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Abstract. In this paper, we use the Banach contraction mapping principle and the Krasnoselskii
fixed point theorem to obtain the existence and uniqueness of solutions for nonlinear retarded and
advanced implicit Hadamard fractional differential equations with nonlocal conditions. The results
obtained here extend the work of Benchohra, Bouriah and Henderson [5]. Two examples are also
given to illustrate the results.

1 Introduction

Fractional differential equations with and without delay arise from a variety of applications including
in various fields of science and engineering such as applied sciences, practical problems concerning
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mechanics, the engineering technique fields, economy, control systems, physics, chemistry, biology,
medicine, atomic energy, information theory, harmonic oscillator, nonlinear oscillations, conservative
systems, stability and instability of geodesic on Riemannian manifolds, dynamics in Hamiltonian
systems, etc. In particular, problems concerning qualitative analysis of linear and nonlinear fractional
differential equations with and without delay have received the attention of many authors, see [1]–
[14], [16], [17] and the references therein.

In interesting contributions, Benchohra, Bouriah and Henderson [5] discussed the existence and
uniqueness of solutions for the nonlinear implicit Hadamard fractional differential equation with re-
tarded and advanced arguments

Dαy(t) = f (t,yt ,Dαy(t)) , t ∈ [1,e] ,
y(t) = κ (t) , t ∈ [1− r,1] , r > 0,
y(t) = ψ(t) , t ∈ [e,e+h] , h > 0,

where Dα is the Hadamard fractional derivative of order 1 < α ≤ 2. By employing the Schauder
fixed point theorem and the Banach contraction mapping principle, the authors obtained existence
and uniqueness results.

Anh and Ke [4] investigated the existence and asymptotic stability of solutions for the following
retarded fractional differential equation with nonlocal conditions{CDαy(t) = Ay(t)+ f (t,y(t) ,yt) , t > 0,

y(t)+(Hy)(t) = κ (t) , t ∈ [−r,0] , r > 0,

where CDα is the standard Caputo fractional derivative of order 0 < α ≤ 1. By using the fixed point
theory for condensing maps,the authors obtained existence and stability results.

In this paper, we are interested in the analysis of qualitative theory of the problems of the exis-
tence and uniqueness of solutions to nonlinear retarded and advanced Hadamard fractional differential
equations. Inspired and motivated by the works mentioned above and the references in this paper, we
concentrate on the existence and uniqueness of solutions for the nonlinear retarded and advanced
implicit Hadamard fractional differential equation with nonlocal conditions

Dαy(t) = f (t,yt ,Dαy(t)) , for each t ∈ J := [1,e] ,
y(t)+(H1y)(t) = κ (t) , t ∈ [1− r,1] , r > 0,
y(t)+(H2y)(t) = ψ(t) , t ∈ [e,e+h] , h > 0,

(1.1)

where Dα is the Hadamard fractional derivative of order 1 < α≤ 2, f : J×C ([−r,h] ,R)×R→R is a
given continuous function, H1 : C ([1− r,e+h] ,R)→C ([1− r,1] ,R) and H2 : C ([1− r,e+h] ,R)→
C ([e,e+h] ,R) are given continuous mappings, κ ∈ C ([1− r,1] ,R) and ψ ∈ C ([e,e+h] ,R). For
each function y defined on [1− r,e+h] and for any t ∈ J, we denote by yt the element of C ([−r,h] ,R)
defined by

yt (θ) = y(t +θ) , θ ∈ [−r,h] .

To show the existence and uniqueness of solutions, we transform (1.1) into an integral equation and
then use the Banach contraction mapping principle and the Krasnoselskii fixed point theorem. Finally,
we provide two examples to illustrate our obtained results. The results obtained here extend the work
of Benchohra, Bouriah and Henderson [5].
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2 Preliminaries

In this section, we introduce notations, definitions and preliminary facts that are used throughout this
article. By C ([a,b] ,R) we denote the Banach space of all continuous functions equipped with the
norm

‖y‖[a,b] = sup{|y(t)| : a≤ t ≤ b} .

