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In this paper, we present a new hybrid method to solve a nonlinear unconstrained op-
timization problem by using conjugate gradient, which is a convex combination of Y.

Liu-C. Storey (LS) conjugate gradient method and Hager-Zhang (HZ) conjugate gradi-

ent method.
This method possesses the sufficient descent property with Strong Wolfe line search and

the global convergence with the strong Wolfe line search.
In the end of this paper, we illustrate our method by giving some numerical examples.
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1. Introduction

Consider the unconstrained optimization problem:

min{f(x) : x ∈ Rn}, (1.1)

where f : Rn → R is a function continuously differentiable and bounded from below.

To solve this problem we use a sequence {xk} which is given as shown:

xk+1 = xk + sk, sk = αkdk, k = 0, 1, ..., n, (1.2)

where αk > 0 is called the step length which is determined by line search and dk is

the search direction generated by:

dk =

{
−gk, k = 0,

−gk + βkdk−1, k ≥ 1,
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where gk := ∇f(xk) is the gradient of f at xk, and βk ∈ R is the conjugate gradient

parameter which determines the different conjugate gradient methods. In order to

determine αk , we usually use the strong Wolfe conditions (cf [6]) given by the

following forms:

f(xk + αkdk)− f(xk) ≤ δαkg
T
k dk, (1.3)

| gTk+1dk |≤ −σgTk dk, (1.4)

where 0 < δ < σ < 1.

Some well-known formulas for the conjugate gradient parameter βk are the Polak-

Ribiere-Polyak (PRP), Hestenes-Stiefel (HS)[4], Liu-Storey (LS)[5], Hager-Zhang

(HZ)[6] and Conjugate Descent proposed by Fletcher (CD)[3], which are given as

follow:

βPRP
k =

gTk yk−1
‖gk−1‖2

, βHS
k =

gTk yk−1
dTk−1yk−1

, βLS
k =

gTk yk−1
−gTk−1dk−1

,

βHZ
k = (yk−1 − 2dk−1

‖yk−1‖2

dTk−1yk−1
)T

gk
dTk−1yk−1

, βCD
k =

‖gk‖2

−dTk−1gk−1
.

Respectively, where ‖.‖ is the Euclidian norm and yk = gk+1 − gk. The aim of this

study is to find a new combination based on the previous works in [2], [5] and [6].

Note that, we based on the convex combination of Andrei [2] using LS and HZ

conjugate gradient methods. For the following section, we evaluate the parameter

θk, then we state the algorithm of the proposed method. In section 3 we prove that

dk satisfies the sufficient descent condition and we discuss the global convergence.

Finally, to illustrate our method we give some numerical examples.

2. A Convex Combination

In this section, we deal with the convex combination of the conjugate gradient

parameters of the LS and HZ methods, we define βhLSHZ
k as follow:

βhLSHZ
k = θk−1β

LS
k + (1− θk−1)βHZ

k , (2.1)

where θk ∈ [0, 1] is named the hybridization parameter.

Obviously, if θk = 0, then βhLSHZ
k = βHZ

k , and if θk = 1, then βhLSHZ
k = βLS

k .

On the other side, if 0 < θk < 1, then βhLSHZ
k which is a convex combination of

βLS
k and βHZ

k .

The direction dhLSHZ
k is given by:

dhLSHZ
k =

{
−g0, k = 0,

−gk + βhLSHZ
k dk−1, k ≥ 1.

(2.2)

Theorem 2.1. If the relations (2.1) and (2.2) hold, then

dhLSHZ
k+1 = θkd

LS
k+1 + (1− θk)dHZ

k+1. (2.3)
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Proof. From (2.1) and (2.2), we get

dhLSHZ
k+1 =− gk+1 + βhLSHZ

k+1 dk

=− gk+1 + θk
gTk+1yk

−dTk gk
dk + (1− θk)(yk − 2dk

‖yk‖2

dTk yk
)T
gk+1

dTk yk
dk

=θk(−gk+1 +
gTk+1yk

−dTk gk
dk) + (1− θk)(−gk+1 + (yk − 2dk

‖yk‖2

dTk yk
)T
gk+1

dTk yk
dk)

=θkd
LS
k+1 + (1− θk)dHZ

k+1.

