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Abstract

In this paper, we prove that Riesz operators on the arbitrary distortable Schlumprecht’s
Banach space S and the hereditarily indecomposable Banach space of Gowers-
Maurey XGM have West decomposition. By using these results, the structure of
polynomially Riesz operators on these spaces is established.
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1 Introduction and Preliminaries

In (1966), T. West [23] showed that if X is a Hilbert space, then every Riesz operator
R can be written under the form R = K +Q where K is a compact operator and Q is
quasinilpotent (its spectrum is reduced to the set {0}), twenty years after, K. Davidson
and D. Herrero (1986) [6] proved this decomposition for such operators on lp(1 ≤ p <
∞) spaces and c0 or more generally on the spaces having the finite dimensional p-
Block decomposition (FDPBD) written as an infinite direct sum of finite dimensional
spaces. In (1988), H. Zhong [25] gave an affirmative answer to this problem if X =
Lp(µ) (1 < p < ∞) and extended his results to the case of B-convex Banach space.
Finally in (1995), the last author proved that the result holds for the case of local
strong subprojective Banach spaces, in particular, he studied it’s validity in the case
of Tsirelson space. Since every Banach space X has a Rademacher’s type p(X) ∈ [1, 2]
and the fact that 1 < p(X) is equivalent to the fact that X is a B-convex Banach
space implies the necessity to investigate the West decomposition of Riesz operators on
Banach spaces with type 1. For a good read on the subject concerning the problem of
the West decomposition of Riesz operators, we can quote for example( [6, 7, 12, 15, 21,
24, 25]) and the references therein.

In this work, based on the principal theorem of H. Zhong [24], we show that this
decomposition is true on the arbitray distortable Banach space of Schlumprecht S and
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the space of Gowers-Maurey XGM which have Rademacher’s type 1. Afterwards, by
using these results and inspired by those established in [13], we give a characterization
of polynomially Riesz operators on Banach spaces S and XGM . Finally, the work is
achieved by some interesting comments and questions.

If X is a complex Banach space, we denote respectively by L(X),K(X),R(X) and
Q(X), the space of bounded linear operators on X, the space of compact linear opera-
tors on X, the set of Riesz operators on X and the set of the quasinilpotent operators
on X.

For 1 ≤ p ≤ ∞ and an arbitrary integer n ≥ 1, the space lnp designates the finite

dimensional normed space (Rn, ‖.‖p) where ‖(ai)ni=1‖p = (
n∑
i=1

|ai|p)
1
p (1 ≤ p < ∞) and

‖(ai)ni=1‖∞ = max
1≤i≤n

(|ai|).

Definition 1.1 A Banach space X is said to be of Rademacher’s type p if there exists
a positive constant M <∞ such that, for every choice of vectors {xi}ni=1 in X, we have

(

∫ 1

0
(‖

n∑
i=1

ri(t)xi‖)2dt)
1
2 ≤M(

n∑
i=1

‖xi‖p)
1
p ,

where {ri}∞i=1 denote the Rademacher functions.

Remark 1.1 It is well known that every Banach space X has a Rademacher’s type
p(X) ∈ [1, 2]. Hilbert spaces have Rademacher’s type 2 and for the Lr(µ) spaces, we
have p(Lr(µ)) = r if 1 ≤ r ≤ 2 and p(Lr(µ)) = 2 if 2 ≤ r < ∞. Also, if r = ∞, we
have p(L∞(µ)) = 1. For more details on the Rademacher’s type of Banach spaces and
other quantities corresponding to it, see ([19], [22]).

Definition 1.2 Let X be a Banach space and Y is a closed subspace of X. Y is said
to be complemented in X (resp. c complemented in X) if there exists a bounded linear
projection P from X onto Y (resp. ‖P‖ ≤ c).

Definition 1.3 (ı) A sequence (xi)
∞
1 of elements in a Banach space X is called a

Schauder basis of X if for every x ∈ X there exists a unique sequence (λi)
∞
1 such that

x =
∞∑
i=1

λixi.