Let L1 (J,R) be the space of Lebesgue integrable functions w : J −→ R with the norm

‖w‖1 =
∫ e

1
|w(s)|ds.

Definition 2.1 ([10]). The Hadamard fractional order integral of the function y ∈ L1 (J,R+) of order
α ∈ R+, is given by

Iαy(t) =
1

Γ(α)

∫ t

0

(
log

t
s

)α−1
y(s)

ds
s
,

where Γ(α) =
∫

∞

0 exp(−t) tα−1dt is the Gamma function.

Definition 2.2 ([10]). The Hadamard fractional order derivative of order α ∈ R+ of the function y :
[1,∞)→ R is defined by

Dαy(t) =
1

Γ(n−α)

(
t

d
dt

)n ∫ t

1

(
log

t
s

)n−α−1
y(s)

ds
s
,

where n = [α]+1 and [α] denotes the integer part of α.

Definition 2.3 ([10]). Let α > 0 and n = [α]+1. The equality Dαy(t) = 0 is valid if and only if

y(t) =
n

∑
j=1

c j (log t)α− j for each t ∈ J,

where c j ∈ R ( j = 1, ...,n) are arbitrary constants.

Lastly in this section, we state the fixed point theorems which enable us to prove the existence and
uniqueness of a solution of (1.1).

Definition 2.4. Let (X ,‖.‖) be a Banach space and N : X → X . The operator N is a contraction oper-
ator if there is an λ ∈ (0,1) such that x,y ∈ X imply

‖Nx−Ny‖ ≤ λ‖x− y‖ .

Theorem 2.1 (Banach contraction mapping principle [15]). Let X be a Banach space X and N :
X → X be a contraction operator. Then there is a unique x ∈ X with Nx = x.

Theorem 2.2 (Krasnoselskii fixed point theorem [15]).
If K is a nonempty bounded, closed and convex subset of a Banach space X , A and B two operators

defined on K with values in X such that
i) Ax+By ∈K , for all x,y ∈K ,
ii) A is continuous and compact,
iii) B is a contraction.

Then there exists z ∈K such that z = Az+Bz.
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3 Existence and uniqueness results

Let us list some assumptions to prove our existence and uniqueness results.
(H1) The function f : J×C ([−r,h] ,R)×R→ R is continuous.
(H2) There exist constants K1 ∈ R+ and K2 ∈ (0,1) such that

| f (t,u,v)− f (t, ũ, ṽ)| ≤ K1 ‖u− ũ‖[−r,h]+K2 |v− ṽ| ,

for any t ∈ J, u, ũ ∈C ([−r,h] ,R) and v, ṽ ∈ R.
(H3) There exist constants K3,K4 ∈ (0,1) such that

‖H1y1−H1y2‖[1−r,1] ≤ K3 ‖y1− y2‖[1−r,e+h] ,

and
‖H2y1−H2y2‖[e,e+h] ≤ K4 ‖y1− y2‖[1−r,e+h] ,

for any y1,y2 ∈C ([1− r,e+h] ,R).
(H4) There exist constants MH1 > 0 and MH2 > 0 such that

‖H1y‖[1−r,1] ≤MH1 and ‖H2y‖[e,e+h] ≤MH2 ,

for any y ∈C ([1− r,e+h] ,R).
(H5) There exist p,q,r ∈C (J,R+) with r∗ = sup

t∈J
r (t)< 1 such that

| f (t,u,w)| ≤ p(t)+q(t)‖u‖[−r,h]+ r (t) |w| ,

for t ∈ J, u ∈C ([−r,h] ,R) and w ∈ R.

Definition 3.1. A function y ∈ C2 ([1− r,e+h] ,R) is said to be a solution of (1.1) if y satisfies the
implicit fractional differential equations Dαy(t) = f (t,yt ,Dαy(t)) on J, and the conditions y(t) +
(H1y)(t) = κ (t) on [1− r,1] and y(t)+(H2y)(t) = ψ(t) on [e,e+h].