Hence,

dhLSHZ
k+1 = θkd

LS
k+1 + (1− θk)dHZ

k+1.

Multiplying (2.3) by yTk and by using the conjugacy condition yTk d
hLSHZ
k+1 = 0,

we get

−yTk gk+1 + θk
gTk+1yk

−dTk gk
yTk dk + (1− θk)

[
(yk − 2dk

‖yk‖2

dTk yk
)T
gk+1

dTk yk

]
yTk dk = 0.

Then,

θk =
2‖yk‖2(dTk gk)

2‖yk‖2(dTk gk)− (gTk+1yk)(dTk yk)
.

We could fix the θk as follows:

θk =


0, If

2‖yk‖2(dT
k gk)

2‖yk‖2(dT
k gk)−(gT

k+1yk)(dT
k yk)

≤ 0,

2‖yk‖2(dT
k gk)

2‖yk‖2(dT
k gk)−(gT

k+1yk)(dT
k yk)

, If0 <
2‖yk‖2(dT

k gk)

2‖yk‖2(dT
k gk)−(gT

k+1yk)(dT
k yk)

< 1,

1, If
2‖yk‖2(dT

k gk)

2‖yk‖2(dT
k gk)−(gT

k+1yk)(dT
k yk)

≥ 1.

(2.4)

2.1. Algorithm hLSHZ

Step 0: Select x0 ∈ Rn, ε > 0, and 0 < δ ≤ σ < 1.

Compute f(x0), and g0. Consider d0 = −g0.

Set the initial guess α0 = 1
‖g0‖ .

Step 1: If ‖gk‖ ≤ ε, then STOP.

Step 2: Compute αk > 0 satisfying the strong Wolfe line search conditions (1.3)

and (1.4).

Calculi xk+1,fk+1, gk+1, yk.

Step 3: If ‖gk+1‖2yTk dk + ‖yk‖2dTk gk = 0, then set θk = 0,else set θk as in (2.4).

Step 4: Compute βhLSHZ
k as in (2.1).

Step 5: Compute dk = −gk+1 + βhLSHZ
k dk.

Step 6: If the restart criterion of Powell | gTk+1gk |≥ 0.2‖gk+1‖2.

is satisfied, then dk+1 = −gk+1, else define dk+1 = d.
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Step 7: Compute the initial guess

αk = αk−1
‖dk−1‖
‖dk‖ .

Step 8: Set k = k + 1, and continue with step 2.

3. Sufficient descent property and the global convergence

Theorems (3.1) and (3.2) mentioned bellow claims that hLSHZ method satisfies the

sufficient descent condition, where we distinguish three cases:

Firstly, let θk = 0, then

dhLSHZ
k+1 = dHZ

k+1 = −gk+1 + (yk − 2dk
‖yk‖2

dTk yk
)T
gk+1

dTk yk
dk.

Theorem 3.1. [6] If dTk yk 6= 0, and

dk+1 = −gk+1 + τdk, d0 = −g0, ∀τ ∈ [βHZ
k ,max{0, βHZ

k }]. (3.1)

Then,

gTk+1d
HZ
k+1 ≤ −

7

8
‖gk+1‖2. (3.2)

Proof. According to (3.1), we have two case:

• If βHZ
k > 0, then τ = βHZ

k

Multiplying (3.1) by gk+1, we find

dTk+1gk+1 =− ‖gk+1‖2 + βHZ
k dTk gk+1

=− ‖gk+1‖2 + (yk − 2dk
‖yk‖2

dTk yk
)T
gk+1

dTk yk
dTk gk+1

=
(yTk gk+1)(dTk yk)(dTk gk+1)− ‖gk+1‖2(dTk yk)2 − 2‖yk‖2(dTk gk+1)2

(dTk yk)2
.

(3.3)

Using the inequality (uT v ≤ 1
2 (‖u‖2 + ‖v‖2), with u = 1

2 (dTk yk)gk+1

and v = 2(dTk gk+1)yk, we get

dTk+1gk+1 ≤
1
8 (dTk yk)2‖gk+1‖2 + 2‖yk‖2(dTk gk+1)2 − ‖gk+1‖2(dTk yk)2 − 2‖yk‖2(dTk gk+1)2

(dTk yk)2

≤ −7

8
‖gk+1‖2. (3.4)
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• If βHZ
k < 0, then βHZ

k ≤ τ ≤ 0.

