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A B S T R A C T

We expose the state of the art in the topic of network time synchronization. Many distributed applications
require a common notion of time to function properly. Without time synchronization, the nodes clocks will
drift and report different values for the same instant. This problem is exacerbated by varying network delays
between the cooperating nodes. Our survey covers how this issue is tackled by standard time synchronization
mechanisms and a representative range of recent research works. We expose how some of them achieve micro
and nanoseconds accuracy in wired networks. The reviewed techniques are classified in two categories based
on whether they change the hosts clocks or not. The latter category includes schemes that detect and remove
clock skew from network traffic trace. We discuss the advantages and drawbacks of the techniques in each
category; compare them according to their application environment, accuracy and cost; and conclude this
survey with a summary of learned lessons and insights into future work.
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1. Introduction

The clocks of the collaborating nodes in a computer network are
said to be synchronized if they all report the same value at the same
instant in time. For that purpose, they need to agree on a particular
starting value, which is often an epoch with respect to Coordinated
Universal Time (UTC). Additionally, the clocks frequencies need to be
adjusted, so they run at the same speed [1].

The advantages of using synchronized clocks in distributed systems
have been identified as early as 1991 [2]. These include message order-
ing, authentication token expiration, replay attacks prevention, cache
consistency and file system replication. Nowadays, many applications
require the notion of synchronized time between networked hosts.
Enumerating them is beyond the scope of this study. Nonetheless, we
show hereafter the importance of this topic through some detailed
examples:

• The measurement of time-dependent network metrics such as the
packet one-way delay (OWD) [3]. We showed in a recent survey
about OWD measurement that a lot of solutions use one mecha-
nism of time synchronization or another between the sender and
the receiver nodes [4].

• The scheduling of network configuration and maintenance activ-
ities. For example, in modern software defined networks (SDN),
the update of multiple OpenFlow switches with new routing rules
requires the synchronization of their clocks with the controller
one [5].

• The analysis of network nodes logs after a service failure, a per-
formance drop or a security breach. For instance, digital forensics
experts compare the events timestamps in several hosts to trace
back an attacker path in the network. Their findings would not
be credible if the hosts and therefore their logs do not share the
same notion of time.

• The decision making in distributed applications that rely on cor-
rect file timestamps in the network. That is the clock of the node
running the application is synchronized with the one hosting the
files it manipulates. Many programs such as the build tool make,
the search utility find and the archive application tar belong
to this category.

• Time-Sensitive Networking (TSN) which is a set of IEEE standards
that aim to achieve real-time communication in Ethernet net-
works [6]. Particularly, time synchronization in TSN is described
by the IEEE 802.1AS standard [7], which itself relies on a specific
profile of the Precision Time Protocol (PTP) discussed in this
survey. TSN is used in many applications such as audio–video
bridging, safety-critical systems, Internet of Things (IoT) and
Industry 4.0 networks [8].

This survey of network time synchronization is motivated by the
ecent advances in this mature topic, which achieve sub-microsecond
ccuracy in fast local area networks like datacenters an high perfor-
ance computing clusters. It is also motivated by the lack of a literature

eview that covers such advances. Our main goal is to focus on time
ynchronization in wired networks. Hence, we do not address this topic
n the context of wireless networks. This is due to the grand variety of
xisting wireless technologies (e.g., Bluetooth, WLAN, wireless sensors
nd cellular networks). Covering all of them requires a separate survey,
erhaps a dedicated one for each technology. For example, there are
lready surveys from Sivrikaya and Yener [9]; and Sundararaman
27
et al. [10] devoted to the topic of time synchronization in sensor
networks alone. However, we make an exception for the Global Posi-
tioning System (GPS), which uses wireless satellite communications to
synchronize nodes clocks. The reason for this exception is that GPS can
be used in wired networks as an external time reference, for instance,
in hardware packet timestamping and in Network Time Protocol (NTP)
Stratum 1 servers. Both use-cases are covered in this survey.

Many synchronization protocols exchange timestamped packets be-
tween the network nodes to estimate their clocks errors and correct
them. As any network communication takes a certain delay, timing
inaccuracies might occur in these protocols when the packet delay
varies. Delay variation (i.e., jitter) can be caused by many network ef-
fects such as nodes processing load, queuing, traffic congestion, packet
loss, routing changes, etc. In addition to its variable part, the packet
delay in a wired network is also composed of a deterministic part that
is not null even if the network conditions are good. This is made of
the transmission and the propagation times. The former corresponds
to serialization of the packets bits by the Network Interface Card
(NIC). The latter consists of the time needed for the bits to reach their
destination, which happens at the speed of signal propagation through
the network medium [4]. Overall, to tackle the challenge of network
time synchronization, the proposed solutions must take such factors
into account or circumvent them.

We divide the topic of network time synchronization in two cate-
gories based on whether the clocks of the nodes are modified or not.
In the first case we talk about clock synchronization protocols. In the
latter, we discuss skew detection and removal mechanisms, which rec-
tify the timestamps of a traffic traces only. In addition to summarizing
the important techniques in both topics, we analyze and compare them
according to the following usage criteria: (i) application environment,
that is in what type of network a technique can be used; (ii) accuracy,

hich is expressed in the two categories of the reviewed works, respec-
ively, as the absolute and the relative error in measurement (the latter
eing: |𝑡𝑟𝑢𝑒_𝑣𝑎𝑙𝑢𝑒 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒|∕𝑡𝑟𝑢𝑒_𝑣𝑎𝑙𝑢𝑒) and (iii) cost, which

includes the network overhead and any special hardware required by
a technique. The cost determines also the scalability.

The contributions of this paper include:

• A clarification of the clock nomenclature (Section 2) and the clock
formal model (Section 3) used in the related literature.

• An analyses of where and when packet timestamps are generated
and how they are encapsulated (Section 4).

• An up to date state of the art of clock synchronization protocols
with a comparison based on their usage criteria (Section 5).

• A detailed review and comparison of clock skew estimation and
removal algorithms (Section 6).

• A summary of learned lessons and a reflection on future research
works (Section 8).

