Analysis and Diagnosis of Control and Protection System of Gas Turbine Using the Fault Tree and Bayesian Network

Toufik TOUIL¹, Abdelaziz LAKEHAL²

 A. Laboratory of Mechanical Engineering and Materials, Faculty of Technology, University of 20 August 1955-Skikda, PB N° 26 El-hadaik Road, Skikda 21000, Algeria. e-mail : tou.toufik@gmail.com
B. Laboratory of Research on Electromechanical and Dependability, University of Souk Ahras,

Algeria, e-mail: a.lakehal@univ-soukahras.dz

Abstract – This paper presents a model for predicting the risk of failure of gas turbine control and protection system. Using a traditional analysis method and an artificial intelligence method, we combined Fault Tree Analysis (FTA) with a Bayesian Network (BN) to obtain accurate results for system failures. While the Fault Tree Analysis allows us to know the causes that lead to the system failure, by listing the information available in the fault tree in addition to the data previously stored by the experts, the Bayesian Network method allows us to quantify the impact of each cause on the gas turbine control and protection system, to take corrective actions to prevent them from happening in the future.

Keywords: Bayesian Networks, Fault Tree, Control and Protection System of Gas Turbine, Diagnosis

I. Introduction

Gas turbines play an essential role in the industry. It is a type of internal combustion engine that converts the energy of fuel into mechanical energy drive machinery such as gearbox, compressors and generator that produces the electrical energy. Gas turbines are also commonly used in other fields such as aviation. However, gas turbines are subject to various failures and malfunctions that can impact their efficiency and safety. therefore, it is important to implement a robust control and protection system to ensure its reliability and integrity. We can apply certain analysis methods (traditional and artificial intelligence analysis methods) to simplify this system and discover the problems it encounters during its operation. A traditional analysis method can be applied in all industrial fields such as aeronautics, nuclear energy, chemical manufacturing, etc. These methods are generally used to analyze simple systems and determine the type of possible failure modes, such as Fault Tree Analysis (FTA) which works on a top-down deductive approach that starts from a top level event (e.g., a system failure) and works backwards to identify the contributing factors and underlying causes (representing a series of intermediate and main events) through a graphical representation of the fault tree, the FTA method is more appropriate for identifying possible failure modes (in qualitative terms). However, this method needs more support to obtain logical and close to reality results, while Bayesian network BN is more suitable for modeling conditional probabilities of events in a probabilistic framework, as they allow us to predict the impact of each event on the system (in terms of quantity) based on raw data from experts, BN can offer greater flexibility and accuracy, especially when dealing with large volumes of complex systems and contexts.

Many previous studies have analyzed gas turbine control and protection system failures by conventional methods such as Failure Mode and Effect Analysis FMEA [1], Root Cause Analysis RCA [2], and fault tree analysis FTA [3]. These methods have been widely used in the industry to identify the causes of faults and develop appropriate mitigation strategies. Some studies have also analyzed the failure of the gas turbine control and protection system by means of artificial intelligence such as machine learning algorithms such as neural networks analysis [4, 5], fuzzy logic [6, 7, 8]. have been used to develop fault detection and diagnosis models and Bayesian Network [9], and a predictive control algorithm [10]. Also, recent research has focused on combining traditional methods with AI-based methods to develop more robust and accurate models for fault detection and diagnosis such as FMEA/FTA and Bayesian Network [11], FMECA and the FT [12], Fuzzy FMEA [13], fault tree analysis and Markov chains [14], fault tree with BN [15]. These hybrid models can leverage the strengths of both approaches to achieve better performance.

Manufacturers such as General Electric, Baker Hughes and Siemens have also worked to develop a control and protection system consisting of several interconnected subsystems, where the failure of one of them leads to failure of gas turbines such as the system Bentley Nevada system, lubricating oil system, cooling and sealing air system, Turbine enclosure ventilation system, etc. which allows us to know the increase in temperature, high vibration, rotational speed, oil pressure and others, by using a different sensors such as thermocouple, RTD, etc. To measure and alert on each defect that exceeds the permissible limit in the system and send it to the control room to take preventive measures. It also relies on the strategy of renewal and component engineering according to the latest research and the results obtained through the tests that it conducts in its industrial laboratories and workshops to are aimed at improving the efficiency of the gas turbines.