(ıı) The basis projections Pn : X −→ X defined by Pn(

∞∑
i=1

λixi) =

n∑
i=1

λixi are uni-

formly bounded and the number K = sup
n

(‖Pn‖) is called the basis constant of (xi)
∞
1 .

(ııı) A sequence (zi)
∞
1 which is a basis of its closed linear span denoted by [zi] is called

a basic sequence.

(ıv) Bases (xi)
∞
1 of a Banach space X and (yi)

∞
1 of a Banach space Y are said to

be c−equivalent (1 ≤ c < ∞) if there exists an isomorphism S : X −→ Y with
S(xi) = yi, i ∈ N and ‖S‖.‖S−1‖ ≤ c. It is said that two basic sequences (xn)∞1 and
(yn)∞1 are equivalent if they are c-equivalent for some c ≥ 1.
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Definition 1.4 Two Banach spaces X and Y are called c-isomorphic if there exists an
isomorphism T : X −→ Y such that ‖T‖‖T−1‖ ≤ c.

Theorem 1.1 (The principle of small perturbations, Theorem 4.7, p.41 in [3]): Let
(xi)n be a normalized basic sequence in a Banach space X with basis constant K and

suppose that (yi) is a sequence in X with

∞∑
i=1

‖xi − yi‖ = δ.

(ı) If 2Kδ < 1 then (yi) is a basic sequence equivalent to (xi).

(ıı) If [xi] is complemented by a bounded linear projection P : X −→ X and if
8δK‖P‖ < 1, then [yi] is also complemented in X.

Corollary 1.1 Let X be a Banach space with a Schauder basis {ei}i. If Y is an
infinite dimensional closed subspace of X, then Y contains an infinite dimensional
closed subspace Z with a Schauder basis {bYi }∞i=1 which is equivalent to a block basic
sequence {zYi }∞i=1 of {ei}.

Definition 1.5 A Banach space X is said to be saturated by uniform copies of lnp
(1 ≤ p ≤ ∞) if there exists C > 1 such that for every closed infinite dimensional
subspace Y of X and for all integer n ≥ 1, Y contains a subspace which is C-isomorphic
to lnp .

Remark 1.2 Let X be a complex Banach space and Y a closed subspace of X. It is
easy to observe that if Y is c-complemented in X, then Y is c′-complemented for all
c′ > c. Also, if Z1 and Z2 are c-isomorphic closed subspaces of X then Z1 and Z2 are
c′-isomorphic for all c′ > c.

Definition 1.6 A Banach space X is said to be strong subprojective if every infinite-
dimensional closed subspace Y of X, there exists a closed infinite-dimensional subspace
Y0 ⊆ Y such that Y0 is complemented in X and isomorphic to lp (1 ≤ p <∞) or c0.

Example 1.1 The following Banach spaces are strong subprojective (see Proposition
2.4 in [9]).

1. The spaces lp for 1 ≤ p <∞ and c0.

2. The James spaces J.

3. The Lorentz sequence spaces d(w, p) for 1 ≤ p <∞ and w = (wn) a non-increasing

null sequence with
∞∑
n=1

wn is divergent.

4. The Baernstein spaces Bp for 1 < p <∞.

5. Lp-spaces for 2 ≤ p <∞.
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6. The function spaces Lp(0,∞)
⋂
L2(0,∞)-spaces for 1 ≤ p ≤ 2.

7. The Lorentz spaces ΛW,p(0, 1), Lp,q(0,∞) and Lp,q(0, 1) for 2 < p <∞ and 1 ≤ q <
∞.

8. The space of continuous functions C(K) with K a scattered compact.

Definition 1.7 A Banach space X is said to be local strong subprojective if for any
infinite-dimensional closed subspace Y of X, there exists a constant cY ≥ 1 (depend-
ing on the subspace Y ) such that for any infinite-dimensional subspace Y0 ⊆ Y and
any integer n ≥ 1, Y0 contains an n-dimensional subspace which is cY -isomorphic to
some lnp (1 ≤ p ≤ ∞) and is cY -complemented in X. Moreover, if the constant cY is
independent of the choice of Y , then X is called c-local strong subprojective.

