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networks. The study presented showed that updating knowledge and exploiting new knowl-
edge does not complicate calculations. The contribution is the structural approach of faults
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defined in descending order. The approach presented in this paper has been successfully
applied to turbo compressor, which represent vital equipment in petrochemical plant.
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Introduction

Detection, diagnosis, and repair are the three key
elements to keep industrial systems under control [1].
Monitoring consists of following the behavior of the
industrial system, starting with detection (identifi-
cation, probability of occurrence) and ending with
a diagnosis (decision-making). A monitoring system
is set up from the starting-up of the industrial sys-
tem; it is based on an expert evaluation, passage to
the limit values of a precursor, or even a poor quality
of a product. The nature of the monitoring system
depends essentially on the nature of the system and
the type of information it contains. Three main types
of monitoring approaches can be distinguished [2]:
analytical model-based methods, data-driven meth-
ods, and knowledge-based methods.

Analytical model-based methods use a model de-
scribed by mathematical relationships, representing
the different physical relationships of the system, ob-
tained by implementation of fundamental laws of
various domains (physics, chemistry, electricity, ther-
modynamics, mechanics, etc.). The objective of this
type of approach is to distinguish between residues
caused by faults (assignable causes) and residues
caused by other sources of variation (random caus-
es). In this case, the presence of fault is detected by
applying adequate thresholds on the residues [3].

Currently most industrial systems are more and
more automated allowing data recovery. It should al-
so be noted that the amount and variety of data to
be processed is so important that an operator can-
not directly track each variable in the system. We
use data-driven techniques to represent the informa-
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tion expressed by all variables of the system. Some
techniques allow detection while others focus on di-
agnosis [4]. Among these methods, we can notably
mention approaches by control cards, principal com-
ponent analysis and projection in latent structures
for the detection phase, whereas for the diagnostic
phase, we mainly find classification tools such as dis-
criminate analysis [5], or neural networks [6].

In the absence of an analytical model of the sys-
tem, the solution for monotoring lies in the exploita-
tion of the qualitative knowledge held by experts on
the system under study. Some techniques could be
mentioned such as expert systems, FMEA (Failure
Mode and Effects Analysis), FMECA (Failure Mode,
Effects and Criticality Analysis) [7], as well as fault
tree.

In the rest of this article, we are interested in
fault tree. Fault tree analysis is a deductive method.
Indeed the objective is to determine, from an unde-
sired event defined a priori, the sequence of events or
combinations of events that can finally lead to this
event. This analysis makes it possible to go back from
causes to causes until the basic events likely to be at
the origin of the undesired event.

Modelling possibilities offered by fault tree, one
of the best-known techniques for the analysis of op-
erating safety of critical systems, can be extended
relying on Bayesian networks (BNs) [8]. This for-
malism gives the possibility to make more flexible
some typical constraints of BNs. In addition, BNs
can be used to represent local dependencies and per-
form reasoning-based analysis for both diagnostics
and prediction [9].

Quantitative and qualitative exploitation of the
tree can only be carried out from a reduced tree.
Computer software developed over the past ten years
makes it possible to automatically determine proba-
bilities throughout the tree. Fault tree combines an-
alytical methods, Monte-Carlo simulation, and deci-
sion diagrams. Due to the limited use of Monte-Carlo
simulation, the analytical approach is frequently the
most used for the determination of probabilities by
fault tree. In order to reduce the margin of error
due to inaccurate and incomplete primary event da-
ta, some authors have recently used fuzzy theory in
combination with fault tree [10, 11]. Fault tree, in ad-
dition to being limited to evaluating a single output
variable, does not allow the representation of several
state variables (which is generally the case for safety
and risk analysis) [12], however a BN can fill this gap
because it has the ability to evaluate several output
variables in the same model.

In this article, we will give a new method of fault
diagnosis based on the use of a fault tree and a BN.

At the end and before concluding this article, we will
show the effectiveness of the proposed tool through
a case study of a turbo-compressor (TC).

Fault tree

Fault tree analysis has historically been the first
method developed to conduct a systematic risk as-
sessment. Aimed at determining the sequence and
combinations of events that can lead to top event
taken as a reference, fault tree analysis is now applied
in many fields such as aeronautics, nuclear, chemical
industry.

Tree construction

Whatever the nature of the basic identified ele-
ments, the fault tree analysis is based on the fact that
the events are independent (i.e. they will not be split
into simpler elements because of lack of available in-
formation, there is no interest or simply because it
is not possible) and their frequency or probability
of occurrence can be evaluated. Thus, the fault tree
analysis enables identifying the successions and com-
binations of events that conduct the basic events up
to the selected undesirable event.