2. Clock nomenclature

A clock in our context is a device that keeps track of the time of
day. It is a combination of a base value, which is often an epoch with
respect to a time standard such as UTC; and a counting mechanism that
advances this value to reflect the progress of physical time. Therefore,
a clock can be implemented using a base register and a counter.
Alternatively, a counter can act as both when it is set to the time of day
and counts up from that point. In the clock model described below, we
assume the counter plays both roles. Clock errors can occur when the
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Fig. 1. Increasing network one-way delay caused by clock skew [12].

base value is initially set and/or when the counter is not 100% precise
(and no counter is).

In a computer, several clocks can be present in different places
to serve diverse purposes, such as timestamp generation. Clocks can
be embedded in software, for example, to maintain time in virtual
machines (VMs). They can also be embedded in hardware, for instance,
NICs can have their own clocks separate from those used by the CPUs.
Additionally, various types of counters (e.g., High Precision Event Timer
(HPET), Real Time Clock (RTC) and Time Stamp Counter (TSC)) can be
used to count the passage of time, but some might not themselves know
the time of day.

Throughout this article we use the clock nomenclature defined in
Mills’s work about the Network Time Protocol [11]. Specifically, a
clock’s resolution is the minimum unit by which its time is changed
(a tick). A clock’s offset at a particular moment (i.e., its error) is the
difference between the time reported by the clock and the ‘‘true’’ time
as defined by UTC. A clock’s accuracy is how close the absolute value of
its offset is to zero. A clock’s frequency is the rate at which it progresses.

Two clocks that are not running at the same frequency exhibit
a relative skew, which is represented as the ratio or the difference
between their frequencies. Skew is measured in seconds per real second
or in the dimensionless unit: parts per million (ppm). For instance, if
a crystal clock has a skew of 20 ppm, then it will register an error of
±20 seconds after one million real seconds. In other words, its absolute
error per day will be (24 ∗ 60 ∗ 60) ∗ (20 ∗ 10−6) = 1.728 seconds.

A clock’s drift indicates the variation in its skew due to fluctuations
of the clock’s frequency itself in time. It is closely related to envi-
ronmental conditions such as temperature variations and other factors
(e.g., quality of oscillator, aging and line voltage). The skew and the
drift of a clock are respectively the first and the second derivative of
its offset with respect to true time.

If the clocks in a network are not synchronized then time-dependent
tasks will have issues. For instance, the OWD measured between a
sender and a receiver will contain the offset of their clocks even if they
run at the same rate. Moreover, if the clocks frequencies are different
(i.e., their skew is not null), this OWD will vary in time. It will do so
in a way that cannot be distinguished from legitimate network effects
like queuing [12]. This problem can even happen for clocks that have
the same nominal frequency, because the actual frequency might also
vary in time (i.e., their drift is not null).

In the particular case where the clock skew is constant, the mini-
mum OWD of a fixed path and packet size will appear to increase (as
in Fig. 1) or decrease over time. In such a case, the linear coefficient of
the skew corresponds to the slope of line beneath the OWD points. The
intercept of this line corresponds to the sum of the clock offset and the

minimum OWD at the beginning of the measurement.

28
Fig. 2. Simple clock skew model.
Source: Adapted from Ridoux and
Veitch [15].

3. Clock model

Veitch et al. propose a formal model of simple clock skew which
is adopted by several research works [13]. In this model, the skew is
considered as the deterministic linear component of the drift. The latter
contains also a random component, which is less important than the
skew for small time scales (i.e., below 1000 s).

𝜃(𝑡) = 𝐶(𝑡) − 𝑡 = 𝜃0 + 𝛾𝑡 + 𝜔(𝑡) (1)

here 𝐶(𝑡) is the clock value at instant 𝑡 of true time, 𝜃(𝑡) is the
ffset, 𝜃0 is the initial value of the offset, 𝛾 is the simple skew and
(𝑡) is a remainder that encapsulates nonlinear deviations. For ordinary
uartz-based clocks, the coefficient 𝛾 is usually given by the quartz
scillator data-sheet in the range of 10 to 100 ppm [14]. The relation
etween a clock’s offset, skew, drift and true time is depicted in Fig. 2.
hen a clock is synchronized with another reference clock, its value

s adjusted/reset instantaneously or smoothly by varying its frequency
ver a small period of time.

This simple skew model corroborates earlier observations from
axson about TCP connections that span 120 s [16]. He found that the
elative skew is nearly linear between clock adjustments. Nonetheless,
he assumption of linear skew does not hold for small time scales in
he presence of extreme temperature variations. Such would be the
ase with sensor networks deployed in harsh conditions. Sugihara and
upta [17] conducted experiments to measure quartz oscillators fre-
uencies in varying temperatures. They reported an increase of 0.6 kHz
t 20°C from a nominal frequency of 32 768.5 kHz at 0°C. That is a ratio
f 0.6/32768.5 or 18.31 ppm, which is not far from the ±25 ppm shift
eported earlier by Vig [18] for a temperature variation in a wider
ange (−55°C to 85°C).

For larger time scales, the drift is also important and must be
racked, at least by bounding it. We note that in traditional distributed
ystems literature, the terms skew and drift are used in a slightly
ifferent way. Namely, the term skew is used to denote the offset as
efined above and the term drift is employed in place of skew [19–21].
n our opinion, this difference is due to a more general model of drift,
hich is used in the larger time scales of the distributed systems. In

his model the drift is considered as an arbitrary variable with bounded
alues. The bound is a small constant denoted 𝜌, which delimits the
olerance of the clock frequency 𝐹 (𝑡) around its nominal value 𝐹0. That
s:

𝑡 ∶ (1 − 𝜌) ≤ 𝐹 (𝑡)
𝐹0

≤ (1 + 𝜌),
𝜕𝐶(𝑡)
𝜕𝑡

=
𝐹 (𝑡)
𝐹0

(2)

For this survey we adopt the first nomenclature as it was specifically
coined for network time synchronization and is the most used in the
related literature.
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4. Network packet timestamping

Network packet timestamping refers to the operation of capturing
the transmission or reception time of a packet and piggybacking this
information on the packet itself in a special field called timestamp.
We focus on this operation because, in addition to recording network
events, it is useful for synchronizing clocks. Packet timestamping tech-
niques have been classified by Orgerie et al. into three categories based
on their location: hardware, firmware or software [22].