After multiplying (3.1) by gk+1, we find

dTk+1gk+1 = −‖gk+1‖2 + τdTk gk+1

– If dTk gk+1 ≥ 0, then (3.2) holds.

– If dTk gk+1 < 0, we get

dTk+1gk+1 = −‖gk+1‖2 + τdTk gk+1 ≤ −‖gk+1‖2 + βHZ
k dTk gk+1

since βHZ
k ≤ τ ≤ 0. Hence (3.2) holds.

Secondly, let θk = 1, then

dhLSHZ
k+1 = dLS

k+1 = −gk+1 +
gTk+1yk

−dTk gk
dk.

Theorem 3.2. [5] Assume that Assumption (3.1) and (3.2) hold, let strong Wolfe

conditions hold with σ < 1
2 and |gTk+1gk| ≤ 0.2‖gk+1‖2.

Then dHLSHZ
k satisfies the sufficient descent condition for all k.

Proof. We have

dhLSHZ
k = dLS

k+1 = −gk+1 +
gTk+1yk

−dTk gk
dk. (3.5)

Multiplying (3.5) by gk+1, we find

gTk+1d
LS
k+1 =− ‖gk+1‖2 +

gTk+1yk

−dTk gk
gTk+1dk

≤− ‖gk+1‖2 + σ
gTk+1yk

gTk+1dk
gTk+1dk

≤− ‖gk+1‖2 + σ(‖gk+1‖2 + |gTk+1gk|)
=− (1− 1.2σ)‖gk+1‖2.

Hence,

gTk+1d
hLSHZ
k ≤ −(1− 1.2σ)‖gk+1‖2.

Finally[18], let 0 < θk < 1 there exist two real numbers µ1, µ2 such that

0 < µ1 ≤ θk ≤ µ2 < 1.

Then

gTk+1d
hLSHZ
k+1 = θkg

T
k+1d

LS
k+1 + (1− θk)gTk+1d

HZ
k+1

≤ µ1g
T
k+1d

LS
k+1 + (1− µ2)gTk+1d

HZ
k+1.
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Hence

gTk+1d
hLSHZ
k+1 ≤ −K‖gk+1‖2. (3.6)

Where K = µ1(1− σ) + (1− µ2) 7
8 .

The following assumptions are often used to prove the global convergence of the

proposed conjugate gradient method.

Assumption 3.1. f is bounded from below on the level set

S = {x ∈ Rn : f(x) ≤ f(x0)},

i.e. exists a constant B > 0, such that

‖ x ‖≤ B, for all x ∈ S.

Assumption 3.2. The gradient ∇f is Lipschitz continuous i.e there exists a constant

L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y‖, for all x, y ∈ Rn

These assumptions imply that there exists a positive constant γ such that

‖g(x)‖ ≤ γ, for all x ∈ Rn.

Lemma 3.1. [7] Assume that Assumption (3.1) and (3.2) hold. Consider any

method of the form (1.1), where dk is a descent direction and αk satisfies the strong

Wolfe conditions (1.3) and (1.4).

Then we have that

∑
k0

(gTk dk)2

‖dk‖2
< +∞

Lemma 3.2. [9] Suppose that Assumption (3.1) and (3.2) holds. If dk is a descent

direction and the stepsize αk satisfies gk+1dk ≥ σgkdk, σ < 1, then

αk ≥
1− σ
L

|dTk gk|
‖dk‖2

. (3.7)

Proof. It follows (1.4), the Lipschitz condition, and the Cauchy-Bnakovsky-

Schwartz inequality that

−(1− σ)dTk gk ≤ dTk yk ≤ LdTk sk = αkL‖gk‖2.

Hance the assertion (3.7) holds.

According to the lemma (3.2), inequalities (1.4) and (3.6), we get that αk which

is obtained in the hLSHZ method is not equal to zero, i.e. there exists λ > 0 such
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that

αk ≥ λ,∀k ≥ 0.

Theorem 3.3. Consider the iterative method of the form (1.1), (2.1), (2.2), (2.4),

assume that all conditions of Theorem (3.2) hold.

