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a b s t r a c t 

Although numerous research studies have confirmed the potentials of using gait for people identification 

in surveillance and forensic scenarios, only a few studies have investigated the contribution of motion- 

based features on the recognition process. In this research paper, we explore the use of optical flow 

estimated from consecutive frames to construct a discriminative biometric signature for gait recognition. 

A set of experiments are carried out using the CASIA-B dataset to assess the discriminatory potency of 

motion-based features for gait identification subjected to different covariate factors including clothing 

and carrying conditions. Further experiments are conducted to explore the effects of the dataset size, 

the number of frames and viewpoint on the classification process. Based on a dataset containing 10 0 0 

video sequences for 100 individuals, higher recognition rates are achieved using the Knn and neural net- 

work classifiers without incorporating static and anthropometric measurements. This confirms that gait 

identification using motion-based features is perceivable with acceptable recognition rates even under 

different covariate factors. As such, this is a major milestone in translating gait research to surveillance 

and forensic scenarios. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Because of the proliferating number of crimes and terror attacks

that took place during the last decade across Europe, North Africa

and the Middle East, a surge of concerns has emerged in many

countries to ensure the safety of their citizens. Further to the un-

precedented increase of surveillance CCTV cameras with the lim-

ited human resources to manually screen all monitored activities

simultaneously, the uptake of biometric solutions within surveil-

lance systems is considered a rudimentary factor for automating

the process of security and forensic applications. The visual ex-

traction of biometric data for identification can be poorly affected

due to the crime scene, biometric modalities and image quality.

Gait biometrics is argued to be suitable for visual surveillance

mainly as the walking pattern can be recorded from a distance

regardless of the low resolution of the camera. This is in con-

trast to other biometric modalities where their performance suf-

fers severely in surveillance applications. Moreover, the attractive

merit of gait recognition is the non-invasiveness nature and thus,
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here is no need or obligation for the candidate to interact coop-

ratively with the acquisition hardware for identification purposes.

his sets gait biometrics more appropriate in cases such that direct

ontact with the offender is not an option. Moreover, the main ob-

ective of biometric systems is to be robust enough to prevent pos-

ible spoofing attacks and forgery, the biometric signature derived

rom gait which is constructed from the cyclic walking movement,

s considered solely the optimal identity recognition method for

overt scenarios. 

Gait is defined as the way of the locomotion process charac-

erized by successive periods of lifting and swinging the lower

imbs. The word Gait refers generally to walking, hopping and

unning though the term gait is frequently used to describe the

alking style of an individual. The human gait pattern is carried

ut in a characteristic, rhythmic and repeatable fashion [1] com-

osed of consecutive cycles. In contrast to well-established biomet-

ic modalities including fingerprints and DNA being used in foren-

ic investigations, security and surveillance applications, a wealth

f research studies documented that the gait pattern can be af-

ected by various factors which can influence the performance and

vidence credibility within the identification process. Among such

actors, psychological state of the person such as medical condi-

ions, sobriety or anxiety. This is besides the appearance factors

ncluding load carriage, footwear and clothing in addition to the

https://doi.org/10.1016/j.neucom.2017.12.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.12.040&domain=pdf
mailto:z.mahfouf@univ-soukahras.dz
https://doi.org/10.1016/j.neucom.2017.12.040


Z. Mahfouf et al. / Neurocomputing 283 (2018) 140–149 141 

a  

s

 

p  

t  

i  

w  

i  

o  

i  

i  

t  

o  

a  

a  

p  

o  

i  

m  

t  

c  

t  

t  

a  

t  

p  

w  

c  

g

 

t  

o  

b  

s  

p

2

 

p  

a  

T  

2  

r  

m  

t  

t  

c  

a  

o  

m  

i  

C  

s  

m  

g  

r  

c  

o  

M  

b  

l  

t  

c  

a

2

 

d  

f  

p  

m  

w  

b  

o  

s  

c  

n  

t  

p  

t  

f  

b  

i

1  

t  

b  

s  

a  

e  

t  

b  

r  

p

2

 

f  

p  

c  

o  

a  

t  

p  

a  

e  

a  

p  

S  

b  

a  

i  

o  

t  

(  

e  

f  

d  

c  

r  

F  

[  

o  

i  

e  

o  

a  

i  

t  

I  

i  
cquisition settings as camera viewpoint, illumination and occlu-

ion. 