The proof of the following lemma is close to the proof of Lemma 1 given in [5].

Lemma 3.1. Let σ be a continuous function. Then the linear problem
Dαy(t) = σ(t) , t ∈ J,
y(t)+(H1y)(t) = κ (t) , t ∈ [1− r,1] ,
y(t)+(H2y)(t) = ψ(t) , t ∈ [e,e+h] ,

has a unique solution which is given by

y(t) =


κ (t)− (H1y)(t) , if t ∈ [1− r,1] ,(

1− (log t)α−1
)
(κ (1)− (H1y)(1))+(log t)α−1 (ψ(e)− (H2y)(e))

−
∫ e

1 G(t,s)σ(s)
ds
s
, if t ∈ J,

ψ(t)− (H2y)(t) , if t ∈ [e,e+h] ,

where

G(t,s) =
1

Γ(α)

{
(log t)α−1 (1− logs)α−1− (log t− logs)α−1 , 1≤ s≤ t ≤ e,
(log t)α−1 (1− logs)α−1 , 1≤ t ≤ s≤ e.

(3.1)
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Our first result is based on the Banach contraction mapping principle.

Theorem 3.1. Assume that (H1)–(H3) hold. If

δ+
2K1

(1−K2)Γ(α+1)
< 1 where δ = max{K3,K4} , (3.2)

then there exists a unique solution of (1.1).

Proof. Consider the operator N : C ([1− r,e+h] ,R)→C ([1− r,e+h] ,R) defined by

(Ny)(t) =


κ (t)− (H1y)(t) , if t ∈ [1− r,1] ,(

1− (log t)α−1
)
(κ (1)− (H1y)(1))+(log t)α−1 (ψ(e)− (H2y)(e))

−
∫ e

1 G(t,s)g(s)
ds
s
, if t ∈ J,

ψ(t)− (H2y)(t) , if t ∈ [e,e+h] ,

where g ∈C (J,R) is such that
g(t) = f (t,yt ,g(t)) .

Clearly, the fixed points of operator N are solution of problem (1.1). Let u,w ∈C ([1− r,e+h] ,R). If
t ∈ [1− r,1], then

|(Nu)(t)− (Nw)(t)| = |(H1u)(t)− (H1w)(t)|
≤ ‖H1u−H1w‖[1−r,1]

≤ K3 ‖u−w‖[1−r,e+h] .

And if t ∈ [e,e+h], then

|(Nu)(t)− (Nw)(t)| = |(H2u)(t)− (H2w)(t)|
≤ ‖H2u−H2w‖[e,e+h]

≤ K4 ‖u−w‖[1−r,e+h] .

Also, for t ∈ J, we have

|(Nu)(t)− (Nw)(t)|

≤
∣∣∣1− (log t)α−1

∣∣∣ |(H1u)(1)− (H1w)(1)|+(log t)α−1 |(H2u)(e)− (H2w)(e)|

+
∫ e

1
|G(t,s)| |g(s)− z(s)| ds

s
,

≤
∣∣∣1− (log t)α−1

∣∣∣‖H1u−H1w‖[1−r,1]+(log t)α−1 ‖H2u−H2w‖[e,e+h]

+
∫ e

1
|G(t,s)| |g(s)− z(s)| ds

s
, (3.3)

where g,z ∈C (J,R) is such that
g(t) = f (t,ut ,g(t)) ,

and
z(t) = f (t,wt ,z(t)) .
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By (H2) we have

|g(t)− z(t)| = | f (t,ut ,g(t))− f (t,wt ,z(t))|
≤ K1 ‖ut −wt‖[−r,h]+K2 |g(t)− z(t)| .

