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Abstract
Recognizing human activities using automated methods has emerged recently as a pivotal research theme for security-

related applications. In this research paper, an optical flow descriptor is proposed for the recognition of human actions by

considering only features derived from the motion. The signature for the human action is composed as a histogram

containing kinematic features which include the local and global traits. Experimental results performed on the Weizmann

and UCF101 databases confirmed the potentials of the proposed approach with attained classification rates of 98.76% and

70%, respectively, to distinguish between different human actions. For comparative and performance analysis, different

types of classifiers including Knn, decision tree, SVM and deep learning are applied to the proposed descriptors. Further

analysis is performed to assess the proposed descriptors under different resolutions and frame rates. The obtained results

are in alignment with the early psychological studies reporting that human motion is adequate for the perception of human

activities.
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1 Introduction

Much scientific research in computer vision is dedicated to

the arena of human motion analysis. These studies are

supported by the large number of applications where

automated analysis of human motion is deemed very cru-

cial including biometrics, smart automated surveillance,

sports arbitration and human–machine interaction. As we

are becoming more digital natives in such a modern era, the

recognition of human activities is becoming an interesting

research area with the potency to be integrated within

various realistic human-centric contexts [1, 6]. Addition-

ally, because of the unprecedented increase in multimedia

data produced continuously from security cameras, movie

production and Web uploads, it is now becoming an

important necessity to analyse such video content seman-

tically via automated methods. This would be a major

milestone to facilitate the process of indexing, search and

retrieval of multimedia content. The deployment of auto-

mated vision systems to recognize human activities can

stand as an innovative solution to increase the adoption and

usability for such smart visual applications.

The process of extracting and recognizing human

actions via automated marker-less methods are two sepa-

rate tasks that are affirmed to be cumbersome and complex.

Devising an automated solution can be difficult to develop

and generalize to different settings due to various reasons

that can be linked to either: acquisition settings, subject or

activity context. Earlier approaches proposed for this task,

depending on special equipment mounted on the person

including sensors [29]. On the other hand, vision-based

solutions are not in a mature state mainly because of the

high degree of freedom for the human body in tandem with

the unpredictable appearance variability. This would

exacerbate additional challenges within the feature

extraction stage [33]. Difficulties can stem from the

acquisition environment which includes illumination,
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background clutter, viewpoint and camera movement as

well as self-occlusion or occlusion made by other objects.

For the last factor, people can perform the same activity in

various fashions and ways [57]. This is dependent on the

culture, context or people themselves. Moreover, a specific

activity carried out by different subjects can have totally

unrelated and different semantics. More challengingly,

most human activities are performed in parallel being

interleaved within each other as we do rarely behave or

interact in a sequential fashion. For example, a subject can

use a desktop whilst drinking or talking on the phone at the

same time.

Because of the incontestable role of automated systems

in security surveillance for human activity recognition, we

describe in this paper a marker-less motion-based

descriptor using optical flow features for the automated

recognition of human activities. The proposed approach

does not dependent on background subtraction due to the

intricate nature of outdoor footage which is often subjected

to various challenging environmental conditions. Alterna-

tively, motion features are derived from estimating optical

flow from a triplet of consecutive images to generate dis-

cretized index value which describes the temporal orien-

tation at a locus point. A histogram is constructed from

consecutive frames such that kinematic-based data from

optical flow describing the global and local properties are

considered. Two different classification paradigms are

considered. The first concerns the classification based on

the feature selection using the simple K-nearest neighbour

(KNN) classifier. Further, deep learning is considered

during this research as a more advanced classifier which is

based an autoencoder neural network. Experimental results

performed on the Weizmann and UCF101 datasets affirmed

the potentials of the proposed approach to better distin-

guish between different human basic actions. This a

milestone to extend the proposed procedure to recognize

further composite actions and activities. To compare our

results against state-of-the-art methods in computer vision

and machine learning, two recent studies on the use of deep

learning for human activities recognition are assessed using

the same dataset. Further experiments are performed to

explore the performance of motion features for human

action recognition under different scenarios including

lower resolution and decreased frame rates.

This paper is organized as follows. The next section

outlines the previous approaches for the marker-less

extraction and recognition of human activities. The theo-

retical description of the presented method for extracting

and reconstructing a motion-based activity signature is

detailed in Sect. 3. The following section introduces the

experimental results performed on the Weizmann and

UCF101 datasets. Conclusions and future work are drawn

at the end.

2 Related work

Based on major studies within the literature, the two ter-

minologies ‘‘action’’ and ‘‘activity’’ are mentioned inter-

changeably and contentiously with some overlap [38].