Using mathematical and statistical rules, it is the-
oretically possible to evaluate the probability of oc-
currence of the final event from the probabilities of
the identified basic events. Fault tree analysis of un-
desirable events begins with a first step which con-
sists in defining the studied undesired event, then the
construction of the tree, and finally the exploitation
of this tree. To these steps should be added a pre-
liminary step of knowledge of the system. This latter
is essential for conducting the analysis and most of-
ten requires prior knowledge about faults. The links
between the various identified events are made by
means of logic gates of type “AND” and “OR”, for
example (Fig. 1).

Fig. 1. Main elements of a FT.

Qualitative analysis of faults

The qualitative exploitation of the tree aims to
examine in which proportion a fault corresponding
to a basic event can spread in the chaining of caus-
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es until the final event. For this, we assume that all
basic events are equiprobable and we study the rout-
ing of events or combinations of events, through the
logic gates, up to the final event. Intuitively, a fault
propagating through the system by encountering on-
ly “OR” gates is likely to lead very quickly to the
final event. Conversely, a routing that operates ex-
clusively through “AND” gates indicates that the oc-
currence of the final event from the basic event or the
combination of basic events is less probable, and thus
demonstrates better prevention of the final event.

Quantitative analysis of faults

The quantitative exploitation of fault tree aims to
estimate, from the probabilities of occurrence of the
basic events, the probability of occurrence of the final
event as well as intermediate events. This is not an
approach that allows obtaining accurately the proba-
bility of each event. It must be implemented in order
to prioritize the various possible causes and to focus,
as a prevention measure, on the most probable caus-
es. In practice, it is often difficult to obtain precise
values of probabilities of the basic events. In order
to estimate them, it is possible to use databases, ex-
pert assessments, tests where possible, and feedback
of experience on installation or similar installations.
From the probabilities of the basic events, it is a

question of going up in the fault tree by applying the
rules represented in the Fig. 2.

Fig. 2. Quantitative exploitation of a fault tree.

Bayesian networks

Bayesian networks also called probabilistic graph-
ical models [13], have been widely used to solve vari-
ous problems (e.g., diagnosis, classification, fault pre-
diction, risk analysis) [9, 14, 15]. These models are
characterized by their ability to process uncertain
information and to represent the interdependencies
between different variables of a given problem.
The advantage of probabilistic graphical models

is the interesting graphical representation using ba-
sic models easily understandable and interpretable.

Reasoning from probabilistic graphical models facili-
tates dealing with some problems such as prediction
or diagnosis. Moreover, it is known that probabilis-
tic fault analysis has many advantages, because it
enables to evaluate the probability of fault of a com-
plex system so that its weak points can be identified.
Another advantage of probabilistic graphical models
concerns the various developed tools, which partici-
pate and facilitate the construction of a model rep-
resenting a given problem.
In Bayesian methods, a priori information, like-

lihood, and a posteriori information are represent-
ed by probability distributions. A priori probability
represents the probability distribution of a knowl-
edge or belief about a subject or variable before
the parameter it represents is observed. Likelihood
is a function of parameter of a statistical model, re-
flecting the possibility of observing a variable if these
parameters would have a value. A posteriori proba-
bility is the conditional probability on the collected
data by combination of a priori probability and like-
lihood via the Bayes theorem [16]

P (A/B) =
P (A).P (B/A)

P (B)
. (1)

Bayesian network consists mainly of nodes and
a set of edges. Indicating an edge between two vari-
ables implies a direct dependence between these two
variables: one is the parent and the other the child. It
is necessary to provide the behavior of the child vari-
able in view of the behavior of his parent or parents,
if there are several. For this, each node of the network
has a table of conditional probabilities. A condition-
al probability table associated with a node enables
to quantify the effect of the parent node(s) on this
node: it describes the probabilities associated with
the child nodes according to the different values of
the parent nodes. For root nodes (without parents),
the probability table is no longer conditional and
then sets a priori probabilities concerning the val-
ues of the variable [13].
BNs forbid child to parent(s) dependencies. Thus,

the set of variables and edges will form a directed
(edges have a direction) and acyclic (no cycle in the
graph) graph.
A BN (Fig. 3) is defined by [17]:

• an oriented acyclic graph G, G = (V, E), where V
is the set of nodes of G, and E is the set of edges
of G;

• a probabilistic space (Ω, Z, P ), with a non-empty
finite set, Z a set of subspaces of Ω, and P a prob-
ability measure on Z with P(Ω) = 1;

• a set of random variables associated with the
nodes of the graph G and defined on (Ω, Z, P ),
such that:
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p(V1, V2, ..., Vn) =
n∏

i=1

p(Vi/C(Vi)), (2)

where C (Vi) is the set of parents (or causes) of Vi

in the graph G.