Hardware timestamping is performed by special NICs like the DAG
cards, which rely on GPS to synchronize their internal clocks with
nanosecond level accuracy [23]. They give the most accurate times-
tamps for packet departure and arrival events, which are called wire-
imes in the IETF definition of OWD [3]. However, they are the most
xpensive.

The firmware techniques try to obtain a good accuracy while us-
ng commodity hardware. The idea is to let the firmware of a pro-
rammable NIC stamp the packets using a good reference time such
s PTP.

Software timestamps are sometimes generated in user space. These
re called host-times in IETF parlance. They have the worst accuracy
ecause of the latency of context switching, system scheduling and
acket copying between the application and the kernel space. Donnelly
t al. compared user space timestamps which are based on a system
lock synchronized with GPS to DAG wire-times. They observed that
he time error is within 50 μ𝑠 at a 95% confidence level [24].

Software timestamping is usually done in the kernel by a packet
iltering component like the Berkeley Packet Filter (BPF) [25]. In-kernel
imestamps include a latency of few tens of microseconds induced by
he operating system load and the NIC driver latency [26,27]. In detail,
here is a transmission latency between the moment where the stamp is
enerated in the networking stack and the real departure of the packet
n the network link. NTPv4 accounts for this latency in interleaved
ode by generating the stamp – which is called softstamp – right before

the packet is buffered in the NIC output queue [28]. As it cannot be
added to this packet, it is sent with the immediately following one.
Similarly, there is a reception latency between the arrival of the (last
bit of the) packet and the moment when it is stamped by the network
stack. This stamp – which is named drivestamp – is generated in NTPv4
interleaved mode shortly after the input device interrupt and before the
packet is buffered in the input queue.

Regarding encapsulation, timestamps appear at different network
layers depending on the protocol that uses them. They can be part of the
packet payload or its header as in P4 In-band Network Telemetry [29]
and NTP. More specifically, the NTP header (which is carried over UDP)
uses timestamps coded in 64 bits. The highest 32 bits represent the
seconds since the first of January 1990, while the other 32 bits contain
fractions of seconds [11].

The layer where timestamps are encoded is very relevant for their
usage. One the one hand, link layer timestamps limit their usage to
local networks only. On the other hand, timestamps encapsulated in
the payload of IP packets might be impacted by fragmentation. Indeed,
if the nodes that fragment and reassemble packets are interleaved with
the measurement points, the latter will neither see the same number of
packets, nor be able to find the timestamps. For this reason, RFC 2679
(about OWD measurement) considers fragmented packets as lost [3].
Alternatively, we suggest to set the Do not Fragment (DF) bit of probe
packets to avoid this issue or limit their size according to their path
maximum transmission unit (MTU).

5. Clock synchronization mechanisms

In the following two subsections, we review respectively the com-
mon standard synchronization protocols: GPS, NTP and PTP; and a
representative selection among the more recent clock synchronization
mechanisms: Alg1, TSCclock, CCT, DPT and Huygens. They all have in
29
Fig. 3. Using timestamped messages for the delay and clock offset estimation (NTP
and PTP).

common the fact they modify the network nodes clocks to keep them
synchronized, so applications hosted on these nodes read the same time
with a certain accuracy. We then compare these mechanisms according
to the retained criteria.

5.1. Standard clock synchronization protocols

5.1.1. Global positioning system
The Global Positioning System can provide sub microsecond accu-

racy by relying on the atomic clocks in its satellites. Each GPS satellite
broadcasts radio signals repeatedly every 1 millisecond. These signals
carry navigation messages that provide position and time information.
The latter includes the offset between GPS time and UTC, which is spec-
ified to be ≤ 40 nanosecond 95% of the time [30]. The total accuracy
of the UTC offset at the receiver depends on this time information and
on other factors like its antenna location, the number of satellites in
view and the atmospheric interference. It is in the order of hundreds of
nanoseconds [31].

A GPS node needs to receive the signals of at least four satellites
to derive the GPS time and three position coordinates by triangulation.
However, using GPS to synchronize network clocks requires a hardware
receiver per node which is not a scalable solution. In addition to its
cost at large scale, GPS might not be affordable too for certain applica-
tions due to node size and power consumption (e.g., sensor networks).
Furthermore, GPS requires an unobstructed line of sight, so it may be
unusable if the satellite signals are not accessible (e.g., indoors) or are
disrupted (e.g., during solar flares) [32].

5.1.2. Network time protocol
The Network Time Protocol is the most deployed solution. It dis-

tributes time over the internet using a hierarchical
client–server model [11]. The client, which is the initial sender, ex-
changes periodic messages with the NTP server using a poll interval
that increases gradually. Each NTP message contains the latest three
timestamps of the exchange between the two nodes (see Fig. 3).
NTP uses software, firmware or hardware timestamping based on the
available equipment and the administrator configuration. When an NTP
message returns to its sender, the fourth timestamp becomes known,
so the round trip time (RTT) and the clock offset can be measured
respectively as (𝑇4 − 𝑇1) − (𝑇3 − 𝑇2) and [(𝑇2 − 𝑇1) + (𝑇3 − 𝑇4)]∕2. Only
the smallest observed RTTs are considered to filter out the effect of
queuing in the network. However, path delay asymmetry is not taken
into account. The measured offset is used to adjust the client clock
smoothly in a control loop. This loop varies the clock value and/or the
frequency of its oscillator, while maintaining its skew below 0.01 ppm.
Additionally, the client can check for packet loss and out of order
delivery by verifying the first timestamp in each incoming response,
which should match the transmission timestamp of its previous request.