Action can be defined as a very basic activity or simple

movement carried out by a subject within a short interval

lasting for a few seconds. This can include, for instance,

bending, sitting and waving hands. Poppe [38] explained

further the word action primitive as an atomic movement at

the limb level. An activity can be described as a sequence

of basic actions performed by an individual or group of

people. Cases of activities include complex actions such as

leaving an unattended bag, assaulting a pedestrian or

shaking hands. A vision-based system for human activity

recognition is composed of three principal phases: detec-

tion, tracking and the interpretation of the activity or ac-

tion. The automated detection of human activities plays a

vital role in various applications and innovative systems

including smart homes and visual surveillance. Although

there has been a considerable body of research devoted to

analysing human motion, classification of human activities

and pose reconstruction, recent research focus is moving

towards using nonintrusive and marker-less computer

vision methods for the detection of human activities from

natural and realistic complex scenes rather than using

laboratory settings [36]. There are a number of research

studies within the arena of computer vision on the use of

deep learning for human activity recognition. In

[14, 28, 50], research studies have reported the suitability

of employing deep learning approaches to classify human

actions whilst they stressed on the difficulty in treating the

temporal dimension for video sequences. Asadi-Aghbo-

laghi et al. [4] have recently surveyerd deep learning

methods for human activities proposing a taxonomy of

three major classes which are 3D models, motion-based

input features and temporal methods.

2.1 Representation of features

For the categorization of existing methods in the area of

automated detection of human activities, there is a con-

sensus among major surveys [12, 38, 46] to have two broad

categories based on the representation of features including

either global or local representation. The global features

are derived from a person as a whole after applying fore-

ground segmentation. The estimation of such features is

based on low-level data including edges, interest points or

optical flow. Poppe [38] have argued that methods based on

the global representation are prone to different factors

including occlusion, noise and camera viewpoint varia-

tions. Weinland and Boyer [52] proposed a compact global
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representation for human activity recognition which can be

matched against a set of prebuilt discriminative pose

templates. The representation is based directly on edge data

without the need for background subtraction whilst the

matching process is performed via the Chamfer distance.

For the local representation of features, smaller regions or

patches are derived independently from a given image in

order to produce a feature vector. The main merits of using

local representation are its invariance to appearance vari-

ations as well as background clutter. Further, the require-

ment for a good localization of the region of interest can be

relaxed. Kliper-Gross et al. [27] deployed the local repre-

sentation descriptor proposed by Yeffet and Wolf [54] for

the automated classification of human activities using bag

of visual words combined with the use of the support

vector machine. Their proposed descriptor is based on

matching local patches against neighbouring regions within

the previous and next frames. In a different study, Oshin

et al. [36] deployed the distribution of interest points at the

spatiotemporal level for the classification of human actions

in an unconstrained environment.

2.2 Optical flow-based descriptors

The use of optical flow has been considered as a strong

low-level feature within various vision-based applications.

This is because motion-based features are considered as a

strong visual attention cue for the perception of scenes

[22]. Chaudhry et al. [7] proposed the Histogram of Ori-

ented Optical Flow (HOOF) descriptor reporting its

invariance to motion orientations and scale. The descriptor

is constructed by estimating optical flow features on every

frame without the need for background segmentation or the

localization of the subject. Subsequently, the Binet–Cau-

chy kernels are applied for matching nonlinear histograms.

Their approach was evaluated on the Weizmann dataset

with a reported correct classification rate of 95.66%.

Martı́nez et al. [32] deployed the optical flow in order to

estimate the velocity vector at each pixel. For each frame,

an accumulated local histogram is constructed containing

the motion orientations for the optical vectors which are

discretized uniformly into 32 directions. The global his-

togram for the human action is composed of 192 bins by

concatenating 6 local consecutive histograms. Based on the

Weizmann database, a correct classification score of 95% is

attained using support vector machine. Wang et al. [49]

introduced the optical flow image as an ordered and com-

pact representation from optical flow data from consecutive

frames. Colque et al. [9] proposed the Histograms of

Optical Flow Orientation and Magnitude descriptor via

estimating optical flow from cuboids regions taking into

account the temporal and spatial dimensions. Their

proposed descriptor was applied for the detection of

abnormal activities in surveillance scenarios.

2.3 Mining for basic actions

There is a recent trend within the research community

towards the process of mining for basic human actions for

the automated recognition of human activities within

complex scenes. Yi et al. [55] captured the evolution of

human motion for the classification of complex actions.