Due to the dearth of vision-based research studies which ex-

lore the contributions of motion-based features on the recogni-

ion process for gait biometrics, the use of optical flow features is

nvestigated in this research paper for people identification via the

ay they walk. In fact, as early psychological and medical stud-

es confirmed that the distinctive characteristics for the perception

f human motion and people identification can be found mostly

n the kinematic part of the gait pattern, the aim of this study

s to confirm whether gait recognition is perceivable using fea-

ures derived from the optical flow data using automated meth-

ds. A set of biometric descriptors derived from optical flow data

re described accounting to the spatial, temporal and orientation

spects of the motion process. The gait signature is constructed

urely from kinematic-based features without incorporating static

r anthropometric cues. A set of experiments are carried out us-

ng the CASIA-B dataset to assess the discriminatory potency of

otion-based features derived from optical flow for gait identifica-

ion subjected to different covariate factors including clothing and

arrying conditions. Further experiments are conducted to explore

he effects of the dataset size, the number of frames in addition to

he impact of viewpoint variation on gait biometrics. Comparative

nalysis is conducted against well-established methods including

he Gait Energy Image descriptor. The attained results confirm that

eople identification using dynamic gait features is still perceivable

ith better recognition rates even under the influence of different

ovariate factors. As such, this is a major milestone in translating

ait research to surveillance and forensic scenarios. 

This paper is organized as follows. The next section outlines

he previous approaches for gait biometrics using different types

f features. The theoretical description of the presented motion-

ased method for extracting and constructing gait-based biometric

ignature is detailed in Section 3 . Subsequently, the conducted ex-

eriments are discussed with the obtained results. 

. Related work 

Early medical investigations conducted by Murray [2] in 1967

roduced a standard gait pattern for normal walking people aimed

t studying the gait pattern for pathologically abnormal patients.

he experiments were performed on sixty people aged between

0 and 65 years old. Each subject was instructed to walk for a

epeated number of trials. For the collection of gait data, special

arkers were attached on every subject. Murray [2] suggested that

he human gait consists of 24 different components which render

he gait pattern unique for every person if all gait movements are

onsidered. It was reported that the motion patterns of the pelvic

nd thorax regions are highly variable from one subject to an-

ther. Furthermore, Murray observed that the ankle rotation, pelvic

otion and spatial displacements of the trunk embed the subject

ndividuality due to their consistency at different trials. In 1977,

utting and Kozlowski [3] published a paper confirming the pos-

ibility of recognizing people by gait via observing moving lights

ounted on the joints positions. Although, there is a wealth of

ait studies in the literature aimed for medical use with a few

eferring to the discriminatory nature of the gait pattern, none is

oncerned with the automated use of gait for biometrics and rec-

gnizing people. The gait measurements and results introduced by

urray are to be of benefit for the development of automated gait

iometric systems. For gait recognition using automated marker-

ess approaches, various methods were surveyed in [4–6] . Based on

he procedure for extracting gait features, gait recognition methods

an be divided into two major types which are model-based and

ppearance-based approaches. 
.1. Appearance-based approaches 

Appearance-based or model-free approaches for gait biometrics

o not need a prior knowledge about the gait or model. Instead,

eatures are derived from the whole body without the need to ex-

licitly extract the human body parts. The majority of appearance

ethods depend on data taken directly from human silhouettes

hich are obtained via background segmentation. Appearance-

ased approaches rely pivotally on statistical tools to reduce or

ptimize the dimensionality of the feature space using methods

uch as Principal Component Analysis. In addition, advanced ma-

hine learning techniques are usually applied such as deep neural

etworks. Contentiously, investigations by Veres et al. [7] argued

hat most of the discriminative features for silhouette-based ap-

roaches are contributed from static components of the top sec-

ion of the human body whilst the dynamic components generated

rom the swinging of the legs are ignored as the least important

iometric data. There is a trending work on the use of deep learn-

ng for pattern recognition and image processing applications [8–

0] . Yu et al. [11] considered the use of multi-modal features for

he representation of images in order to ease the accurate retrieval

ased on specific queries. Their method is based on a newly pre-

ented deep multi-modal distance metric learning with a group of

uto-encoders being applied. In [12] , a new variant of generalized

xtreme learning auto-encoder for deep neural network for the ex-

raction of features from unlabeled data. Baig et al. [13] proposed a

oosting-based approach for learning a feed-forward artificial neu-

al network with a single layer of hidden neurons and a single out-

ut neuron. 