Then
|g(t)− z(t)| ≤ K1

1−K2
‖ut −wt‖[−r,h] . (3.4)

By (H3) we have
‖H1u−H1w‖[1−r,1] ≤ K3 ‖u−w‖[1−r,e+h] (3.5)

and
‖H2u−H2w‖[e,e+h] ≤ K4 ‖u−w‖[1−r,e+h] (3.6)

By considering (3.4), (3.5) and (3.6) in (3.3), we have

|(Nu)(t)− (Nw)(t)| ≤
(

K3

(
1− (log t)α−1

)
+K4 (log t)α−1

)
‖u−w‖[1−r,e+h]

+
K1

1−K2
‖u−w‖[1−r,e+h]

∫ e

1
|G(t,s)| ds

s
. (3.7)

On the other hand, we have for each t ∈ J∫ e

1
|G(t,s)| ds

s
≤ 1

Γ(α)

[∫ t

1

(
log

t
s

)α−1 ds
s
+(log t)α−1

∫ e

1

(
log

e
s

)α−1 ds
s

]
≤ 2

Γ(α)

∫ e

1

(
log

e
s

)α−1 ds
s
=

2
Γ(α+1)

. (3.8)

By considering (3.8) in (3.7), we have

|(Nu)(t)− (Nw)(t)|

≤
((

(K4−K3)(log t)α−1 +K3

)
+

2K1

(1−K2)Γ(α+1)

)
‖u−w‖[1−r,e+h]

≤
(

δ+
2K1

(1−K2)Γ(α+1)

)
‖u−w‖[1−r,e+h] ,

where
δ = max

t∈J

(
(K4−K3)(log t)α−1 +K3

)
= max{K3,K4} .

Therefore,

‖Nu−Nw‖
[1−r,e+h]

≤
(

δ+
2K1

(1−K2)Γ(α+1)

)
‖u−w‖[1−r,e+h] .

By (3.2), the operator N is a contraction. Hence, by the Banach contraction mapping principle, N has
a unique fixed point which is the unique solution of (1.1).

Our second result is based on the Krasnoselskii fixed point theorem.

Theorem 3.2. Assume (H1)–(H5) hold. If

2q∗

(1− r∗)Γ(α+1)
< 1,

where q∗ = sup
t∈J

q(t), then (1.1) has at least one solution.
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Proof. Choose

R≥ ‖κ‖[1−r,1]+MH1 +‖ψ‖[e,e+h]+MH2 +
2(p∗+q∗R)

(1− r∗)Γ(α+1)
,

where p∗ = sup
t∈J

p(t), and define the set

DR =
{

y ∈C ([1− r,e+h] ,R) : ‖y‖[1−r,e+h] ≤ R
}
.

It is clear DR that is a bounded, closed and convex subset of C ([1− r,e+h] ,R). Let A and B the two
operators defined on DR by

(Ay)(t) =


0, if t ∈ [1− r,1] ,

−
∫ e

1 G(t,s)g(s)
ds
s
, if t ∈ J,

0, if t ∈ [e,e+h] ,

and

(By)(t) =


κ (t)− (H1y)(t) , if t ∈ [1− r,1] ,(

1− (log t)α−1
)
(κ (1)− (H1y)(1))

+(log t)α−1 (ψ(e)− (H2y)(e)) , if t ∈ J,
ψ(t)− (H2y)(t) , if t ∈ [e,e+h] .

Therefore, the existence of a solution of (1.1) is equivalent to that the operator A+B has a fixed point
in DR. The proof is divided into three steps.

Step 1. We prove that Ax+By ∈ DR for all x,y ∈ DR. If t ∈ [1− r,1] , then

|(Ax)(t)+(By)(t)| = |κ (t)−H1 (y)(t)|
≤ ‖κ‖[1−r,1]+‖H1y‖[1−r,1]

≤ ‖κ‖[1−r,1]+MH1 ≤ R,

and if t ∈ [e,e+h], then

|(Ax)(t)+(By)(t)| = |ψ(t)−H2 (y)(t)|
≤ ‖ψ‖[e,e+h]+‖H2y‖[e,e+h]

≤ ‖ψ‖[e,e+h]+MH2 ≤ R.