Then,

lim
k→∞

inf‖gk‖ = 0 (3.8)

Proof. suppose that (3.8) does not hold.

Then there exists r > 0 such that:

‖gk‖ ≥ r.

From the above Theorem(3.2), we have

gTk dk ≤ −K‖gk‖2, for all k.

From (1.3) and (1.4), we get

dTk yk ≥ −(1− σ)gTk dk ≥ K(1− σ)‖gk‖2.

It follows form the assumptions (3.1) and (3.2), that

‖yk‖ = ‖gk+1 − gk‖ ≤ L‖xk+1 − xk‖ ≤ L.D.

Where D = supk≥0 ‖sk‖.
We have

|βhLSHZ
k | ≤ |βLS

k |+ |βHZ
k |

=
|gTk+1yk|
−dTk gk

+ |(yk − 2dk
‖yk‖2

dTk yk
)T
gk+1

dTk yk
|

≤ (2− σ)‖gk+1‖‖yk‖
(1− σ)k‖gk‖2

+
‖yk‖‖sk‖‖gk+1‖
αk(1− σ)2k2‖gk‖4

=
(2− σ)γLD

(1− σ)kr2
+

LD2γ

λ(1− σ)2k2r4
= M.

and

‖dk+1‖ ≤ ‖gk+1‖+ |βhLSHZ
k |‖dk‖

≤ ‖gk+1‖+ |βhLSHZ
k | ‖sk‖

αk

≤ γ +M
D

λ

Then, ∑
k≥0

1

‖dk‖2
= +∞
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K2r2
∑
k≥0

1

‖dk‖2
≤
∑
k≥0

K2‖gk‖2

‖dk‖2
≤
∑
k≥0

(gTk dk)2

‖dk‖2
< +∞

By contradiction the Theorem holds.

4. Numerical Results

In this section, we report some numerical results obtained with the new pro-

posed conjugate gradient method. we compare its performance with other methods,

namely LS CG method [5] and HZ CG method [6]. This comparison is based the

number of iterations and the elapsed CPU time concerned by each method. For the

numerical tests, the parameters in the strong Wolfe line searches are chosen to be

σ = 0.001, δ = 0.0001.

We stop the iteration if the inequality ‖g(xk)‖∞ ≤ ε = 10−6 is satisfied. In this

paper, all codes were written in MATLAB and run on PC with Intel(r) Core(tm)

i7-2670QM CPU @ 2.20GHz 2.20GHz processor and 4GB RAM memory and win-

dows 10 Pr system. Using the performance profiles of Dolan and Moré [10].

They introduced the notion of a performance profile as a means to evaluate and

compare the performance of the set of solvers S on a test set P.

Assuming that there exist ns solvers and np problems, for each problem p and

solver s, denote tp,s be the computing time required to solve problem p ∈ P by

solver s ∈ S.

Requiring a baseline for comparisons, they compared the performance on problem

p by solver s with the best performance by any solver on this problem that is, using

the performance ratio define by

rp,s =
tp,s

min{tp,s : s ∈ S}
Assume that a parameter rM ≥ rp,s for all p,s is chosen, and rM = rp,s if and

only if solvers s does not solve problem p. Define

ρs(t) =
1

np
size{p ∈ P : rp,s ≤ t}

thus ρs(t) was the probability for solver s ∈ S that a performance ratio rp,s was

within a factor t ∈ R of the best possible ratio. Then function ρs was the (cu-

mulative) distribution function for the performance ratio. The performance profile

ρs : R −→ [0, 1] for a solver was a nondecreasing, piecewise constant function, con-

tinuous from the right at each breakpoint.

The value of ρs(1) was the probability that the solver would win over the rest of the

solvers. According to the above rules, we know that one solver whose performance

profile plot is on top right will win over the rest of the solvers.
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From the figures (1) and (2) we can conclude that hLSHZ algorithm is more

effective than LS and HZ methods.

5. Conclusions

In this paper, we presented a new conjugate gradient method, which is a convex

combination of LS method and HZ method.

Under suitable conditions, we proved that our main method converge globally.

Extensive numerical results are also reported. The performance profiles showed that

the new descent hybrid method is efficient for the test problems.
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