The temporal structural information is derived based on

key frame selection where a hierarchical video represen-

tation is proposed based on trajectory sheaf to encode video

clips at different levels. Feng et al. [18] exploited the use of

a mining process for spatial–temporal patterns in order to

construct a data-driven-based human motion denoising

method. Detection of basic actions and motion patterns is

conducted using a dictionary learning method where mul-

tiple compact and representative motion keywords are

learned from training data. Alfaro et al. [2] proposed a

method for reducing a video to a set of key sequences

representing significant atomic acts of each action class.

Zhu et al. [56] proposed an approach called key volume

mining deep framework for the application of human

action recognition. The framework is based on mining key

or rudimentary volumes for each human action class.

3 Proposed approach

The system proposed for the analysis and classification

of human actions is composed of three main building

blocks. The main assumption for the system is that the

video should contain only motion related to a human

action. Initially, the optical flow is estimated through a

consecutive set of frames. In the next stage, the feature

vector is constructed as a histogram from the motion

descriptors for the frames being considered. Action clas-

sification is performed using simple classifiers based on a

subset of features derived through the training phase. Fig-

ure 1 shows the flow diagram for the proposed approach

for human action recognition. For people detection, the

Histograms of Oriented Gradients based on the pedestrian

detector from [10] can be utilized. This detector attains the

state-of-the-art performance on full-body pedestrian

detection. In order to increase the Recall of person detec-

tion in difficult conditions, a simple approach for person

tracking is deployed. The bounding box of each detected

pedestrian is propagated subsequently to the next frame [5].
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3.1 Optical flow estimation

The proposed approach is based on estimating optical flow

in order to generate a feature vector from a sequence of

consecutive frames to describe a human activity. The

approach relaxes totally the requirement for foreground

segmentation since it is computationally a prohibitive

process to update the background model for real-time

outdoor surveillance systems where the process to update

the background model is affected by various factors

including weather conditions, background clutter and other

environmental conditions. Based on the work of Kliper-

Gross et al. [27] who introduced the Motion Interchange

Pattern to recognize human actions in tandem with the

confirmed merits and effectiveness for using local feature

representation, we describe a local descriptor based on

computing optical flow where features are derived at a

local level. Given the existence of motion within a small

area between two consecutive frames t and t þ 1, the dis-

placed patch should be located easily within the neigh-

bouring regions at the new frame. The introduced

descriptor composes a feature vector describing the dis-

placements of local patches across consecutive frames. In

fact, it is impractical to conduct a brute force search to

estimate the displacements of every patch using similarity

matching operators due to two main reasons: Firstly, poor

matching results can be produced due to the high self-

similarity around surrounding regions. Secondly, displaced

patches can have their appearance changed either due to

the flexibility of the human body or to the environmental

conditions. Alternatively, the optical flow is considered in

this research study in order to extract the motion dis-

placement information from consecutive frames. Optical

flow has attracted considerable interest from the research

community in computer vision because of its pivotal role

for numerous applications including autonomous vehicle,

security surveillance and defence systems. The estimation

of optical flow is based on observing the movement of

intensity values from frame to the next [19]. The flow

vector can result either from an object moving within the

monitored scene or instead due to the movement of the

camera. Given a frame It at time t, the basis of optical flow

considers that the intensity for a moving object of coordi-

nates I(x, y, t) stays constant as elaborated below:

Iðx; y; tÞ ¼ Iðxþ dx; yþ dy; t þ dtÞ ð1Þ

such that dx and dy are the displacement values in the x-

direction an y-direction, respectively, in time dt. The

intensity constancy basis is described using the differential

form as expressed in (2):

dI

dt
¼ 0 ð2Þ

The application of the Taylor series in (2) becomes:

Iðxþ dx; yþ dy; t þ dtÞ ¼ Iðx; y; tÞ

þ dx
oI

ox
þ dy

oI

oy
þ dt

oI

ot
þ �

ð3Þ

where � represents the second- and higher-order terms for

the Taylor series and oI
ox
is the partial derivative of frame I

with respect to the x variable. As both sides of (1) are

equal, (3) can be simplified to produce the following

equation:

dx
oI

ox
þ dy

oI

oy
þ dt

oI

ot
þ � ¼ 0 ð4Þ

Horn–Schunck [21] proposed dividing Eq. (4) by dt to

obtain:

Fig. 1 Overview of the proposed system for human action recognition
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dx
dt

oI

ox
þ dy

dt
oI

oy
þ oI

ot
þ OðdtÞ ¼ 0 ð5Þ

where OðdtÞ is a term of order dt. In the limit dt ! 0.