This study, we can predict and know the potential faults and their impact on the system before they occur. This is done by studying all the subsystems that would help us to know all the sequential events that cause gas turbine failure. Through integrate one of the traditional methods, represented by the fault tree (FT), and the artificial intelligence (AI) method, represented by the Bayesian network (BN). This approach also allows us to analyze all systems, whether simple or complex, and to obtain better results in terms of identifying the quality and quantity of possible causes of system failure. This integration can improve the accuracy of fault diagnosis, enable more effective mitigation strategies, and make decisions.

II. Control and Protections Systems Description of Gas Turbine

Modern gas turbines protection and control systems use several systems to provide the necessary protection to the unit such as Ethernet based computer networks to provide paths for data flow between controllers, Human Machine Interfaces (HMI), input/output devices, timers, etc. Are used to monitor and provide operator commands to the control system, also are used as data archiving systems to store, and display power plant data. Many plants have hardware systems to protect such as lube oil, hydraulic oil, control oil, filter house system, etc. It acts as an on-site monitor (OSM) to transmit data between the controller and input/output circuit boards via UDH and also between HMIs, Distributed Control System (DCS), etc. With this huge amount of monitoring and protection systems, gas turbines remain vulnerable to failure due to several unknown factors.

The Control System Networks is an integration of a gas turbine components and network adapters (computers, time machines, etc.). Each component of system has a limited or recommended upgrade cycle life by the manufacturer, to mitigate undesirable events through product updates in the form of corrective actions and recommendation such as deploy end of Life equipment or update them due to technology maturity.

Therefore, the analysis and diagnostic of gas turbine control system network are important to reduce it failure. Through put an effective plan uses a combination of robust maintenance procedures, employee training, awareness, and modern technology.

We recommend this approach to manage the risks faced by gas turbines and include a proactive assessment based on our stock of information about the control and monitoring system network. This includes monitoring and planning for short- and long-term actions to protect the system from all unwanted risks.

Proposed actions include basic examination of control and protection system components such as hardware and software, including patch status, future protection plans, and development of long-term plans for upgrading through a variety of products and services.

III. Research Tools and Methodology

III.1. Fault Tree Analysis (FTA)

FTA is a technique used to analyze and evaluate the causes of an undesired events that lead to the system failure (identifying the quality of potential defects). It involves the creation of a diagram called a fault tree, which represents the logical relationships between various events and conditions that could lead to the undesired event or failure. The fault tree consists of two types of nodes: events and gates. Events represent the basic causes or conditions that can lead to the undesired event or failure, while gates represent logical operators that combine events or gates. FTA can be used to identify and evaluate potential failures or safety hazards and to identify the most effective ways to prevent or mitigate the effects of a potential failure or hazard.

III.2. Bayesian Network Analysis (BNA)

BNA is a probabilistic graphical model that represents the relationships among different variables and their conditional probabilities. It can be used to estimate the likelihood of a particular event or outcome based on different variables or parameters. It involves constructing a Directed Acyclic Graph (DAG) where nodes represent variables and edges represent the probabilistic dependencies between them. BNA is based on the Bayes' theorem, which allows for the computation of the posterior probability of a variable given its observed evidence and prior knowledge (data). BNA can be used for various tasks such as prediction, classification, and decision making, and has applications in fields such as medicine, finance, and engineering, etc. The Bayesian formula is a powerful tool for probabilistic inference that allows for updating prior beliefs or knowledge based on new evidence or observations.

- If A and B are any two events with P(B) > 0, the probability of A conditional on B is denoted P(A|B) and equals: $P(A|B) = P(A \cap B) / P(B)$
- If events A and B are independent and P(B) > 0, then P(A|B)= P(A).