If also t ∈ J,

|(Ax)(t)+(By)(t)|

=
∣∣∣(1− (log t)α−1

)
(κ (1)− (H1y)(1))

+(log t)α−1 (ψ(e)− (H2y)(e))−
∫ e

1
G(t,s)

g(s)
s

ds
∣∣∣∣

≤
(

1− (log t)α−1
)
|κ (1)− (H1y)(1)|

+(log t)α−1 |ψ(e)− (H2y)(e)|+
∫ e

1
|G(t,s)| |g(s)| ds

s

≤
(

1− (log t)α−1
)
(|κ (1)|+ |(H1y)(1)|)

+(log t)α−1 (|ψ(e)|+ |(H2y)(e)|)+
∫ e

1
|G(t,s)| |g(s)| ds

s
,
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where g ∈C (J,R) is such that
g(t) = f (t,yt ,g(t)) .

By (H5), we have for each t ∈ J,

|g(t)| = | f (t,yt ,g(t))|
≤ p(t)+q(t)‖yt‖[−r,h]+ r (t) |g(t)|
≤ p(t)+q(t)‖y‖[1−r,e+h]+ r (t) |g(t)|

≤ p∗+q∗R
1− r∗

.

Therefore,

|(Ax)(t)+(By)(t)|

≤
(

1− (log t)α−1
)(
|κ (1)|+‖H1y‖[1−r,1]

)
+(log t)α−1

(
|ψ(e)|+‖H2y‖[e,e+h]

)
+

2(p∗+q∗R)
(1− r∗)Γ(α+1)

≤ ‖κ‖[1−r,1]+MH1 +‖ψ‖[e,e+h]+MH2 +
2(p∗+q∗R)

(1− r∗)Γ(α+1)
≤ R.

Consequently,
Ax+By ∈ DR.

Step 2. We show B is a contraction mapping. By (H3), if t ∈ [1− r,1] , we have

|(By1)(t)− (By2)(t)| = |κ (t)− (H1y1)(t)−κ (t)+(H1y2)(t)|
≤ ‖H1y1−H1y2‖[1−r,1]

≤ K3 ‖y1− y2‖[1−r,e+h] ,

and if t ∈ [e,e+h] , then

|(By1)(t)− (By2)(t)| = |ψ(t)− (H2y1)(t)−ψ(t)+(H2y2)(t)|
≤ ‖H2y1−H2y2‖[e,e+h]

≤ K4 ‖y1− y2‖[1−r,e+h] .

If also t ∈ J,

|(By1)(t)− (By2)(t)|

=
∣∣∣(1− (log t)α−1

)
(κ (1)− (H1y1)(1))+(log t)α−1 (ψ(e)− (H2y1)(e))

−
(

1− (log t)α−1
)
(κ (1)− (H1y2)(1))− (log t)α−1 (ψ(e)− (H2y2)(e))

∣∣∣
≤
(

1− (log t)α−1
)
|(H1y1)(1)− (H1y2)(1)|+(log t)α−1 |(H2y1)(e)− (H2y2)(e)|

≤
(

1− (log t)α−1
)
‖H1y1−H1y2‖

[1−r,1]
+(log t)α−1 ‖H2y1−H2y2‖[e,e+h]

≤
(

1− (log t)α−1
)

K3 ‖y1− y2‖[1−r,e+h]+(log t)α−1 K4 ‖y1− y2‖[1−r,e+h]

≤
(
(K4−K3)(log t)α−1 +K3

)
‖y1− y2‖[1−r,e+h] .
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Thus,
‖By1−By2‖

[1−r,e+h]
≤ δ‖y1− y2‖[1−r,e+h] .

Consequently, B is a contraction mapping.
Step 3. We prove that A is continuous and compact.
Let {un} be a sequence such that un → u in C ([1− r,e+h] ,R). If t ∈ [1− r,1] or t ∈ [e,e+h] ,

then
|(Aun)(t)− (Au)(t)|= 0.

For t ∈ J, we have

|(Aun)(t)− (Au)(t)| ≤
∫ e

1
|G(t,s)| |gn (s)−g(s)| ds

s
, (3.9)

where gn,g ∈C (J,R) are such that

gn (t) = f (t,unt ,gn (t)) ,

and
g(t) = f (t,ut ,g(t)) .