.1.1. Silhouette-based methods 

Silhouette-based methods work by separating walking people

rom the background. The simplest baseline method is to com-

ute the similarity score between two synchronized sequences of

oncatenated silhouettes [14] . The Gait Energy Image (GEI) is an-

ther simple silhouette-based representation introduced by Han

nd Bhanu [15] in which the gait signature is constructed through

aking the average of silhouettes for one complete gait cycle. Ex-

erimental results confirmed that higher recognition rates can be

ttained to reach 94.24% for a dataset of 3141 subjects [16] . How-

ver, such method performs poorly when changing the appearance

nd viewpoint. Xu et al. [17] proposed coupled locality preserving

rojections for cross-view recognition using GEI data. The Motion

ilhouette Image (MSI) is a similar representation to GEI proposed

y Lam and Lee [18] where each pixel intensity is computed as

 function of the temporal history of motion for the correspond-

ng pixels across a complete gait cycle. Experiments conducted

n the large SOTON gait dataset using this descriptor showed

hat a success rate of 87% can be achieved. Gait Entropy Image

GenI) is a silhouette-based representation introduced by Bashir

t al. [19] which is computed by calculating the Shannon entropy

or each pixel achieving a correct classification rate of 99.1% on

ataset of 116 subjects. The Shannon entropy estimates the un-

ertainty value associated with a random variable. Other similar

epresentations include Motion Energy Image, Gait History Image,

rieze Patterns and Chrono-Gait Image [6] . Hayfron-Acquah et al.

20] introduced a method for constructing a gait signature based

n analysing the symmetry of human motion. The symmetry map

s produced via applying the Sobel operator on the gait silhou-

ttes followed by the Generalized Symmetry Operator. On the use

f deep learning with silhouette data, Hong et al. [21,22] proposed

 multi-layered deep neural network for pose recovery to map 2D

mages into 3D poses. Yu et al. [23] employed deep learning on au-

oencoder for viewpoint invariant gait biometrics using Gait Energy

mage. In [24] , a framework based on subspace ensemble learn-

ng via totally-corrective boosting method is proposed to achieve
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competitive performance for gait recognition using appearance-

based features. 

2.1.2. Optical flow-based methods 

Little and Boyd [25] were the first to use optical flow for gait

recognition, they computed the dense optical flow from sequences

containing 80 frames. Twelve types of statistical features from the

horizontal and vertical components of the optical flow are ex-

tracted to compose a biometric signature. In their experiments,

a recognition rate of 90.5% is achieved using the twelve features

when applied on seven sequences for each of the six walking

subjects. In [26] , Huang used the temporal information from op-

tical flow changes between two consecutive spatial templates of

70 to 80 frames spanning for about four walking cycles. They ex-

tracted a low dimension features space using a combination of the

Eigenspace Transformation with canonical space projection. Using

template matching for classification, a recognition rate of 100% was

attained on a small dataset of five people using the magnitude

of the horizontal optical flow components. Further, Bashir et al.

[19] used the dense optical flow field computed using the method

in [27] for each frame of the whole gait cycle to extract four differ-

ent types of motion descriptors based on the horizontal and verti-

cal optical flow components. Experiments on the CASIA and SOTON

datasets with the clothing and bag carrying covariates outperform

previous reported studies. Lam et al. [28] proposed the Gait Flow

Image (GFI) descriptor computed as average of the binary flow im-

ages taken from silhouette data. In [29] , the flow histograms were

constructed by considering the polar components of the optical

flow inside the bounding box. Since the length of the videos may

be different due to varied walking speed, they applied a histogram

matching method to find the gait cycle for each subject in order

to obtain unbiased features. In [30] , Hu et al. used the LBP de-

scriptor to estimate the features from the horizontal and vertical

components of the optical flow. Their experiments was aimed to

explore the effect of covariates factors on the CASIA-B and CASIA-A

datasets relatively to the frames number using incremental learn-

ing. 

2.2. Model-based approaches 

For the model-based approach, a prior model is established to

match real images to this predefined model, and thereby extract-

ing the corresponding gait features once the best match is ob-

tained. Usually, each frame containing a walking subject is fitted

to a prior temporal or spatial model to explicitly extract gait fea-

tures such as stride distance, angular measurements, joints tra-

jectories or anthropometric measurements. Although model-based

approaches tend to be complex requiring high computational cost,

these approaches are considered more suitable for human motion

analysis due to their advantages [5] . The main merit of model-

based techniques is the ability to derive detailed and accurate gait

motion data with better handling of occlusion, self-occlusion and

other appearance factors as scaling and rotation. The model can be

either a 2 or 3-dimensional structural model, motion model or a

combined model. Niyogi and Adelson [31] was perhaps the pioneer

in 1994 to use a model-based method for gait recognition. The

gait biometric signature is constructed from the spatio-temporal

pattern using a five stick model. From a dataset of 26 sequences

containing 5 different people, an encouraging recognition rate of

80% was reported. Wagg and Nixon [32] described a model-based

approach for gait recognition based on the biomechanical analysis

of walking people. Mean model templates are adopted to fit indi-

vidual people. The anatomical knowledge of the human body are

deployed to lessen the computational costs of the extraction pro-

cess. The features vector is weighed using statistical analysis tech-

niques to measure the discriminatory potency of each element. On
he evaluation of this method, a correct classification rate of 95%

s achieved on a large database of 2163 sequences containing 115

ubjects. 