Each level of the NTP hierarchy is called a Stratum. At the top level,
NTP servers (from Stratum 1) use precise external time sources such
as atomic clocks or GPS (i.e., Stratum 0). But due to variable network
latency the precision degrades from few microseconds at the top nodes,
as achieved by NTPv4 in a local area network (LAN), to the order of
tens of milliseconds in the lower hierarchies, as in wide area networks
(WAN) [28].
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5.1.3. Precision Time Protocol
Similar to NTP, the IEEE 1588 Precision Time Protocol (PTP) cal-

culates periodically the relative offset between a master clock and
slaves’ clocks by exchanging timestamped messages [33]. However,
PTP usually uses Ethernet PHY hardware clocks (PHC) in the NICs of
the master, the slaves and the intermediate switches to timestamp its
messages. In one-step PTP, a message about to leave the device carries
its own timestamp. Conversely, in two-step PTP, a follow-up packet is
used to communicate the exit time of the previous message. PTP is best
suited for LANs and is often used in industrial automation. Its accuracy
varies from tens to hundreds of nanoseconds depending on LAN traffic
load and more importantly on the quality of its PHC oscillators. PTP has
the advantage of electing the best master automatically. This election is
based on the accuracy of the participating nodes clocks, their variance
and user assigned priorities.

5.2. Non standard clock synchronization mechanisms

5.2.1. TSCclock
The Time Stamp Counter clock (TSCclock), also known as RADclock,

is proposed as a middle ground between the accurate but expensive
PTP; and the cheap and widely available but less accurate NTP [13].
This solution provides two clocks named difference and absolute that are
based on the Time Stamp Counter (TSC) register present in commodity
hardware. TSC is a PC CPU cycle counter that has a rate error of 0.1 ppm
nd is therefore highly stable. TSCclock relies also on NTP exchanges
etween the host to synchronize and an NTP Stratum 1 server.

On the one hand, the difference clock is derived from the TSC
egister by multiplying its value with its frequency. This clock is used
o measure the offset between the host local events within time scales
elow 1000 s. In particular, it is used to detect the minimum RTT
etween the host and the NTP Stratum 1 server. Furthermore, the NTP
imestamped packets that have the minimum RTT (i.e., quality packets)
re used to synchronize the frequency of the TSC register.

On the other hand, the absolute clock is defined off the difference
lock by subtracting from it its own error. This error is estimated
rom the timestamps of the packets exchanged with the NTP server.
owever, contrary to NTP which modifies the client clock to filter
ut this error, TSCclock does not adjust the rate of its absolute clock.
nstead, it subtracts the error from the value of this clock when it
eads it. The absolute clock is used for timestamping events with
ub-millisecond accuracy.

.2.2. Coordinated Cluster Time
The Coordinated Cluster Time (CCT) mechanism uses the Times-

amp Exchange Protocol (XTP) to synchronize the clocks within com-
uter clusters [34]. The client nodes exchange their timestamps with
reference node (called the XTP server) four to ten times every two

econds using low-latency messages. The implementation of XTP relies
n Cisco’s InfiniBand switch, which is an Input–Output (IO) fabric that
upports remote Direct Memory Access (DMA). InfiniBand is charac-
erized by its high speed and low latency. The implementation of CCT
as evaluated with InfiniBand connections at a speed above 2.5Gbps,
n RTT below few microseconds and a jitter less than 100 nanosec-
nd. Recently, InfiniBand networks reached speeds up to 400Gbps and
atencies in the range of hundreds of nanoseconds [35].

On the one hand, the multiple exchange of XTP messages warms
p lookaside structures such as the cache and the translation lookaside
uffer (TLB). On the other hand, remote DMA avoids system calls and
heir added latency during IO. Therefore, XTP is freed from system
oise. Additionally, CCT subjects the captured one-way delays to con-
ex hull filtering to estimate the clock offset and skew at each client.
hese estimations are used continuously to update a piecewise linear
apping of the TSC counter to the reference time. Hence, CCT can

onverge to one microsecond accuracy after around 85 s of operation.
onetheless, its usage is limited to high-performance clusters.
 a

30
.2.3. Alg1
Alg1 is another algorithm that shares CCT code base and achieves

icrosecond level accuracy within IBM BladeCenter clusters [36]. It
s qualified as a skewless algorithm because it does not perform clock
kew estimation and compensation. Alg1 rather corrects the skew
moothly by considering both the current offset and the exponen-
ial weighted average of the past offsets. The current offset is mea-
ured using the TSC register and the XTP packet exchanges between
eighbors.

Alg1 is robust to clock jitter because it does not allow abrupt
ffset changes. Additionally, it can be responsive to clock drift if the
etwork contains a leader node. However, Alg1 convergence requires
ine parameter tuning and is dependent on the number of neighboring
odes. Moreover, as with CCT, this algorithm is limited to high end
luster environments.

.2.4. Huygens
Huygens is a clock synchronization protocol for datacenters with

ens of nanoseconds accuracy [37]. Each Huygens node probes 10 to 20
ther nodes using closely spaced pairs of packets. This probing happens
n intervals of two seconds where the clock skew is assumed linear. The
robes transmit and reception timestamps are generated by the NICs
ardware. Comparing them gives an upper and a lower bound on the
ffset between the clocks. Only the pairs that have an inter-arrival time
ery close to the inter-departure one are kept for farther filtering. The
atter is performed using the Support Vector Machines (SVM) classifier,
hich is usually used in supervised learning.

In general, SVM separates the points in a data set with a hyperplane
ccording to a binary label such as ‘‘upper bound point’’ or ‘‘lower
ound point’’. The hyperplane is at a maximum distance from the
losest point of either label in the data. In Huygens, SVM returns a line
hich slope is the skew between a pair of clocks and its intercept is the

nitial relative offset.
Huygens applies further corrections to the nodes clock offsets at

he midpoint of the next two seconds interval. These corrections are
ased on the network effect where comparing many clocks allows
he detection and correction of noise, which is caused by asymmetric
elay paths or congestion under high load. To alleviate the processing
verhead and allow scalability, the calculations are distributed between
laves that perform pair-wise SVM filtering and a master that performs
he network effect corrections. Nonetheless, the bandwidth overhead of
he probes remains important.