By (H2), we have

|gn (t)−g(t)| = | f (t,unt ,gn (t))− f (t,ut ,g(t))|
≤ K1 ‖unt −ut‖

[−r,h]
+K2 |gn (t)−g(t)| ,

Then
|gn (t)−g(t)| ≤ K1

1−K2
‖unt −ut‖

[−r,h]
.

Since un → u, we get gn (t)→ g(t) as n→ ∞ for each t ∈ J. Now, let ε > 0 be such that, for each
t ∈ J, we have |gn (t)| ≤ ε and |g(t)| ≤ ε. Then, we have

|G(t,s)| |gn (s)−g(s)| ≤ |G(t,s)| [|gn (s)|+ |g(s)|]
≤ 2ε |G(t,s)| .

For each t ∈ J, the function s→ 2ε |G(t,s)| is integrable on J. Then the Lebesgue dominated conver-
gence theorem and (3.9) imply that

|(Aun)(t)− (Au)(t)| → 0 as n→ ∞.

Hence
‖Aun−Au‖

[1−r,e+h]
→ 0 as n→ ∞.

Consequently, A is continuous.
Now, we need to prove that A(DR) is uniformly bounded. Let y ∈ DR. We observe that

|(Ay)(t)| ≤
∫ e

1
|G(t,s)| |g(s)| ds

s

≤ 2(p∗+q∗R)
(1− r∗)Γ(α+1)

≤ R.

Thus,
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‖Ay‖
[1−r,e+h]

≤ R.

This shows that A(DR) is uniformly bounded.
Next, we show that A(DR) is relatively compact. Let t1, t2 ∈ [1,e], t1 < t2, and let y ∈ DR. Then

|(Ay)(t2)− (Ay)(t1)| ≤
∫ e

1
|G(t2,s)−G(t1,s)| |g(s)|

ds
s

≤ p∗+q∗R
1− r∗

∫ e

1
|G(t2,s)−G(t1,s)|

ds
s
.

As t1→ t2, the right-hand side of the above inequality tends to zero. The equicontinuity for the other
cases is obvious. By the Arezela-Ascoli theorem, A(DR) is relatively compact. Thus, A is compact.

Therefore, all the hypothesis of the Krasnoselskii fixed point theorem are satisfied and conse-
quently A+B has a fixed point in DR. Then, the problem (1.1) has at least one solution on J.

4 Examples

Example 4.1. Consider the following implicit fractional differential equation
D

5
3 y(t) = log(2+t)e−1

1+|yt | −

∣∣∣∣D 5
3 y(t)

∣∣∣∣
et2+1

(
1+
∣∣∣∣D 5

3 y(t)
∣∣∣∣) , for each t ∈ [1,e] ,

y(t)+ |y(t)|
e3−t(1+|y(t)|) = κ (t) , t ∈ [0,1] ,

y(t)+ sin(y(t))+1
100t = ψ(t) , t ∈ [e,e+2] ,

(4.1)

where κ ∈C ([0,1] ,R) and ψ ∈C ([e,e+2] ,R). Set

f (t,u,v) =
log(2+ t)e−1

1+ |u|
− |v|

et2+2 (1+ |v|)
, t ∈ [1,e] , u ∈C ([−1,2] ,R) , v ∈ R,

(H1y)(t) =
|y(t)|

e3−t (1+ |y(t)|)
, t ∈ [0,1] , y ∈C ([0,e+2] ,R) ,

(H2y)(t) =
sin(y(t))+1

100t
, t ∈ [e,e+2] , y ∈C ([0,e+2] ,R) .