Therefore, (5) is written as :

dx
dt

oI

ox
þ dy

dt
oI

oy
þ oI

ot
¼ 0 ð6Þ

Differential techniques are the most used methods to find

the solution for (6) with the two unknowns dx
dt and

dy
dt. In this

research, the approach proposed by Horn–Schunck [21] is

employed for computing optical flow between consecutive

images.

3.2 Motion-based descriptor

The human activity descriptor is constructed by consider-

ing a set of frame triplets. For a single triplet of consecutive

frames denoted, respectively, as previous, current and next,

a descriptor value d at the pixel level is computed for every

point within the locus frame via estimating the optical flow

images for vprev : fprevious; currentg and vnext : fcurrent;
nextg. In order to retain only informative features, thresh-

olding process is employed using the magnitude of optical

flow to filter out values which are less than the value of

s ¼ 0:5. In order to produce a histogram-based descriptor,

the orientation for the optical flow vectors is discretized by

dividing the polar coordinate system into 8 even sections

numbered from 1 to 8. Based on the angle value for the

optical vector, the index within the produced circular sec-

tions is considered as the discretized value for the flow

vector. This is formally explained in (7). For cases where

there is no motion or the vector is filtered out during the

thresholding process, the index value is set to zero.

indexa;bðx; yÞ ¼
Anglea;bðx; yÞ � 8

2� p

� �
þ 1 ð7Þ

such that b c represents the integer part a real number. a

and b are two successive frames. As two optical flow

images are computed for a triplet of frames, the resulting

index at each point within the previous and next frames is

joined together to produce a number at base 9 which is

subsequently converted to base 10 as expressed in (8). The

produced number is the descriptor value for the point at the

coordinate (x, y)

desctðx; yÞ ¼ indext1;t2ðx; yÞ þ indext2;t3ðx; yÞ � 9 ð8Þ

such that t1, t2 and t3 are the first, second and third frames

within a triplet t. The produced number using the

desctðx; yÞ function is the descriptor value for the point at

the coordinate (x, y). Based on empirical experiments, a

basic action can be represented sufficiently using a set of

15 consecutive frames for the case videos recorded with a

frame rate of 25 frames/second. The encoding process is

conducted to include seven triplets for each human action

in order to produce the histogram of optical flow orienta-

tion as expressed in (9).

HtðiÞ ¼
X
x;y

1 if desctðx; yÞ ¼¼ i

0 otherwise

�
ð9Þ

Figure 2 illustrates the full procedure to generate the his-

togram of optical flow orientation features from local fea-

tures. There is a Boolean basic function which returns 1 for

true cases and 0 otherwise. Ht refers to the histogram

obtained at the tth triplet. In this study, a number of motion

features which can embed more distinctive traits on the

human action are further constructed by applying simple

fusion techniques such as arithmetic and statistical fusion

methods being performed on the set of orientation his-

tograms produced from (9). In (10), the equation expresses

the produced feature vector by concatenating the different

histograms. The standard deviation is abbreviated as STD.

The resulting action vector is composed from features

describing solely local dynamic-based features without

considering information related to the global spacial

structure of the activity neither the anthropometric nor

anatomical data.

Flocal ¼ H1. . .H7 Mean ðH1. . .H7Þ½

STDðH1. . .H7Þ
X7
t¼1

Ht

#
ð10Þ

In order to extract the global spatial features that better

describe the geometric properties of the motion cues, every

image of the optical flow taken from a pair of consecutive

frames is stripped both vertically and horizontally into

adjacent bars of similar width as shown in Fig. 3, in con-

trast to most studies which are based on splitting the region

of interest into a grid of cells bounded to the location of the

subject. Because people may move and it is an essential

requirement to capture the spatial displacement across

frames, two histograms are constructed from the sequence

of optical flow images that should express the spatial

movement vertically and horizontally. The optical flow

vectors contained within every bar are accumulated toge-

ther into their respective bin of histogram regardless of the

motion orientations which are better considered during the

local features extraction.