Fig. 3. Graphical representation of a simple BN.

Conversion of the fault tree

into a Bayesian network

After building the fault tree, the first step in
building a BN from a fault tree is to convert the
graphical representation of the fault tree into a BN.
The basic graphic elements for a fault tree are the
events and logic gates (AND and OR), whereas for
the BNs the basic elements are the nodes, that repre-
sent the events, and the edges that model the depen-
dencies. There are some methods of transformations
of a fault tree into BN, which consist in transform-
ing the logical gates of a fault tree into nodes in the
BN. These methods increase the number of nodes
and make the calculations complicated and difficult.
However the construction adopted in this article con-
sists in transforming the different types of events of
a fault tree into nodes in the associated BN, where-

as the logical gates AND/OR do not participate in
the graphical form of the network [8, 18]. In a BN,
the connections between the events of a fault tree
will be represented by edges, which translate the de-
pendence between these events, and the relationships
will be of “cause-effect” type; the different types of
events will be represented by nodes, on the basis that
the basic events will be the input nodes, and in the
case that an event is repeated in the fault tree, it will
be represented by a single node (Fig. 4).

Fig. 4. Graphical conversion of a fault tree into BN.

The calculation of probabilities represents the
second step in the construction of the BN from a fault
tree. It consists of assigning the probabilities of oc-
currence of the basic (primary) events of the fault
tree to the root nodes as a priori probabilities. In
the case of induced (intermediate) events and the
adverse event (top of the tree, final event), the as-
sociated probabilities will be calculated on the ba-
sis of the calculation of the conditional probabilities
(Fig. 5).

Fig. 5. Numerical conversion of a fault tree into a BN

Volume 10 • Number 2 • June 2019 19



Management and Production Engineering Review

Analysis of faults of a turbocompressor

Description of the equipment

The turbo-compressor (TC) studied is used for
the compression of the gas, which, in turn, is the
basis for the production of liquefied natural gas. It
consists of three machines: a multi-stage condensing
steam turbine in which the steam passes through sev-
eral stages, one behind the other, in order to reach
an economical use of its energy, coupled to an axial
compressor, consisting of two groups of stages, which
is in turn connected to a gas turbine, whose rotor is
common for the compressor and the gas turbine.
The rotor of the compressor and that of the steam

turbine rest in sliding bearings regulated and lubri-
cated by lubricating oil. They are axially fixed in two
thrust bearings, one on the compressor side and the
other on the steam turbine side (Fig. 6). The com-
pact type oil system provides not only the oil for
the bearings and other lubrication points of the ma-
chines and their accessories, but also the driving oil

for the regulators and positioners, which makes the
oil circuit complex.

Fig. 6. Synoptic diagram of the equipment.

Fault tree analysis

To begin the construction of the TC associated
TF, a codification for the different events is present-
ed in Table 1, as well as the associated probabilities
of occurrence.

To construct the fault tree, the undesired event
begins with events and proceeds to their causes un-
til basic the components are reached. The undesired
event is the shutdown of the TC (see Fig. 7). In prac-
tice, to build our fault tree, it is necessary to find out

Fig. 7. Fault tree of a turbo-compressor.
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Table 1
Different events and their associated probabilities of occurrence.
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the necessary and sufficient causes for the machine
shutdown; this solution allows identifying a certain
number of intermediate events, which will constitute
the first level of the tree. Following the same prin-
ciple, we obtain the second level, i.e. we look for
the causes necessary for the intermediate event to
appear. A priori probabilities of faults are defined
by using the experience feedback and the history
file of the turbo-compressor. Operators and main-
tenance engineers play an important role in defining
these a priori probabilities. From the reliability of
the a priori information depends the results of the
fault diagnosis and analysis.

The nodes in yellow in Fig. 7 represent the caus-
es or the basic events of the top event represented
with the red color (shutdown of the TC), the oth-
er nodes (green and blue) represent the intermediate
events of the various levels, and the nodes in dotted
lines represent a common cause. Probabilities are as-
signed to the different basic events on the fault tree
(see Table 1).

After analysis by fault tree, we find the proba-
bility of occurrence of the top event P (shutdown
of the TC) = P (1) = 0.034, which is worth 3.4%.
This probability is quantitatively acceptable, but
since the machine is strategic and in view of opti-
mizing the operational safety, it is still necessary to

identify the main causes and minimize this percent-
age.
Fault tree studies are limited to minimizing the

probability of occurrence, and identifying the fragile
branches of the tree in order to carry out correc-
tive actions. Under such situations and in addition
to the frequency (probability), another main element
should be considered: severity. The variables are bi-
nary (works/does not work), and adding a new state
is very difficult with this tool. For example, the elim-
ination of the basic event P (1311) = 0 is possible by
increasing the oil analysis sampling frequency, which
gives P (1) = 0.027.
To use this new information it is required to re-

do all the calculation in the tree. In addition, it is
possible to use a fault tree only from a reduced tree.