.2.5. Datacenter Time Protocol
Datacenter Time Protocol (DTP) synchronizes datacenter clocks

ith nano-seconds bounded accuracy by using a decentralized scheme
n the physical layer [38]. DTP exploits the fact that two Ethernet ports
hysically connected by a cable are already synchronized in the PHY
o exchange bit-streams reliably. When there is no traffic, the delay
etween these ports is only the propagation delay which is constant and
ounded by the cable length. DTP enabled servers and LAN switches
xchange their PHY oscillators counters frequently and then use the
aximum observed one as a global synchronized clock that increments
onotonically.

The DTP messages (of 53 bits) are carried in modified Ethernet
dle characters which are inter-packet gaps required by the Ethernet
tandard between any two frames. That is at a frequency of 1.28 per
icrosecond in each direction for a 10Gbps link saturated by MTU-

ized frames. Hence, unlike the other protocols, DTP provides bounded
ccuracy without the overhead and non-determinism of the higher
etwork layers. However, it requires changes in the network hardware

nd is limited to full-duplex datacenter Gigabit Ethernet.
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Table 1
Clock synchronization protocols environment and accuracy.

Protocols Environment Accuracy

NTP Any network 10s of μs to 100s of ms
TSCclock LAN few 10s of μs
CCT Cluster few μs
Alg1 Cluster few μs
GPS Unobstructed Line of Sight 100s of ns
PTP Fast LAN 10s to 100s of ns
Huygens Datacenter few 10s of ns
DPT Datacenter few 10s of ns

Table 2
Clock synchronization protocols cost.

Protocols Special hardware Sync. interval

GPS GPS receiver 1ms
NTPv3 No 64 s to 17m
NTPv4 No 64 s to 36 h
PTP NIC hardware clocks 0.5 to 2 s

TSCclock TSC register 256 s
CCT TSC register + InfiniBand 0.2 to 0.5 s
Alg1 TSC register + InfiniBand 1 s
Huygens NIC hardware clocks 0.1 to 0.2 s
DPT Modified Ethernet PHY 1.28 μs

5.3. Comparison and discussion

Tables 1 and 2 summarize and compare the previous clock synchro-
nization protocols with respect to their most relevant usage criteria.
That is the application environment, the accuracy expressed as the time
error between clocks and the cost defined in terms of special hardware
and network overhead. The latter depends on the synchronization inter-
val, which determines the probing rate. This parameter is configurable
by the user in most cases. All these protocols work online to correct the
clocks of the involved network nodes and can therefore provide a near
real-time estimation of the network OWD.

Table 1 is sorted with respect to the increasing accuracy of the
reviewed protocols, whereas Table 2 is ordered chronologically within
each sub-category (i.e., standard and non-standard protocols, which are
separated by a horizontal line). We note that the accuracy became finer
over time along with the advent of faster networks and application en-
vironments. It evolved towards microseconds scale with TSCclock and
Alg1, down to few tens of nanoseconds with Huygens and DTP. Though,
this improvement is made possible with an additional hardware cost,
which is nowadays acceptable for datacenters.

6. Skew estimation and removal techniques

We review in this section a broad multiplicity of skew estimation
and removal techniques, which synchronize the timestamps of traffic
traces without adjusting the network nodes clocks. Removing the esti-
mated skew from the trace yields a better approximation of the OWD.
This is sometimes called frequency synchronization as it eliminates the
effects of the difference in the clock frequency between measurement
points. However, it does not estimate the initial clock offset (𝜃0), unless
two way measurements are available from symmetric paths. We label
the techniques below for which the authors did not give a name based
on their most important idea.

6.1. Cumulative minima

Paxson’s heuristics can detect the relative offset of a clock in addi-
tion to its skew and resets. They do so offline by analyzing timestamped
bi-directional Internet traffic traces [16]. First, the clock relative offset
can be approximated by comparing the overall minimum OWD of the
forward path versus the reverse one, assuming both paths are delay

symmetric. Second, the 𝑁 OWD measurements in each direction are a
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de-noised by partitioning them into
√

𝑁 segments and keeping the
minimum OWD in each one. This allows the complexity of the detection
of clock resets and skew to remain linear (𝑂(𝑁)) even when using sub-
lgorithms that run at 𝑂(𝑁2). The clock resets are identified by looking
or pivot points in the de-noised OWDs where there is a shift of the
elay in one path, which coincides with a similar shift in the reverse
ath that is equal in amplitude and opposite in direction.

The skew is detected by a robust line fitting algorithm based on
tatistical tests that distinguish real skew from network effects like
ueuing fluctuations. The main test identifies negative skew slopes by
alculating the number of cumulative minima in the de-noised OWDs
ver a period of time. It is based on the fact that the smallest OWD
ontinues to decrease or increase because of the skew. The number of
ound minima should be close to the number of de-noised measure-
ents observed in that period. A similar test is applied to detect positive

kew slopes by counting the minima working in reverse from the last
easurement to the first one. These heuristics are limited to small time

cales (i.e., below 120 s) where the skew remains linear.

.2. Linear programming

Moon et al. formulate clock skew estimation as an optimization
roblem and solve it using linear programming [12]. They propose
n algorithm that fits a line, the closest possible, under the OWD
easurement points (see Fig. 1). That is to minimize the sum of vertical
istances between the line and these points. The slope of this line gives
n estimate of the sender’s clock skew relative to the receiver. However,
he clock offset cannot be distinguished from the fixed portion of the
etwork delay by using one way measurements only [32]. Nonetheless,
his linear algorithm is robust against queuing fluctuations and changes
n the skew magnitude. Its relative error is less than 4% and does not
ncrease with the skew magnitude, which is not the case of Paxson’s
ethod [12].

.3. Convex hull

Zhang et al. adopt an approach similar to the previous one, but
ased on finding the convex hull of the observed OWD points [39].
hey propose an objective function that minimizes the surface between
he lower boundary of this convex hull and the line supporting the
kew. In addition, they employ an algorithm that detects both types of
lock resets: instantaneous (abrupt) changes and clock frequency ad-
ustments. This algorithm works by finding a piecewise linear function
here each piece has the same slope. However, it can give false posi-

ives in the case of congestion and large delay jitter. Both algorithms are
inear and can be applied online incrementally. This is possible because
he convex hull is built by parsing the measurement points in increasing
rder while using a stack to memorize its segments.