Remark 1.3 It is easy to observe that every strong subprojective Banach space is local
strong subprojective but the converse is in general false as the Tsirelson space shows
(see [24]). Thus all Banach spaces given in Example 1.1 are local strong subprojective
and by Theorem 2.1 of [24], West decomposition of Riesz operators is valid on them.

2 Main results

2.1 West decomposition of Riesz operators on S and XGM

Our main result in this work is given by

Theorem 2.1 Assume that X is a Banach space with Schauder basis {ei}∞i=1 satisfying
that there exists C > 1 and 1 ≤ p ≤ ∞ such that for all block basis {zk}∞k=1 of {ei}∞i=1

and for all scalars {ai}ni=1, we have

1

C
‖(ai)ni=1‖p ≤ ‖

n∑
i=1

aizi‖ ≤ C‖(ai)ni=1‖p (?)

Thus X is saturated by uniform copies of lnp . Moreover, under the notations of Corollary

1.1, if the closed subspace [zYk ]∞k=1 is complemented in X for all infinite dimensional
closed subspace Y of X, then X is local subprojective space and hence for all R ∈ R(X),
there exist K ∈ K(X) and Q ∈ Q(X) such that R = K +Q.

Proof. The fact that X is lnp saturated follows directly by combining (?) and Corollary
1.1. Let Y be an arbitrary infinite dimensional closed subspace of X. By assumption,
the closed subspace [zYk ]∞k=1 is complemented in X, thus there exists a bounded linear
projection PY : X −→ [zYk ]∞k=1. Afterwards, since {zYk }∞k=1 is equivalent to the basis
{eYk }∞k=1, we obtain the existence of λ ≥ 1 such that the subspaces [zYk ]∞k=1 and [eYk ]∞k=1

are λ-isomorphic. Now if n is a nonzero integer, the following factorisation

X −→︸︷︷︸
PY

[zYk ]∞k=1 −→︸︷︷︸
S

[eYk ]∞k=1 −→︸︷︷︸
S−1

[zYk ]∞k=1 −→︸︷︷︸
Pn
r

[zYk ]nk=1 −→︸︷︷︸
AY

[eYk ]nk=1

4



where S : [zYk ]∞k=1 −→ [eYk ]∞k=1 is an isomorphism such that ‖S‖.‖S−1‖ ≤ λ, Pnr :

[zYk ]∞k=1 −→ [zYk ]nk=1 is the canonical projection defined by Pnr (
∞∑
i=1

aiz
Y
i ) =

n∑
i=1

aiz
Y
i

and AY : [zYk ]nk=1 −→ [eYk ]nk=1 is an isomorphism for which ‖AY ‖ ≤ C. If we denote
by BY : X −→ [eYk ]nk=1 the bounded linear operator AY P

n
r S
−1SPY , it is easy to

observe that ‖BY ‖ ≤ Cλ‖PY ‖, which gives that the n-dimensional subspace [eYk ]nk=1 is
Cλ‖Pλ‖ complemented in X. On the other hand, from (?) and the fact that the spaces
[zYk ]∞k=1 and [eYk ]∞k=1 are λ-isomorphic shows that [eYk ]nk=1 and lnp are Cλ isomorphic. If

cY = max{Cλ,Cλ‖PY ‖}, then following Remark 1.2, [eYk ]nk=1 is cY -isomorphic to lnp
and is cY complemented in X which gives the desired result.