According to the definition of conditional probability, we have: $P(A \cap B) = P(A|B).P(B) = P(B|A).P(A).$ So,

$$P(A|B) = P(B \cap A) / P(B).$$
(1)

Bayes theorem follows from the generalization of equation (1) to sets of events A and B:

$$P(A|B) = P(B|A).P(A) / P(B).$$
 (2)

IV. Pratical Application on Control and Protection System of Gas Turbine

The Fault Tree Analysis (FTA) and Bayesian Network (BN) are two popular methods used for risk assessment

and reliability analysis. They can be applied to various systems, including control and protection systems of gas turbines. this study allows to know the practical applications of these methods on gas turbine systems, in the first, fault tree analysis (FTA) can be used to identify potential faults and failure modes in a gas turbine system, starting with the identification of the top-level undesired event (e.g., control system of gas turbine shutdown) and then uses a logical diagram to break down this event into its contributing causes and events. then listing all undesirable events in Table 2 and 3 based on data previously stored by operators and maintenance experts, finally we use the combined approach based on Bayes method BN and fault tree FTA to model the probability of gas turbine control system failure based on different variables, the purpose of this method is to identify the most critical variables that affect system, reliability and determine the root causes of its failures and to develop effective risk mitigation strategies.

Fig.1. Control and Protection System of Gas Turbine

To illustrate how this method can be applied in practice, showed in the following graph of FTA (see Fig. 2), a gas turbine power station has a control and protection system that includes various systems such as lubricating oil (LOS), hydraulic oil (HOS), control oil system (COS), etc. Where these events represent the high level in terms of the amount of failure because their failure leads to the

failure of the control system, and there are different sensors, and the motors shown in the figure with codes

(F1, F2...., F541 see table 2) They are linked to each other, which represents the first causes of system failure.

Fig.2. Fault tree diagram of control and protection system of gas turbine

To complete the transfer of the FT to the probability space through the stored data and using the conditional probabilities parameters shown below.

Table-1: Conditional probability table for all events

А		True		False	
В		True	False	True	False
Event	True	1	1	1	0
(E)	Fals	0	0	0	1

- If the cause E has no direct cause, E(P) will be defined. When the cause E can take two probabilities true or false, it is necessary to define the two numbers P(A=True) and P(A=False).
- Then, If the effect G has a single direct cause E1, it is necessary to define P(G/E), which consists four numbers P(G=V/E1=V), P(G=V/E1=F), P(G=F/E1=V), and P(G=F/E1=F).
- Also, we can calculating the remaining causes (E2, E3,, En) using the same method, but the calculation becomes increasingly difficult as the number of causes and probabilities increase.

Mark VIe	G.T SYSTEMS	FAULTS / CODE		CAUSES /ACTION		
				Oil pressure (control / trip)	F11	
as		Lube oil tank		Oil level	F12	
of C				Electric heater / temperature	F13	
II O		Main lube oil pump		Mineral oil vapor separator fan motor	F21	
/ste /Jej				Vaporextractor	F22	
k V	Lube Oil System LOS			Start-up / Shutdown / Cool-down	F31	
1ar 1ar		Auxiliary lube oil pump/motor	F2	Low pressure	F32	
Control and Protect Turbine (N				Oil vapor separator / extractor fans	F33	
				Pressure	F41	
		Emergency lube oil nump/motor	F4	Under voltage	F42	
		Emergency rube on pump, motor		Overload	F43	
		Lube oil duplex filters	F5	Pressure difference	F51	
				Lube oil tank level low	F61	
		Lube oil heaters	F6	Over temperature (a-b-c)	F62	
		Ease on nearers		pressure – control / trip (a-b-c)	F63	