.4. Simple average

Khlifi and Grégoire present two offline and two online methods that
eal with clock skew in OWD traces [40]. The first method estimates
he skew as the ratio of the difference between packet delays to the
nter-departure time of these packets. However, only two OWD points
re considered from the trace. These are the first and the last minimum
WDs observed in one minute intervals at the beginning and the end
f the trace, respectively.

The complexity of this method is constant relative to the whole
race (𝑂(1)). Nevertheless, it requires that the two points of interest
e sufficiently away of each other, so the effect of the skew remains
pparent. Thus, it works only for traces with a very large number of
amples. Moreover, it is not robust to queuing that coincides with at
east one of the extremities of the trace. If this queuing lasts longer
han the one minute interval, this method will select a false minimum

nd therefore give an invalid skew estimation.
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6.5. Resolution based correction

The second offline technique from [40] tracks the increasing effect
of the clock skew on the OWD in terms of the clock resolution, that is
the unit of time measurement. This unit is set to one millisecond, which
the authors consider as the clock resolution of common computers.
The traffic trace is subdivided into successive intervals where the
OWD increases or decreases by one millisecond, while remaining above
the overall minimum measured value. The advantage of this method
is the correction of the OWD in linear time by removing the skew
effect without estimating it. Therefore, without yielding delays with
fractions that are below the clock resolution, as it can happen with
other methods. However, this technique does not account for the extra
variable delay induced by queuing. It will rather interpret the latter as
an increased skew trend.

This skew correction method is augmented with a clock reset detec-
tion scheme, which identifies resets by looking for drops of the OWD
that happen in constant periods of times. Nevertheless, this scheme will
miss the clock resets that coincide with large queuing in the network.

6.6. Sliding window

The first online method from [40] is very similar to the previous
one. However, it tracks the changes in the minimum observed OWD
using a sliding window mechanism. The window size is assumed to
correspond to one millisecond error in the OWD caused by the clock
skew. As the latter is unknown in the first place, it is hard to choose
the right window size which maintains a high probability of observing a
minimum OWD in each cycle. This task becomes impossible if queuing
is considered as its effect on the OWD can be highly variable, contrary
to skew.

The authors propose a second online method as an improvement
of the sliding window mechanism by combining it with the previous
convex hull algorithm. The idea is to start with the sliding window to
yield a quick estimation of the skew, even if it is less accurate, then
repeat the convex hull method periodically. This interesting combina-
tion covers for the slow convergence of the convex hull scheme which
is common to all the line fitting techniques above. Indeed, a common
trait of these techniques is the need for more and more data points to
increase their accuracy.

6.7. Piece-wise reliable clock skew estimation algorithm

Bi et al. propose the Piece-wise Reliable Clock Skew Estimation
Algorithm (PRCSEA) [41]. It uses piece-wise linear equations to model
clock resets and to approximate drift over long OWD measurement
periods. The idea is to identify the intervals where the skew remains
constant and the points when it changes because of clock resets and
drift. For that purpose, PRCSEA partitions the OWD trace recursively
into smaller intervals and uses convex hull line fitting to estimate
the skew in each interval. The reliability of this estimation is tested
based on the probability that at least a certain number of points in
each interval belong to its skew supporting line (i.e., their packets
experienced the minimum OWD). This probability is fixed empirically
to 5%. If the test fails, the concerned interval is subdivided further until
it passes the test or the minimum allowed interval is hit. The latter is
fixed to 100 packets or 20 s span.

The reliability test of PRCSEA is an addition compared to the previ-
ous methods. Combining this test with piecewise linear functions yields
a good fit for the skew of a clock that is adjusted at fixed periods. The
OWDs in this case will have the shape of saw-tooth function. However,
if the network experiences queuing periods that are longer than the
partitioned intervals, then PRCSEA might confuse the inflection point
at the peak of the queue with a clock reset. Therefore, it will validate

wrong estimations of the skew. In the general case, this drawback i
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makes the choice of the appropriate length for the minimum allowed
interval difficult.

6.8. Linear regression

Aoki et al. proposal for skew estimation is based on the measure-
ment of OWD variations (OWDV) [42]. It is limited to traffic flows
with fixed packet size and constant inter departure time (like voice
over IP). The receiver subtracts the packet inter departure time from
the observed inter arrival time to obtain the OWDV data points. This act
cancels out the deterministic part of the OWD to leave the variable part
that is caused by skew and queuing. The OWDV points are segmented
over time into periods of 2 s and the minimum point of each segment
is selected. Then, linear regression is applied on these points to fit the
line supporting the clock skew. The simulation of this technique with
an inter departure time of two milliseconds estimates the skew with a
relative error of 3.7%. However, as emphasized by Paxson [16], least-
squares fitting is not robust to queuing. Elevated queuing in only one
period of observation will through off the fit. In other terms, the skew
will be mistakenly amplified by the queuing effect.

6.9. Timestamp based incremental clock synchronization

Harrison and Newman present Timestamp based Incremental Clock
Synchronization (TICSync) for the estimation of the clock offset and
skew [43]. TICSync uses a client–server model with request–response
messages. It is based on the observation that the negation of the
minimum request OWD constitutes a lower bound for the clock offset.
In the same way, the minimum response OWD represents its upper
bound. Hence, the parallel lines that fit these bounds form a corridor
around the true offset. TICSync assumes that the clock skew is constant
for periods of ten minutes. It aims at finding a pair of maximally sep-
arated parallel lines which pass between the corridor bounds. TICSync
achieves this by using the convex hull algorithm to find a lower and
an upper hull. Then, it seeks the instant of time of minimum vertical
distance between the two hulls. The slope of the hull segment at this
instant gives the slope of the maximum separation lines and therefore
the skew.