Let u, ũ ∈C ([−1,2] ,R) , v, ṽ ∈ R, t ∈ [1,e], then we have

| f (t,u,v)− f (t, ũ, ṽ)|

≤ log(2+ e)e−1 ‖u− ũ‖[−1,2]+
1
e3 |v− ṽ| .

and let y1,y2 ∈C ([0,e+2] ,R), we have, if t ∈ [0,1] ,

|(H1y1)(t)− (H1y2)(t)| ≤
1

e3−t ‖y1− y2‖[0,e+2] ,

then
‖H1y1−H1y2‖[0,1] ≤

1
e2 ‖y1− y2‖[0,e+2] ,

and if t ∈ [e,e+2] ,
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|(H2y1)(t)− (H2y2)(t)| ≤
1

100t
‖y1− y2‖

[0,e+2]
,

then
‖H2y1−H2y2‖[e,e+2] ≤

1
100e

‖y1− y2‖[0,e+2] .

Denote α = 5
3 , K1 = log(2+ e)e−1 > 0, 0 < K2 = 1

e3 < 1, 0 < K3 = 1
e2 < 1, 0 < K4 = 1

100e < 1,
δ = max

{ 1
e2 ,

1
100e

}
= 1

e2 . Thus

δ+
2K1

(1−K2)Γ(α+1)
=

1
e2 +

2log(2+ e)e−1(
1− 1

e3

)
Γ
(5

3 +1
) = 0.9337 < 1.

Now, all assumptions in Theorem 3.1 are satisfied, then the problem (4.1) has a unique solution.

Example 4.2. Consider the following implicit fractional differential equation
D

5
3 y(t) = 1

4et +
1

5et

(
|yt |+

∣∣∣D 5
3 y(t)

∣∣∣) , for each t ∈ [1,e] ,

y(t)+ cos(y(t))et

e−t+8 = κ (t) , t ∈ [0,1] ,
y(t)+ 6

(t+9)3
|y(t)|

1+|y(t)| = ψ(t) , t ∈ [e,e+2] ,

(4.2)

where κ ∈C ([0,1] ,R) and ψ ∈C ([e,e+2] ,R). Set

f (t,u,v) =
1

4et +
1

5et (|u|+ |v|) , t ∈ [1,e] , u ∈C ([−1,2] ,R) , v ∈ R.

Clearly, the function f is continuous and set

(H1y)(t) =
cos(y(t))et

e−t +8
, t ∈ [0,1] ,

(H2y)(t) =
6

(t +9)3
|y(t)|

1+ |y(t)|
, t ∈ [e,e+2] ,

for any y ∈C ([0,e+2] ,R). Let u, ũ ∈C ([−1,2] ,R), v, ṽ ∈ R, t ∈ [1,e] , then we have

| f (t,u,v)− f (t, ũ, ṽ)| ≤ 1
5

(
‖u− ũ‖

[−1,2]
+ |v− ṽ|

)
,

and let y1,y2 ∈C ([0,e+2] ,R), we have if t ∈ [0,1] ,

|(H1y1)(t)− (H1y2)(t)| ≤
et

e−t +8
|y1 (t)− y2 (t)| ,

then

‖H1y1−H1y2‖[0,1] ≤
e1

e−1 +8
‖y1− y2‖[0,e+2] ,

and if t ∈ [e,e+2] ,

|(H2y1)(t)− (H2y2)(t)| ≤
6

(t +9)3 ‖y1− y2‖
[0,e+2]

,

then
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‖H2y1−H2y2‖[e,e+2] ≤
6

(e+9)3 ‖y1− y2‖[0,e+2] .

Denote α = 5
3 , K1 = K2 =

1
5 , K3 =

e1

e−1+8 < 1, K4 =
6

(e+9)3 < 1.

We have, for each t ∈ [1,e]

| f (t,u,v)| ≤ 1
4et +

1
5et

(
‖u‖

[−1,2]
+ |v|

)
.

Thus condition (H4) is satisfied with

p(t) =
1

4et , q(t) =
1

5et , r (t) =
1

5et .

Then we have
q∗ =

1
5e

, r∗ =
1
5e

< 1.

Thus condition
2q∗

(1− r∗)Γ(α+1)
=

2
5e
(
1− 1

5e

)
Γ
(3

5 +1
) = 0.17777 < 1,

is satisfied. Hence by Theorem 3.2, the problem (4.2) has at least one solution.
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