3.3 Classification process

In this step, we considered two methods for the classifi-

cation. The first concerns the classification based on the

feature selection using the simple K-nearest neighbour

(KNN) classifier followed by the use of different
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classification methods including decision tree and support

vector machine (SVM). The KNN and SVM are considered

as baselines to compare against recent major studies whilst

other advanced derivatives of the KNN [20] and SVM [24]

can be deployed. Furthermore, deep learning is considered

during this research as a more advanced classifier which is

based on an autoencoder neural network. For the first

classification paradigm, a feature selection procedure is

devised in order to derive distinctive and representative

features for the application of human activity recognition,

as it is impossible to search in an exhaustive or brute force

fashion for all combinations of subsets to find the most

discriminative subset of features. This is due to the

dimensionality of the raw feature vector. Alternatively, the

Adaptive Sequential Forward Floating Selection algorithm

is utilized to extract a subset of features. In this research, an

objective function is proposed as an evaluation metric that

evaluates the distinctiveness of each raw vector or set of

features in order to extract the optimal features for human

activity recognition. The validation-based criterion is

deployed to select the representative features which mini-

mize the mis-classification and maximize inter-class sep-

aration among different classes of human activities.

Advanced filtering approach can be potentially deployed to

optimize the separation between different classes [30]. In

this research, a similar voting procedure for the nearest

neighbour classifier is utilized. The evaluation criterion

uses a coefficient w which reflects the importance of the

nearest neighbours belonging to the same class. A score

value for a given instance s to belong to a class c is

expressed in (11). The winner-take-all approach can be

potentially deployed within the selection procedure in the

same way to derive the optimal subset of features having

the highest score [44, 48].

Pðs; cÞ ¼
PNc�1

i¼1 ziðs; cÞwiPNc�1
i¼1 wi

ð11Þ

such that Nc is the number of objects within class c, and the

coefficient wi for the ith nearest instance is inversely

related to their nearness or proximity as given:

Fig. 2 Histogram construction from local motion descriptors

Fig. 3 Derivation of global motion features
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wi ¼ Nc � ið Þ2 ð12Þ

zi is computed as:

ziðs; cÞ ¼
1 if nearestðs; iÞ 2 c

0 otherwise

�
ð13Þ

The nearest(s, i) retrieves the ith candidate in terms of

proximity to the instance s. To infer the distance and

proximity level, the Euclidean distance is computed

between different instances. To evaluate whether a subset

of features has the most potency to classify human activi-

ties, the feature selection procedure is integrated with a

validation-based metric which is computed using the leave-

one-out cross-validation. In simple terms, the final activity

descriptor with the optimal subset of features is composed

from features subset among the raw space F such that the

maximum validation value is achieved as the average sum

of all computed values across the N candidates as explained

in (14):

Action ¼ argmax
subset2F

PN
x¼1 LsubsetðxÞ

N

 !
ð14Þ

such that L is the leave-one-out cross-validation function.

For the second classification paradigm, deep learning is

deployed on the same dataset within this research to assess

the potentials of using optical flow features for the recog-

nition of human activities. The deep learning classifier is

constructed from a set of three Autoencoders with a soft-

max network layer in order to process the produced fea-

tures at the classification stage. The new representation of

features is carried out by passing an input of 2D raw fea-

tures into a sequence of three Autoencoders composed of

different sizes neurons as shown in Fig. 4.

4 Experimental results

4.1 Human action datasets

In order to assess the use of motion-based features derived

from optical flow using the proposed descriptor, two sep-

arate datasets are considered for the evaluation process.

• Weizmann dataset: is made of 90 videos recorded with

resolution of 180� 144 at a frame rate of 25 frames per

second. The dataset contains 9 different subjects who

are instructed to performing 10 different basic activities

as depicted in Fig. 5. For this research, a new dataset

composed of 241 video sequences is constructed from

the original Weizmann dataset by manually annotating

videos to search for 19 different basic actions. Each

sequence of basic actions runs for 15 frames which are

all manually verified and checked to represent a full

human action. The list basic actions include: running,

walking, siding jumping and skipping from left to right

(LTR) and vice versa. Additional actions include

waving both hands, one hand and bending. The activity

of pjump is considered as an action as it can be

contained within 15 frames.

• UCF101 dataset [42]: 72 samples for 23 different

classes that describe basic actions carried out by

different users are taken from the UCF101 dataset.

The collected videos from this dataset are chosen such

that there is no movement for the camera. As addressing

the camera motion can be easily compensated using off

the shelf tools such as the conventional motion

compensation (MOCO) method [15] or camera motion

compensation by real time [23], the focus for this

research was devoted to the detection of basic actions

from still videos. Samples from the UCF101 dataset are

shown in Fig. 6.