The authors propose an online incremental implementation of TIC-
Sync that adds each new OWD measurement to the hulls in a constant
time, then repeats the last step. Furthermore, by assuming a Weibull
distribution of the delay, TICSync provides probabilistic bounds on
the estimation errors of the offset and the skew. Conversely, it can
also determine the minimum number of required measurements to stay
below a particular error level.

6.10. Weighted average of slopes

The technique proposed by Eylen and Bazlamaçcı performs clock
skew estimation for the purpose of correcting OWD measurements [44].
First, the receiver monitors a window of 𝑁 probe packets sent with a
fixed inter-departure time. It selects the 𝑚 probes that did not suffer
queuing. These are called non delayed packets. Their selection assumes
maximum values for the clock skew and drift based on the character-
istics of the operating environment (i.e., bounded temperature changes
with a bounded rate of change). It also assumes that at least some non
delayed packets exist in each observation window. Second, the skew is
estimated from the 𝑚 probes using a weighted average of the slopes of
he lines formed by all possible OWD pairs. A bigger weight is given to
he pairs that are close in time and the ones which are more recent.
hird, the subsequent packets OWDs are corrected by removing the
stimated skew.

Finally, an error analyses based on the previous assumptions is
erformed to bound the OWD measurement error. The skew bound
tself is re-estimated for every window to accommodate for drift, which

s another advantage. However, this technique does not consider clock
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Table 3
Clock skew estimation and removal methods usage environment.

Methods Network Online Queuing

Cumulative minima wan ✓

Linear programming wan ✓

Convex hull wan ✓ ✓

Simple average man
Resolution based man
Sliding window man ✓

PRCSEA wan ✓

Linear regression wan
TICSync wan ✓ ✓

Weighted average lan ✓ ✓

Table 4
Detection of clock effects in skew estimation and removal methods.

Methods Offset Skew Reset Drift

Cumulative minima ✓ ✓ ✓

Linear programming ✓

Convex hull ✓ ✓ ✓

Simple average ✓

Resolution based ✓ ✓

Sliding window ✓ ✓

PRCSEA ✓ ✓ ✓

Linear regression ✓

TICSync ✓ ✓

Weighted average ✓ ✓

Table 5
Accuracy and complexity of clock skew estimation and removal methods.

Methods Accuracy Complexity

Bounded error Relative error

Cumulative minima 𝑂(𝑁)
Linear programming 4% 𝑂(𝑁)
Convex hull 𝑂(𝑁)
Simple average 𝑂(1)
Resolution based 𝑂(𝑁)
Sliding window 𝑂(1)
PRCSEA 𝑂(𝑁𝑙𝑜𝑔(𝑁))
Linear regression 3.7% 𝑂(𝑁)
TICSync ✓ 𝑂(𝑁)
Weighted average ✓ 𝑂(𝑚2)

Legend: 𝑁=# OWD measurements, 𝑚=# non delayed packets, 𝑚 < 𝑁 .

resets. As it has a complexity of 𝑂(𝑚2), it cannot be applied online
except for a small 𝑚. Additionally, its measurement of the OWD can be
biased by network synchronization effects because its probing interval
is fixed. That is the probes might coincide with another periodic
network activity, so they will always suffer some queuing. Moreover,
as this interval is small (20ms), the number of probes will constitute an
overhead on the network.

6.11. Comparison and discussion

The previous skew estimation schemes are summarized in
Tables 3, 4 and 5, where they are sorted in a chronological order.
It is interesting to see how they evolved over time since the ground
breaking heuristics of Paxson. This evolution aimed to either: im-
prove the estimation robustness (e.g., Linear programming), alleviate
the required computations (e.g., Simple average and Convex hull),
account for drift and resets (e.g., PRCSEA), provide an online result
incrementally (e.g., Sliding window, TICSync and Weighted average) or
bound the estimation error of the skew (e.g., Weighted average) and the
offset (e.g., TICSync). They can be used with the clock synchronization
protocols that do not have a high accuracy (like NTP in WAN), to
calibrate the OWD measurements as recommended by Paxson [16] and
Zhang et al. [39].

A common trait of the previous methods is the usage of different line
fitting techniques, which they apply on the minimum observed OWDs.
33
In other terms, they exclude or ignore the variable part of the delay and
track the evolution of its deterministic part over time. Hence, filtering
network effects like queuing from the OWD measurements is very
important to reduce the error in the skew estimation. However, on the
one hand, many of these skew estimation techniques are biased by long
queuing episodes. In such a case, assuming that the minimum observed
delay in a certain time interval is the deterministic part of the OWD
is not true. Moreover, if a long-lasting queue resolves gradually but
slowly, the OWD observed during this period will always be decreasing
without hitting the real minimum. This case directly affects a heuristic
as robust as the Cumulative minima. On the other hand, some of the
reviewed techniques (e.g., simple averaging and linear regression) are
also biased by short queuing due, for instance, to temporary congestion
(cf., column four of Table 3).

Some of the skew estimation schemes take a certain time to con-
verge to an acceptable estimation of the clock skew as they require
many calculations (e.g., Paxson’s heuristics and Linear programming)
or need to wait for points at the end of the measurement period
(e.g., Simple average). Therefore, they can only be used offline for tasks
such as network optimization and SLA validation. The complexity of
a skew estimation method can be amortized if it can be implemented
incrementally (e.g., convex hull, TICSync and Weighted average). In
addition, even if some methods deal with the clock drift over relative
long time periods (e.g., PRCSEA and Weighted average), it is not clear
how they will react to fast skew changes due, for instance, to rapid
temperature variations.

Providing a bound on the error of the skew (and therefore the OWD)
estimate is important for many use-cases like real-time applications and
QoS provisioning. Only few methods achieve this goal (e.g., TICSync
and Weighted average). Additionally, even though the relative error
of the skew estimation can be evaluated with simulation, it was only
reported by Aoki et al. and Moon et al.. Moreover, none of the discussed
works reported the relative error in field tests. This is most likely due
to the fact that the ground truth (i.e., the real skew) is hard to establish
without using a high accuracy independent reference time between the
measurement points (like GPS and DAG cards).