Table-2: Basic faults and events of control and protection system of gas turbine

			57	Drain oil temperature	F71
		Thrust bearing #1 and 4	F'/	Low pressure	F72
		Journal bearing #123 and 4		drain oil temperature	F81
			10	Low pressure	F82
		Mineral oil cooler fan motors	F9	Temperature C°	F91
		Air cooler motors fan	F10	Vibration transmitter (A-B-C)	F101
		Main & auxiliary hydr-oil pumps	F11	Trip - Loss of flame / Oil pressure	F111
				Valve position – closed	F121
		Datahatayan /matan	F12	Under voltage	F122
		Ratchetpump / motor		Overload Starting clutch position engaged	F123 F124
		Hydraulic oil dunley filters / header	F13	Low pressure	F124
	Hydraulic Oil	Hydraulic oil filters	F14	High difference pressure.	F141
	System HOS			Servoyalve (LVDT Position)	F151
			F15	Start-Up (low opening position)	F152
		Inlet guide vane operation (IGV)		After loading (high opening position)	F153
				Turbine speed < 92.5% (BV Opened)	F161
		Turbine air bleed valves (antisurge)		Turbine speed > 92.5% (BV Closed)	F162
		Nozzle Guide Vanes (NGV)	F17	Close / Open	F171
	Control Oil	Control oil trip	F18	Overspeed protection (GT trip: oil drain	F181
	System COS	control on trip	110	valves open \rightarrow gas servo valves closing)	1 101
		Hydraulic ratchet	F19	Start-Up / Cool-Down	F191
	Turking Stand		1	Start-Up	F201
	Turdine Starter		F20	Clutch disengaged / Stop	F202
	System 155	Starting motor	F20	Hydraulic torque converter open/close	F203
				A apple retion warmup (periods)	F204
	Filter House	Inlet air filter	F21	Pressure control	F203
	System (FHS)	Inlet filter inspection door	F22	Close / Open	F221
	<i>System</i> (1115)	Dust extractor fan motor	F23	Alarm/Trip	F231
	Cooling and	GT ready to CRANK / START-UP	F24	Close / Open	F241
	Sealing Air	Emergency shutdown	F25	Trip	F251
	System CSAS	Journal bearing # 1,3 and 4	F26	Air pressure > Oil pressure	F261
		Main & stand-by ventilation	E27	Ventilation cutout (fire detected, CO2, Gas	E271
	Turbine	air fan motors	Γ2/	detected at inlet filter)	Γ2/1
	Enclosure	Fire dampers / inlet damper	F28	Close / Open	F281
	Ventilation	GT compartment internal temp C°	F29	Control – Trip	F291
	System TEVS	GT compartment ventilation outlet	F30	Close / Open	F301
		Coupling compartment ventilation	F31	Outlet Close / Open	F311
	W	Coupling compartment internal	F32	Control temperature – Trip	F321
	Water-wasn System WWS	Axial compressor fouling	F33	Mode (Online / Olline)	F331
	System WWS			Radial and seismic vibration (alarm/trin)	F341
	Bently Nevada	HP Shaft	F34	Axial displacement (Alarm/Trip)	F342
	System (BNS)	LD CL-A		Radial and seismic vibration (alarm/trip)	F351
		LP Shaft	F35	Axial displacement (Alarm/Trip)	F352
		Solenoid and servo valves	F36	On/Off	F361
	_	LVDT sensors	F37	Position	F371
	Fuel Gas	Stop / Speed Ratio Valve (SRV)	F38	Gas pressure (Close /Open)	F381
	System FGS	Gas Control Valve (GCV)	F39	Regulate the fuel supply quantity	F391
		Fuel gas supply temperature	F40	ALARM/TRIP	F401
		FG control valve actuation/Position	F41	Close / Open	F411
		warm-up line vent valve status	F42	Close / Open	F421
		ruel gas shutoff valve actuation	F43		F431
		FGvent valve actuation	F44		F441
	Fire Fighting	Safety depressurized	F45	Trip	F451
	System FFS	Control olisolenoid valve	F46	Close / Open	F401
		Interstage fuel gas vent valve			F471
		Firefightingdampers actuation		Close / Open	F481
		Battery of CO2 initial discharge		UII Fan #1 out out	F491 F501
		I urbine enclosure vent		Trin (firefightingstarting)	F511
			1.71	Thermocouple 1^{st} stage temperature FWD/ Δ FT	1.711
	Over		1	inner #1 (Alarm/Trip)	F521
	Temperature	Wheel spaces temperature		Thermocounle 2 nd stage temperature	
	ОТ	······································	102	FWD/AFT inner #1 (Alarm/Trip)	F522
		Exhaust temperature monitoring	F53	Thermocouple (1÷13) (Alarm/Trin)	F531
		Combustion chambers	F54	Flame detectors: Loss of flame	F541