Fig. 4 Classification with deep learning

Fig. 5 Basic actions from Weizmann dataset
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4.2 Human action classification

Using the feature selection procedure for the classification

process, an optimal signature for human actions is derived

containing 41 features. Two thirds of the dataset is used

purely for feature selection whilst the remaining third is

considered as the probe dataset. The K-nearest neighbour

(KNN) classifier is used to compute the correct classifica-

tion rate using different values of k 2 1; 3; 5 using the

leave-one-out cross-validation. We considered the use of

the KNN classifier for the classification stage due to its

simplicity in addition to the convenience of comparing the

obtained results against earlier techniques being applied on

the same dataset. The Cumulative Match Score (CMS) is

computed in order to assess the classification after different

iterations or ranks. A high Correct Classification Rate

(CCR) of 98.76% for the 19 basic actions is achieved at

rank R ¼ 1, and meanwhile, a CCR of 100% is reported at

rank R ¼ 2, respectively. The CMS curve is depicted in

Fig. 7 for the classification process applied on the Weiz-

mann dataset. Table 1 shows the results obtained for the

various classifiers with different spacial bars applied to the

Weizmann dataset. The number of bars reflect the com-

pactness of the global representation for features.

The obtained classification results are encouraging since

the recognition process is based solely on motion data from

optical flow. The spatial global features are derived by

dividing the image vertically and horizontally into a set of

b 2 5; 10; 20 bars. To explore the performance of the fea-

tures using various classifiers, the decision tree is employed

without any feature selection as it has its own embedded

selection method of features based on information entropy.

A classification rate of 85.95% is attained via the use of

decision tree for 10 bars and 94.21% for 5 bars. Multi-class

support vector machine is also employed in this experiment

with a reported CCR of 89.67% for 10 bars and 90.08 for

20 bars. It can be observed that the nearest classifier

regardless of its simplicity, feature selection, has proved

useful in achieving higher recognition rates compared to

other classifiers. The execution time for each classifier is

shown in Table 2.

4.3 Action similarity matching

In order to illustrate the verification results for inferring

the similarity level between two different human actions

across all pairs, the receiver operating characteristics

(ROC) are computed as depicted in Fig. 8. At the verifi-

cation phase, all human actions from the constructed

dataset are verified sequentially against each other

Fig. 6 Sample actions from UCF101 dataset

Fig. 7 Cumulative Match Score using different classifiers
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checking if a given pair has the same class label or not. The

matching process which is based on the Euclidean distance

with a thresholding value described in the feature selection

phase is employed to assess whether the two human actions

have the same semantics. In order to estimate the False

Acceptance Rate (FAR) projected against the False

Rejection Rate (FRR), various thresholding values are

being deployed. Using the human action signature derived

from optical flow features using the histogram-based

descriptor, the system reached a satisfactory equal error

rate of 1.89%. Further, similarity matching is conducted via

analysing the distribution between the distances for pairs

belonging to the same classes versus different classes using

Daughman decidability index metric [11]. The following

decidability index values of 0.8205 and 1.6136 are reported

for feature selection and raw features, respectively, during

the intra- and inter-classes matching of instances. This

clearly shows that the process of recognizing if two actions

are the same based on pair matching is a more challenging

task.

To better visualize the verification and separation results

between the different human action classes, the confusion

matrix is drawn in Fig. 9. The lighter squares signify

greater separation values and thus better discriminability

between different classes. The dark diagonal line is the

zero distance when comparing a class to itself. The

Euclidean distance is computed to deduce the separation

level between two classes as the average between all

matched pairs. As all features are already normalized

during the preprocessing stage between 0 and 1. It is

observed that some actions tend to be almost the same

when using motion features as for the case of waving hands

and Pjump and other events. Meanwhile, there are certain

similarities between running, walking and side walking.

4.4 Mining for basic actions in complex scenes

Based on the basic actions detected from the Weizmann

dataset, further experiments are conducted to detect these

actions from different datasets with more realistic and

complex scenes. We have manually annotated 1400 video

sequences from the UCF101 [42] and KTH [40] datasets

for basic actions. Afterwards, the classification procedure is

performed on the dataset to search for basic actions using a

predefined threshold which was set based on the experi-

ments for the similarity matching. Figure 10 depicts the

paradigm being deployed for the detection of basic actions

using the proposed descriptor.

The evaluation process is based on the Recall and Pre-

cision using the obtained results compared against the

manually annotated data. Results are summarized in

Table 3 such that:

• True Positive (TP): Both system and annotator detect

the same action

• False Positive (FP): The system does not detect the

same action labelled by the annotator.

• False Negative (FN): The system does not detect whilst

the annotator detects a human action..