Finally, only few works provided information about where times-
tamping takes place (e.g., Cumulative minima and Convex hull used
tcpdump). Timestamping uncertainty is a main contributor to the time
error in skew estimation. Nonetheless, some of these works evaluated
the absolute error of OWD measurement after skew removal (e.g., sim-
ple average, TICSync and Weighted average). We did not include it
in Table 5 as absolute error values from different setups cannot be
compared directly.

7. Related work

There is an abundant literature about the topic of network time
synchronization including some review papers. In the following, we in-
vestigate the works that are close to ours and emphasize the difference
with them.

The survey by Shin et al. categorizes time synchronization mecha-
nisms in two classes: external source based protocols and end-to-end
measurement based methods [45]. They include in the former class
GPS, NTP and PTP. The latter is further subdivided into online and
offline algorithms for skew detection and removal. We adopt a similar
division with a slightly different naming based on the action taken by
these mechanisms instead of their location.

DeVito et al. provide a detailed comparison between the three
popular synchronization protocols GPS, NTP and NTP [46]. Likewise,
Orgerie et al. cover these protocols and add TSCclock [22]. Orgerie
et al. gave also a differentiation of packet timestamping based on
where it is performed. By contrast, we cover more synchronization
mechanisms and also analyze in which network layer/header are the
timestamps encapsulated and what impact this has on their usage.

Wang et al. classify skew estimation and removal algorithms in
two subcategories [47]. The first contains mono-segment algorithms
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that assume a constant clock skew. The second includes multi-segment
models that consider in addition clock adjustments. The term multi-
segment refers to the divide and conquer approach of these algorithms,
which detect the clock resets that delimit each time segment, then
estimate its clock skew.

Lévesque and Tipper survey the requirements of different appli-
cations, such as smart power grids and industrial Internet of Things,
in terms of time synchronization [14]. In addition to NTP and PTP,
they review link layer standards such as IEEE 802 Time Sensitive Net-
working (TSN) and Synchronous Ethernet (SyncE); and wireless sensor
networks solutions like Reference Broadcast Synchronization (RBS) and
Timing-Sync Protocol for Sensor Networks (TPSN). Furthermore, they
put emphasize on the need to address security threats by protecting
timing messages using authentication and integrity checking. Compar-
atively, we cover other schemes including the ones dedicated to clusters
and datacenter networks.

Mallada et al. propose a double classification of clock synchroniza-
tion protocols based on: whether they use offset corrections (e.g., NTP),
skew corrections (e.g., CCT and Alg1) or both (e.g., TSCclock); and
whether they update the clock using offset values only, relative fre-
quency error or both [36].

More recently, Karthik and Blum concentrated on synchronization
protocols that are based on two-way message exchange, to combat the
effect of stochastic network delays on the estimation of clock skew [48].
In particular, using invariant estimation theory, the authors developed
optimum joint clock skew and offset estimators for the PTP standard.
These estimators guarantee the lowest skew error independently of the
probability density function used to model the queuing delay. Further-
more, using other schemes (e.g., multiple master clocks), they proposed
stimators that are robust against unknown asymmetry between the
ath delays.

Our survey of time synchronization complements the existing ones
n several ways. We address both categories of time synchroniza-
ion in one place, i.e., direct clock modification; and skew estimation

and removal from traffic traces. We also cover more recent protocols
(e.g., Alg1, CCT, Huygens and DTP). In addition, we analyze and
compare the surveyed works thoroughly based on their relevant usage
criteria.

8. Conclusion and future work

We set out to review the problem of network time synchronization
and covered a representative set of established standards (GPS, NTP
and PTP) and recent research works (e.g., TSCclock, Huygens and DTP).
ach mechanism was summarized succinctly; and its merits and limi-
ations discussed. Using rich table formats, we compared techniques
rom the same category with respect to their application environment,
ccuracy and cost. We showed that clock synchronization protocols
volved over time towards finer accuracy, down to the sub-microsecond
ealm. Likewise, skew estimation and removal mechanisms progressed
o account for drift and adopt incremental implementations suitable for
nline deployment.

An important lesson we learned from this survey is that there is no
ne size fits all solution. Hence, it is crucial to the choose the right
ynchronization tool for the task at hand based on the relevant usage
riteria. Many of these tools have parameters (e.g., probing rates) that
equire careful tuning to strike a balance between the overhead on the
etwork and the accuracy.

The development of new techniques for time synchronization
e.g., CCT, Huygens and DTP) was possible thanks to the advent of
igh speed gigabit per second networks. Additionally, it was in big
art pushed by new time critical applications that require finer clock
esolution and better accuracy. We think that these recent techniques
ave not yet shown their full potential. We leave the discussion for their
se in applications and network management for future work. Other
ovel schemes will most likely be developed to address new networks
ith variable characteristics and different usage scenarios.
34
Concerning the evaluation of time synchronization methods, we
otice that obtaining the ground truth (i.e., the real clock skew) is
challenging task. We think that modifying network simulators to

ntroduce an artificial clock skew could make this evaluation easier.
uch a straightforward modification could be extended to adapt a
omplex skew model and therefore simulate clock drift. This would
llow a direct thorough comparison of recent time synchronization
echanisms.

With respect to timestamping, it would be interesting to see how
ser-space fast packet IO frameworks like the Data Plane Development
it (DPDK) [49]; and zero copy techniques in the socket APIs would
erform in this regard. One would expect that running the full stack
down to NIC access) in user space and avoiding packet processing in
nterrupts should yield a better accuracy. We have no knowledge of
esearch works that rely on these ideas, so this question is for now
nanswered.

Finally, most of the schemes we surveyed did not address the issue
f security. RFC 7384 discusses the threats that NTP and PTP can suffer
n more details (e.g., Denial of Service and packet manipulation) [50].
t proposes prevention mechanisms like authentication, encryption and
ntegrity checking. The identification of other threats, either general or
pecific to a certain technique, would be a valuable addition. Moreover,
rigorous security analysis of the reviewed techniques is essential for
wide and safe deployment.
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