Events	Faults C	Code	A priori	A posteriori Probability		ability
	F1	F11	0.0001		of each even	15
	1.1	F12	0.0003	0.0008		
		F13	0.0004	0.0000		
	F2	F21	0.0002			
		F22	0.00005	0.0002		
		F31	0.0003			
	F3	F32	0.00024	0.0007		
		F33	0.00015			
LOS		F41	0.00001			
	F4	F42	0.0002	0.0009		
		F43	0.0006	0.00001	0.0054	
	F5	F51	0.000013	0.00001	0.0054	
	FO	F61 F62	0.0004	0.00075		
		F63	0.0001	0.00075		
	F7	F71	0.00029			
	- /	F72	0.0003	0.0006		
	F8	F81	0.0007	0.0008		
		F82	0.00008	0.0008	_	
	F9	F91	0.00045	0.00045	4	
	F10	F101	0.00018	0.0002		
	FII	F111 F121	0.000027	0.00003	-	
		F121 F122	0.00001	-		
	F12	F123	0.00023	0.00114		
		F124	0.0006			
UOS	F13	F131	0.0009	0.0009	0.0047	
nos	F14	F141	0.002	0.002		
	F15	F151	0.0001			
		F152	0.0003	0.0005		
		F153	0.00008			
	F16	F161	0.0001	0.00015		
	517	F162	0.00005	0.00000		ТОР
COS	F1/ E19	F1/1 E101	0.00003	0.00003	0.0002	EVENT
COS	F10 F19	F101 F191	0.0002	0.0002	0.0002	0.026
	11)	F201	0.0004	0.0001		0.020
		F202	0.0006	0.002	0.002	
TSS	F20	F203	0.00004	0.0018		
		F204	0.0007			
		F205	0.00008			
FUC	F21 F22	F211 F221	0.0001	0.0001	0.0006	
rhs	F22 F23	F221 F231	0.0004	0.0004	0.0000	
	F24	F241	0.0002	0.0009	<u> </u>	
CSAS	F25	F251	0.00025	0.00025	0.0009	
	F26	F261	0.00045	0.00045	1	
	F27	F271	0.00042	0.00042		
	F28	F281	0.0001	0.0001	_	
TEVE	F29	F291	0.0003	0.0003	0.0012	
IEVS	F30	F301	0.0002	0.0002	0.0013	
	F31 E22	F311 F221	0.00008	0.0008	_	
WWS	F32 F33	F321 F331	0.0002	0.0002	0.0006	
11115	F34	F341	0.00027	0.0000	0.0000	
BNS		F342	0.00055	0.00082	0.002	
	E25	F351	0.0005	0.0012	1	
	гээ	F352	0.0007	0.0012		
	F36	F361	0.002	0.002	_	
	F37	F371	0.0001	0.0001	1	
FGS	F38	F381	0.0003	0.0003	0.004	
FGS	F39 F40	F391	0.0004	0.0004	0.004	
	F40 F41	F401 F411	0.0005	0.0003	-	
	F42	F421	0.0003	0.0003	-	
	1 74	1-12-1	0.0004	0.0004	1	I

Table-3: A priori and a posteriori probability of control and protection system of gas turbine

	F43	F431	0.00025	0.00025	
	F44	F441	0.00015	0.00015	
FFS	F45	F451	0.0004	0.0004	
	F46	F461	0.0003	0.0003	0.0025
	F47	F471	0.0002	0.0002	0.0025
	F48	F481	0.0001	0.0001	
	F49	F491	0.00035	0.00035	
	F50	F501	0.0005	0.0005	
	F51	F511	0.0003	0.0003	
	F52	F521	0.0001	0.0002	
		F522	0.0002	0.0003	0.002
ОТ	F53	F531	0.00065	0.00065	
	F54	F541	0.001	0.001	