Table 1 Effect of different spacial bars on the classification results

Classifiers Bars

5 10 20

KNN1 with FS 97.93 95.45 95.04

KNN3 with FS 98.76 95.86 95.62

KNN5 with FS 97.52 95.04 95.04

KNN1 without FS 83.47 85.12 81.40

KNN3 without FS 79.75 85.12 79.75

KNN5 without FS 78.51 84.71 78.51

SVM 85.95 89.67 90.08

Decision tree 94.21 85.95 82.64

Bold values reflect higher CCR rates

Table 2 Classification time for different classifiers applied on the

Weizmann dataset

Bars

5 10 20

KNN

K ¼ 1 2.2497 2.2552 2.2618

K ¼ 3 2.2524 2.2574 2.2634

K ¼ 5 2.2555 2.2582 2.2646

SVM 0.1651 0.1664 0.1675

Decision tree 0.0915 0.0917 0.0996

Deep learning 0.2095

Fig. 8 Receiver operating characteristic (ROC) plot: verification

results for similarity matching on the Weizmann dataset
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• True Negative (TN): Both system and annotator do no

detect a human action in the processed sequence

The estimated metrics are computed as follows:

• Precision: Precision or Specificity measures the pro-

portion of negatives that are correctly identified as:

Fig. 9 Confusion matrix for human action recognition: results for cross-matching of different classes. Lower values reflect higher

discriminability

Fig. 10 Decomposing video into simple action sequences using a motion descriptor
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Precision ¼ TP

TPþ FP
ð15Þ

• Recall: Recall or Sensitivity measures the proportion of

positives that are correctly identified as:

Recall ¼ TP

TPþ FN
ð16Þ

• F1 Score: F1 Score or F-measure is computed as :

F1Score ¼ 2� ðRecall� PrecisionÞ
ðRecallþ PrecisionÞ ð17Þ

4.5 Comparative analysis

Comparative analysis for the proposed method compared

to existing approaches which are applied recently for

human activity recognition on the Weizmann and UCF101

datasets is shown in Tables 4 and 5, respectively. The

obtained results reflect the potency in dealing with the

difficult area of human action recognition via decomposing

into basic actions. For the same purpose and to enrich the

comparison process, the work described by Dobhal et al.

[13] is applied on Weizmann dataset. Their work is based

on the representation of the human motion features in video

by joining videos into a single frame called the binary

motion image whilst deep learning is used the classifier. A

correct classification rate of 87.60% is obtained using deep

learning with autoencoder for 19 atomic classes and

97.11% for 10 classes. This is due in the first place to the

small number of elements of each class and the difficulty in

differentiating between the two models of two different

movements as for the case of raising and lowering hands.

4.6 Performance analysis

To evaluate the performance of the proposed optical flow

descriptor for the classification of human actions, we have

considered exploring two factors: frame drops and reduced

resolution. For the first experiment, frame numbers are

being dropped incrementally and we compute the correct

classification rate for each round. Frames are dropped from

all instances in the testing dataset and matched against the

original training dataset. Table 6 expresses the performance

relationship between the number of dropped frames to the

classification rate. The system achieves an

Table 3 Statistical results for the decomposition of videos

TP TN FP FN Precision Recall F1 Score

682 184 356 178 65.70% 79.30% 71.87%

Table 4 Comparative results for

the Weizmann dataset
Method CCR (%)

Our method: motion descriptors 98.76

Our method: deep autoencoder with 10 classes 97.11

Our method: deep autoencoder with 19 classes 87.60

Binary motion image and deep learning with 5 classes[13] 100.00

Multi-channel correlation filters [26] 97.80

Interest points ? SIFT filters [34]. 96.66

Binary motion descriptor [16] 95.81

Shape, motion and texture features [39] 94.44

Pose primitive [43] 94.40

Sequence alignment and shape context [3] 92.22

Hough transform-based voting framework [53] 92.20

Learning mid-level motion features [17] 90.50

Multiple features [31] 90.40

Spatial–temporal [35] 90.00

Table 5 Comparative results for UCF101 dataset

Method CCR (%)

Our method: motion descriptors 70.00

Bag of words [42] 44.50

Spatiotemporal ConvNet [25] 65.40

Improved dense trajectories (IDT) [47] 85.90

IDT with higher-dimensional encodings[37] 87.90

Two-stream model (fusion by SVM) [41] 88.00

Long-term temporal convolutions[45] 92.70

TS-LSTM ? temporal-inception [8] 94.10

Temporal segment networks [51] 94.20
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acceptable success rate of 79.16% when dropping a single

frame. However, a low recognition rate of 59.72% is

reported when dropping two of the frames. This is because

the classification is purely based on detecting motion from

the consecutiveness nature of frames where dropping or

missing frames can conceal these vital features.