Proposition 2.1 Let X be a Banach space. Under the assumptions of Theorem 2.1,
if moreover, the closed subspace [eYk ]∞k=1 is complemented for all closed infinite dimen-

sional subspace Y , thenX is local strong subprojective for cY = max{Cλ,Cλ‖PY ‖‖P̃Y ‖}
where P̃Y : X −→ [eYk ]∞k=1 is a bounded linear projection. On the other hand if there
exists M > 0 such that cY ≤M for all infinite dimensional closed subspace Y , then X
is M-local strong subprojective space.

Proof. By the same idea given above, we infer that the finite dimensional subspaces
[eYk ]nk=1 and lnp are Cλ-isomorphic. Now, let be the following factorisation

X −→︸︷︷︸
P̃Y

[eYk ]∞k=1 −→︸︷︷︸
S−1

[zYk ]∞k=1 −→︸︷︷︸
S

[eYk ]∞k=1 −→︸︷︷︸˜̃
PY

[zYk ]∞k=1 −→︸︷︷︸
Pn
r

[zYk ]nk=1 −→︸︷︷︸
AY

[eYk ]nk=1

where
˜̃
PY = PY |[eYk ]∞k=1

(the restriction of the bounded linear projection PY to the closed

subspace [eYk ]∞k=1) and let BY = APnr
˜̃
PY SS

−1P̃Y . Since ‖ ˜̃PY ‖ = ‖PY |[eYk ]∞k=1
‖ ≤ ‖PY ‖,

we get ‖BY ‖ ≤ Cλ‖PY ‖‖P̃Y ‖. The fact that if there exists M > 0 such that cY ≤ M
(independently of the choice of Y ) implies that X is M-local strong subprojective follows
from Remark 1.2.

Example 2.1 If X is the Tsirelson space which is of Rademacher’s type 1, then C =
2, p = 1 and M = 216‖P̃Y ‖ where ‖P̃Y ‖ is independent of the choice of the subspace Y
in this case (see Theorem 1.1 in [24]).

Remark 2.1 It is easy to observe that under the assumptions of Theorem 2.1, a suffi-
cient condition for the subspace [eYi ]∞i=1 to be complemented in X is that the two basic
sequences {zYi }∞i=1 and {eYi }∞i=1 satisfy (ıı) of Theorem 1.1.

Let (en) be the standard vector basis of c00, the space of eventually null sequences of

scalars. The support of a vector x =
∑
i

xiei in c00 is denoted by suppx is defined

by suppx = {i ∈ N : xi 6= 0} and the range of x is the interval of integers ranx =
[min(suppx),max(suppx)] or ∅ if x = 0. If x =

∑
i xiei ∈ c00 and E = [m,n] is an

interval of integers, then Ex denotes the vector x =
n∑

i=m

xiei. The norm of the arbitrary

distortable Schlumprecht space S ([14, 20]) is defined by the implicit equation on c00:
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‖x‖S = ‖x‖∞ ∨ sup
n≥2,E1<E2.......<En

1

f(n)

n∑
k=1

‖Ekx‖S ,

where f(x) = log2(x+ 1) and E1, ...., En are successive intervals of integers.

The construction of the hereditarily indecomposable Banach space of Gowers-Maurey
denoted by XGM is more complicated, it’s based on that of the space S, the general
idea is to add a third term to the two terms given above as follows: Let J ⊂ N be a set
such that if m < n and m,n ∈ J , then logloglogn ≥ 4m2. Let us write J in increasing
order as {j1, j2, ........} and assume that f(j1) ≥ 256. We denote K = {j1, j3, j5, .........}.
Thus the norm of the space XGM is defined by it’s implicit formula:

‖x‖GM = ‖x‖c0 ∨ sup
n≥2,E1<E2.......<En

1

f(n)

n∑
k=1

‖Ekx‖GM

∨ sup{|g(Ex)| : k ∈ K, g ∈ B?
k(X), E ⊂ N},

where B?
k(X) is a set of some special functionals. For more details on the spaces

S,XGM , their construction and other properties, we quote for example ([1], [5], [11],
[14], [16], [20]).

Theorem 2.2 Let X one of the Banach spaces S or XGM . Then X is c-local strong
subprojective and consequently Riesz operators on X have West decomposition.