By using the fault tree, we can find out the causes for the greatest impact on the gas turbine control and protection system, by representing all the main and secondary events in Table 2, then by calculating the probability of each event (a quantitative description) based on the raw data stored by the experts (as shown above in Table 3), through this table we can draw a Bayes diagram represented in the fig 4, as it consists of three basic levels of events starting from the base up to the top of the pyramid (control and protection system failure), where the first level represents the various systems such as LOS, HOS, COS, etc. which are an integral part of the main protection system, as its failure leads to the failure of the gas turbines. The second level represents all the main events leading to the failure of the first level systems, the last level, which represents the secondary events that cause the failure of the second level. In this study, according to The values obtained by calculating a posteriori probability of failure for each component of the first level (monitoring systems) show us that the impact of these systems on the highest event is divided into three sections according to the severity of their impact, where the lube oil system represents the highest percentage with 21%, followed by the hydraulic oil system and The fuel gas system accounts for 18% and 15%, respectively, while the second section is represented by the firefighting system by 9%, while the other three systems (turbine starter, Bentley Nevada and Over Temperature system) are equal in terms of impact by 8%. As for the turbine enclosure ventilation system It is affected to a lesser extent than the previous systems by 5%, while the last section is due to the remaining systems (cooling and sealing air system, filter house system, control oil system and water-wash system) with small percentages in terms of impact limited between 1% and 3% (see fig 3).

Fig.3. The impact percentage of each subsystem on the control and protection system of gas turbine

Fig.4. Bayesian network of control and protection system of gas turbine fault

V. Conclusion

In this study, a probabilistic analysis of a gas turbine protection system was performed, using an approach integrating two well-known methods, namely Fault Tree Analysis FTA and Bayesian Network BN, so that the FTA depends initially on the knowledge of all the undesirable causes that can lead to the system failure, through evaluating the probability of each cause and event using the available data and expert knowledge that would help us to build a Bayes diagram to estimate a posteriori probabilities, The results obtained show that it is possible to predict the occurrence of undesirable events that cause the failure of control and protection system of gas turbine. Through the results obtained we found the lubrication system has the highest impact on the control and protection system with 21%, followed by the hydraulic oil system and the fuel gas system with 18% and 15%, respectively, while the other subsystems contribute the lowest impact rates, which leads us to focus on the need to take preventive measures to reduce the severity of these events.

With this approach, we can gain as much information as we did not have before, such as predictions, learn which failure patterns are most significant based on the severity of their impact on the system (qualitative and quantitative knowledge), and help us define prioritization strategies to mitigate risks.

References

- H. He Li, C. Díaz, G. Soares, "A failure analysis of floating offshore wind turbines using AHP-FMEA methodology", Ocean Engineering, Vol. 234,109261, ISSN 0029-8018.2021.
- [2]L. F. da Rocha, L. A. Vitoi, E. Tedeschi and D. I. Brandao, "Control Strategies for Multifunctional Active Front-End Converter in Oil and Gas Platforms," 2021 Brazilian Power Electronics Conference (COBEP), João Pessoa, Brazil, pp. 1-8. 2021.
- [3] J. ZHANG, J. KANG, L. SUN, X. Bai, "Risk assessment of floating offshore wind turbines based on fuzzy fault tree analysis". Ocean Engineering, 2021, vol. 239, p. 109859.
- [4] M. Ben Rahmoune, A. Hafaifa, A.Kouzou, XQ. Chen, A. Chaibet, "Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling", Mathematics and Computers in Simulation, Vol. 179, pp. 23-47, ISSN 0378-4754. 2021.
- [5] M. Amozegar, K. Khorasani, "An ensemble of dynamic neural network identifiers for fault detection and isolation of gas turbine engines", Vol 76, pp. 106-121, ISSN 0893-6080. 2016.
- [6] C. Djeddi, A. Hafaifa, A.Iratni, N. Hadroug, and X. Chen, "Robust diagnosis with high protection to gas turbine failures identification based on a fuzzy neuro inference monitoring approach", Journal of Manufacturing Systems, vol. 59, pp. 190-213, ISSN 0278-6125. 2021.
- [7] N. Hadroug, A. Hafaifa, B. Alili, A. Iratni, "Fuzzy Diagnostic Strategy Implementation for Gas Turbine Vibrations Faults Detection: Towards a Characterization of Symptom-fault

