplitude depends upon the parameters of self-steepening, self-
frequency shift, and derivative non-Kerr nonlinearities. These results
may be useful for a further understanding of physical phenomena
and dynamical processes that arise in highly nonlinear optical fibers
described by the present model. Due to the interesting frequency chirp
property, the findings of the current paper paves way to potential
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Fig. 7. Numerical evolution of the intensity |𝜓|2 for (a) the bright solitary wave solution (14), (b) kink solitary wave solution (20), bright solitary wave solution on a cw
background (38), and (c) dark solitary wave solution (38) under the perturbation of white noise whose maximal value is 0.01. The parameters are the same as in Figs. 1(a), 4(a),
5(a) and 6(a) respectively.
applications in optical communications, optical fiber compressors and
optical fiber amplifiers.
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