Proof. By combining the results of [1] and [14], we deduce that X is saturated by
uniform copies of ln∞ (see also [4]). Now, let Y be a closed infinite dimensional subspace
of X, thus there exists C > 1 such that for all integer n ≥ 1, Y contains a finite
dimensional subspace FnY which is C-isomorphic to ln∞, this implies the existence of an
isomorphism S : FnY −→ ln∞ such that ‖S‖.‖S−1‖ ≤ C. By Hahn-Banach theorem, we
obtain the existence of bounded linear operator T : X −→ ln∞ for which ‖T‖ = ‖S‖
(for more details, see [3] Theorem 4.7, p. 41). Denote B = S−1T : X −→ FnY ,
then ‖B‖ = ‖S−1T‖ ≤ ‖T‖.‖S−1‖ = ‖S‖.‖S−1‖ ≤ C which proves that FnY is C-
complemented in X. Thus X is c-local strong subprojective space by taking cY = C
for all closed infinite dimensional subspace Y which is the desired result.

Remark 2.2 It is known that the set R(XGM ) is nothing else but the ideal of strictly
singular operators S(XGM ) on this space (see [11]).

Corollary 2.1 Riesz operators on the spaces S? and X?
GM (the dual spaces of the

Banach spaces S and XGM ) have West decomposition.

Proof. Let X be one of the Banach spaces S or XGM and R ∈ R(X?). The reflexivity
of Banach spaces S and XGM (see [5] and [11]) shows that R? ∈ R(X), thus there
exist K ∈ K(X) and Q ∈ Q(X) such that R? = K + Q. Again by duality, we get
R = K? +Q? where K? ∈ K(X?) and Q ∈ Q(X?) which is the desired result.

Remark 2.3 We don’t know if the West decomposition is true on all complex Banach
spaces which have type 1.
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2.2 The case of Polynomially Riesz operators on S and XGM

Let X be a Banach space and T ∈ L(X). We denote by σ(T ), ρ(T ) = C\σ(T ),Ker(T )
and R(T ) the spectrum, the resolvent set, the null space and the range of T respectively.
We say that T is a Fredholm operator if dim(Ker(T )) and codim(R(T )) are finite
integer numbers. In this case, the index number of T denoted by ind(T ) and is given
by ind(T ) = dim(Ker(T ))− codim(R(T )). T ∈ L(X) is called Weyl operator if T is a
Fredholm operator with index 0. The essential spectrum σe(T ) and the Weyl essential
spectrum σω(T ) are defined by

σe(T ) = {λ ∈ C/λI − T is not Fredholm}

σω(T ) = {λ ∈ C/λI − T is not Weyl}

It is well known that for all T ∈ L(X), the sets σe(T ) and σω(T ) are compacts in the
complex plane and we have

σe(T ) ⊆ σω(T ) ⊆ σ̂e(T )

(where σ̂e(T ) denotes the polynomially convex hull of σe(T )).

Definition 2.1 An operator T ∈ L(X) is polynomially Riesz if there exists a nonzero
complex polynomial P such that P (T ) ∈ R(X).

The subject of polynomially Riesz operators as an extension of polynomially compact
operators has attracted the interest of some authors (see for example [8, 13]), it was
proved that the following lemma characterized this class of operators by means of the
structures of essential and Weyl essential spectra.

Lemma 2.1 (see [7]) Let X be a Banach space and let T ∈ L(X). Then

T is polynomially Riesz⇐⇒ σe(T ) is a finite set.

Remark 2.4 For T ∈ L(X). If σe(T ) is a finite set, it is easy to deduce that σe(T ) =
σω(T ). More precisely, this equality holds for the case of bounded linear operators T
for which the set ρ(T ) = C\σe(T ) is connected.

Our first result in this section is given by a characterization of polynomially Riesz
operators on S.