Correlations". Journal of Vibration Engineering & Technologies. pp. 1-27, 10, 225–251. 2022.

- [8] F. Carmo Carvalho, MV. Fernandes de Oliveira, FA. Lara-Molina, AA. Cavalini, V. Steffen, "Fuzzy robust control applied to rotor supported by active magnetic bearing. Journal of Vibration and Control". vol. 27 no. 7-8. Pp. 912-923. 2021.
- [9] A. M. Mirhosseini, S.Adib Nazari, A. Maghsoud Pour, S. Etemadi Haghighi, andM. Zareh, "Probabilistic failure analysis of hot gas path in a heavy-duty gas turbine using Bayesian networks". International Journal of System Assurance Engineering and Management, 2019, vol. 10, pp. 1173-1185.
- [10] Zhou, F. Lu, W. Zhou, J. Huang, "An improved multivariable generalized predictive control algorithm for direct performance control of gas turbine engine". Aerospace Science and Technology, Vol. 99, p.105576, ISSN 1270-9638. 2020.
- [11] C. He, R. Wang, L. Ma, X. Li, X. Jiao and L. Song, "Research on Fault Diagnosis Method Based on FMEA/FTA and Bayesian Network", International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Beijing, China, pp. 173-177. 2019.
- [12] M. Barozzi, S. Contini, M. Raboni, V. Torretta, Casson V. Doreno, and S. Copelli, "Integration of recursive Operability Analysis, FMECA and FTA for the quantitative biogas plants: Role of procedural errors and components failures". Journal of Loss Prevention in the Process Industries., vol.71, p.104468, 2021.
- [13] C. Ngarayana, and K. Murakami, "Graded Approach Establishment for the HTGR Maintenance Activities Using Modified Fuzzy FMEA & Expert Judgement Methodology". Journal of Physics: Conference Series. IOP Publishing, 2022. p. 012005.
- [14] Y. Li, FP. Coolen, "Time-dependent reliability analysis of wind turbines considering load-sharing using fault tree analysis and Markov chains". Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. Vol. 233, no. 6, pp.1074-1085. 2019.
- [15] A. Lakehal, M. Nahal, and R. Harouz. "Development and application of a decision-making tool for fault diagnosis of turbocompressor based on Bayesian network and fault tree". Management and Production Engineering Review, vol. 10, pp. 16-24. 2019.
- [16] Y. Rui, Y. Liu, Y. Yu, X. He, H. Li, "Hybrid improved particle swarm optimization-cuckoo search optimized fuzzy PID controller for micro gas turbine", Energy Reports, vol. 7, pp. 5446-5454, ISSN 2352-4847. 2021.
- [17] A Z. Djeddi, A.Hafaifa, N. Hadroug, A. Iratni, "Gas turbine availability improvement based on long short-term memory networks using deep learning of their failures data analysis", Process Safety and Environmental Protection, vol. 159, pp. 1-25, ISSN 0957-5820. 2022.
- [18] F. Kulor, M. Elisha, K. Kanzumba, "Dynamic Analysis and Design of a Dual Nozzle Control System for Gas Turbine Power Plant Efficient Operation Using Parallel PID Controller", vol. 21, Iss. 2, pp. 14-30, 2023.
- [19] O.Attallah, R A. Ibrahim, N E. Zakzouk, "CAD system for interturn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection", Renewable Energy, vol. 203, pp. 870-880, ISSN 0960-1481. 2023.