Modeling using a Bayesian network

Modeling using a BN, obtained from a fault tree,
starts with the graphical transformation (Fig. 4),
the nodes, in yellow in Fig. 8, represent the par-
ents (causes), and the other nodes represent the chil-
dren (consequences). The dotted nodes of Fig. 7,
which represent the same cause, will be represent-
ed by a single node on a BN; the other nodes of the
BN represent the same nodes of the fault tree with
the same levels.

Fig. 8. Bayesian network associated to the turbo-compressor fault tree.
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The numerical conversion from fault tree to BN is
based on the calculation of probabilities and condi-
tional probabilities of the variables. We assume that
the variables are binary of “True/False” type, the
probabilities attributed to the basic events of fault
tree will be assigned in a similar manner in BN, these
probabilities, called a priori, are the input parame-
ters of the network. The evaluation of the probabil-
ity of occurrence of an intermediate event is done
by conditional probability calculation (see Table 1),
and by transformation of AND/OR logic gates into
conditional probability tables (Fig. 5).

From the BN, shown in Fig. 8, and the a posteri-
ori probabilities, shown in the last column of Table 1,
the following can be noticed:

• The probability of occurrence of the undesired top
event is identical to that calculated by the fault
tree, P (1) = 0.034;

• With our BN, it is possible to represent and eval-
uate P (1) = P (TC shutdown) and 1 – P (1) =
(TC operation) in the same model, and on any
hierarchical level of the network;

• Regarding the TC availability, the resolution al-
lows to foresee the resulting probability of the
event (1), knowing the elementary probabilities
(Pi) of the intermediate events, and to reveal the
most important nodes of the network that affect
the resulting probability. So for diagnosis, it is nec-
essary to move towards the events to take into
account as a priority during tests and for trou-
bleshooting diagrams. From Table 1, events (11)
and (12) are the most probable and should be
treated first;

• With our BN, we have been able to simulate the
event (131) by a continuous variable, which is not
possible with the fault tree. Consequently, this
gives us the possibility to define alarm and danger
thresholds for oil pressure.

The events (13211), (13221), and (13223) mod-
eled by three variables if the fault tree are modeled
by a single variable (power outage) on the BN.

Centerpiece of the maintenance plan is the inven-
tory of the most likely intermediate causes (causes
11, 12, 13, 14, 15) in order to list all the interventions
to be carried out on the turbo-compressor including
periodicity and resources. Table 2 lists a ranking of
the most likely intermediate causes and which should
be prioritized.

The inference process in the developed Bayesian
network updates these probabilities and consequent-
ly allows the automatic updating of the turbo-
compressor maintenance plan. The next phase is the

establishment of the interventions planning which
makes it possible to represent in a global and syn-
thetic way the maintenance activity on the turbo-
compressor.

Table 2
Most likely causes of faults.

Cause A posterior
probability

Priority

Passage to vibrations limit values 0.0120 1

Overspeed 0.0120 1

Insufficient oil pressure 0.0070 2

Anti-surge valve does not open 0.0030 3

Emergency shutdown 0.0010 4

Conclusions

BNs, presented in this article, deal with discrete
and continuous variables, whereas fault tree deals
with discrete variables. Furthermore, fault tree only
works with binary variables; although there are sev-
eral applications where several fault states are con-
sidered. To reduce this constraint, in the case of fault
trees, logic gates and variables are added; this will
make the graphical representation more bulky and
complicates the calculations. Conversely for a BN,
we need to adjust only the input data in the condi-
tional probability table.
Fault tree is a fault analysis method that allows,

due to its qualitative and quantitative aspect, set-
ting up scenarios of events leading to a top event
(TC shutdown). On the other hand, a BN is more
suitable for diagnosis because it gives, for example,
an explanation to a fault related to the system under
study. Furthermore, the inference in a BN, by means
of calculation of the a posteriori joint probability of
the different variables, can fill the insufficiency of a
fault tree in the case of diagnosis.
The paper presents the advantages of Bayesian

networks over the fault tree in fault diagnosis, the
mapping process and the construction of a Bayesian
network from a fault tree, and the exploitation of the
inference results for the prioritization of maintenance
actions. The study presented this paper allows to
maintenance practitioners to develop informed main-
tenance plans. The modes of operation of the main-
tenance department must therefore integrate this
quantitative analysis into the automatic examination
of the validity of the maintenance plan. Also, this
study can be consolidated by a preliminary study of
faults by FMECA, in order to analyze the severity
of the various faults. Finally, it can be used in risk
analysis.
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