Theorem 2.3 Let T ∈ L(S) be a polynomially Riesz operator. Then T can be de-
composed into the form

T =

n⊕
i=1

(Ki +Bi + λiI)

where

(ı) Ki are compact operators on S;

(ıı) Bi are quasinilpotent operators;
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(ııı) σe(T ) = σω(T ) = {λ1, ....., λn}.

Proof. The proof is based on the techniques used by [13] to prove Lemma 3 in their
paper together with the fact that West decomposition of Riesz operators holds on S by
using Theorem 2.2.

Corollary 2.2 For all T ∈ L(XGM ), T is polynomially Riesz.

Proof. Let T ∈ L(XGM ). Then, there exists λ ∈ C and S ∈ S(XGM ) such that
T = λI + S. Consequently, σe(T ) = σω(T ) = {λ} and the result follows directly by
Lemma 2.1.

Remark 2.5 For all T = λI+S ∈ L(XGM ) (λ ∈ C and S ∈ S(XGM )). Thus by using
the complex polynomial P (z) = z−λ, it is easy to observe that P (T ) = λI +S−λI =
S ∈ S(XGM ) = R(XGM ) which gives another proof to Corollary 2.2.

3 Some comments and interesting questions:

As it’s indicated in Remark 2.3, the problem of West decomposition of Riesz operators
remains open in arbitrary Banach space since it is related directly to their geometry as
the case of relevant problems in operator theory and functional analysis. Notice that
this problem can be seen as a particular case of the problem of Salinas (see [7]) but we
don’t know if these two problems are equivalent.

Here, we give some questions connected to this problem which can develop this subject.

Question 1: Following the results given in [6], we deduce that Riesz operators have West
decomposition on the space l1. Does this problem holds on the Banach space L1([0, 1]).
More precisely, what is the topological property of the locally compact group G such
that this decomposition remains true on L1(G)?

In (1970), B. S. Mityagin studied the contractibility problem of the group of invertible
linear bounded operators denoted by GL(X) on some Banach spaces. It was proved in
particular that this group is contractible for Banach spaces lp, c0, L

p([0, 1])(1 ≤ p <∞).

Question 2: Is there exists a relation between the problem of West decomposition of
Riesz operators and that of the contractibility of the group of linear bounded invertible
(or Fredholm) operators on Banach spaces?

One of the fascinate subject in operator theory is related to the structure of compact
power operators by means of compact and nilpotent operators. In the case of Hilbert
spaces, this problem is solved in [13]. More precisely, if H is a Hilbert space then for
all T ∈ H.

Tn is compact (n ∈ N)⇐⇒ T = K +R where K is compact and R is nilpotent.

Notice that the result given above is based on a crucial lemma established by C. L.Olsen
[18] which asserts that if H is a Hilbert space then for all A1, A2 ∈ L(H):

If A1A2 ∈ K(H) then there exists a projection P ∈ L(H) such that A1P and (I −P )A2

are compact.
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But we don’t know if Olsen’s lemma holds for arbitrary Banach spaces. So, we can ask
the following questions:

Question 3: Let T ∈ L(S) or T ∈ S(XGM ), is it true that

Tn is compact (n ∈ N)⇐⇒ T = K +R where K is compact and R is nilpotent?

Also, notice that on XGM , it was conjectured [1] that we can construct S ∈ S(XGM )
for which all of it’s powers Tn(n ∈ N) are not compacts. By the West decomposition
result (see Theorem 2.2), this result implies that on XGM we can find examples of
quasinilpotent operators which are not nilpotent. In (2014), S. A. Argyros and P.
Motakis [2] have constructed a famous reflexive hereditarily indecomposable Banach
space denoted by XAM such that for all T ∈ S(XAM ) we have T 3 is compact.

Acknowledgment: The author would like to thank Professor Valentin Ferenczi (Uni-
versity of Sao Paolo, Brazil) for the helpful comments, in particular for the fact that
Banach spaces S and XGM are saturated by uniform copies of ln∞.
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