To analyse the effect of resolution, we reduce the frame

size for all data from 90 to 50% with decrements of 10%

whilst the CCR is computed for every new resolution

separately. It is common that in surveillance technology

there is always low resolution. The produced resolution of

the images is shown in Fig. 11. There are two experimental

results being shown in Table 7. In the first one, the original

subset of features is used for the reduced resolutions. The

system shows that an acceptable recognition rate of 80%

can be obtained even for the case of 116� 144 . This

shows indeed the potency of the proposed method for

surveillance systems that rely mostly on poor quality res-

olution cameras. During the second experiment, the pro-

cess of feature selection is applied separately at each level.

Better results are obtained compared to the first experiment

suggesting the need for devising an adaptive feature

selection to cope with varying resolutions.

4.7 Features analysis

An exploratory analysis is performed in order to study the

distribution of optical flow features and determine what

motion cues are pivotal for the recognition of human

activities. The components of the human action signature

made within the histogram are assessed separately to

investigate their contribution and recognition potency

during the classification process. We have considered to

evaluate 17,293 subsets of features within this empirical

study such that every subset has an reported classification

of 98.76% using the KNN classifier. All feature subsets are

having a size of features ranging from 28 to 100. Choosing

such a large number of subsets would ensure unbiased and

accurate results for the analysis. The distributions and

human action classification results of the different types of

features are shown in Table 8.

The distribution results show a clear indication of what

type of feature is rudimentary, but it does not offer a

measure of its discriminatory potentials. Alternatively, the

recognition significance of optical flow features is

approximated via the use of the correct classification rate.

Table 6 Effect on frame drop for human action recognition

KNN Frames dropped

0 1 2 3 4 5 6 7

k ¼ 1 97.93 86.11 59.72 58.33 54.44 52.83 50.61 50.00

k ¼ 3 98.76 79.16 59.72 57.33 44.98 44.79 44.44 44.04

k ¼ 5 97.52 66.66 44.44 43.05 40.27 38.88 34.72 34.12

Fig. 11 Different resolutions for the Weizmann dataset

Table 7 Effect of reducing resolution for human action recognition

KNN Resolution

100%:144 9 180 90%:130 9 162 80%:116 9 144 70%:101 9 126 60%:87 9 108 50%:72 9 90

Without FS

k ¼ 1 85.12 84.30 80.16 73.96 71.48 71.07

k ¼ 3 85.12 79.75 79.34 72.72 69.83 67.76

k ¼ 5 84.71 77.68 76.03 72.72 69.01 66.94

With FS

k ¼ 1 97.93 93.80 90.08 89.67 83.47 77.27

k ¼ 3 98.76 89.66 89.25 88.84 82.23 74.38

k ¼ 5 97.52 88.84 88.42 86.36 80.57 72.72

Table 8 Features analysis for human action recognition

Features Distr (%) CCR (%)

Local features 00.08 88.42

Global features—temporal 90.58 93.39

Global features—spatial 09.34 65.29
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The obtained results show the importance of global tem-

poral features which contribute with an almost 90% for the

feature vectors whilst attaining a recognition rate of 93%.

For the case of local features which describe the optical

flow vectors without temporal or spatial information,

marginal contribution of 0.08% is reported with a surpris-

ing correct classification rate of 88%. The combination of

the local and global cues shows considerable influence to

boost the correct classification rate for human action

recognition.

5 Conclusions

The deployment of automated computer vision methods to

recognize human activity is of central importance for many

applications as security surveillance, sports analysis and

human–computer interaction. In this study, a motion

interchange descriptor is introduced for the extraction of

visual features based on optical flow applied on a set of

consecutive frames for the classification of human basic

actions. A histogram of motion features is produced taking

into consideration the local and global traits embedded

within optical flow. Feature selection based on the nearness

and proximity is performed to derive the most discrimi-

native features. To evaluate the proposed descriptors for

the recognition of human activities, extensive experimental

results are conducted on two publicly available datasets

including the Weizmann and UCF101, affirmed the

potentials of the proposed approach to achieve a high

correct classification rate of 98.76% and 70%, respectively,

for basic human action recognition. The obtained results

are in alignment with the early psychological studies

reporting that human motion is adequate for the perception

of human activities. Additional empirical evaluations are

carried out to explore the performance of the introduced

descriptor to handle different resolutions and frame rates.
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