. Proposed approach 

Vision-based systems for people recognition via the way they

alk, are designed to extract gait features without the need to use

pecial sensors or reflective markers to assist with the extraction

rocess. In fact, all that is required is a video camera to stream

mages to a vision-based software for processing. Marker-less mo-

ion capture systems are more suited for scenarios where mount-

ng sensors or markers on the person is not an option as the case

f security surveillance. Typically, the gait biometric system con-

ists of two main components: i) hardware platform dedicated for

ideo acquisition. This can be a single CCTV camera or distributed

etwork of cameras. ii) Software system for visual data process-

ng and identification. The architecture of the software side for gait

iometrics is composed broadly of three main stages: 

i) Detection and tracking of the pedestrian: intra-camera tracking

s performed to establish the correspondence of the same person

cross consecutive frames. For people detection, there are numer-

us robust and stable approaches for the automated detection of

edestrians in outdoor surveillance scenarios. The rhythmic gait

otion can be exploited to further improve the detection accu-

acy [33] . As people usually walk slowly compared to the recording

rame rate, the intra-camera tracking can be performed easily us-

ng a combination of basic low-level features including the size of

he detected moving object, the centroid position, and the aspect

atio of height to width of the object bounding box. 

ii) Feature extraction: in order to estimate a set of measure-

ents either related to the configuration of the whole body or the

onfiguration of the different body elements in a given scene and

racking them over a sequence of frames. For this research, the mo-

ion vectors from optical flow are considered as the main features

xtracted from consecutive frames. 

iii) Classification stage: which involves matching a test sequence

ith an unknown label against a group of labeled references con-

idered as the gallery dataset. This is a pattern recognition case to

educe or verify the identity of a given subject from the enrolled

atabase. Fig. 1 shows the flow diagram for gait recognition out-

ining the different subsystems involved in the process of an auto-

ated people identification. 

.1. Optical flow estimation 

The use of optical flow spans to a wide range of applications

ncluding video indexing, medical imaging, biometrics and auto-

ated video surveillance [34] . The proposed approach for people

dentification by gait encodes a sequence of frames into a feature

ector describing the walking pattern from dynamic-based cues.

he method does not depend on background subtraction for the

erivation of motion features. This is because it is computation-

lly expensive and complex to deploy background subtraction for

eal-time surveillance applications due the process of updating the

ackground model which is influenced by a number of factors such

s background clutter, weather conditions and other outdoor en-

ironmental effects. Inspired by the work of Kliper-Gross et al.

35] for proposing the Motion Interchange Pattern for action recog-

ition together with the fact that local descriptors are known for

heir effectiveness and robustness for encoding texture for the hu-

an activity recognition. Provided that there is a motion of a small

egion within frame t to the next frame t + 1 , there is a high prob-

bility that a similar region would be induced inside the neighbor-

ng area of the original region position at the previous frame. The

roposed descriptor is based on constructing a feature that reflects
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Fig. 1. Overview of gait biometric system. 
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Fig. 2. Optical flow estimation. 
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he patch displacement from frame to frame. Optical flow is made

rom the vertical and horizontal components of the vector repre-

enting the orientation and velocity of the image’s pixels between

wo consecutive frames. The estimation of optical flow is based on

he brightness constancy constraint represented by the following

quation: 

(x, y, t) = I(x + �x, y + �y, t + �t) (1)

uch that I ( x, y, t ) represents the intensity of the pixel of coordi-

ates ( x, y ) at the t th frame. The Taylor series is used to obtain a

implified equation expressed as: 

∂ I 

∂x 
u + 

∂ I 

∂y 
v + 

∂ I 

∂t 
= 0 (2)

here u and v are the horizontal and vertical components for the

ptical flow respectively. In order to deal with the aperture prob-

em, considering the u and v variable values from Eq. (2) , Horn and

chunck [36] proposed to minimize the following energy equation:

 = 

∫ ∫ (
ξ 2 

a + α2 ξb 

)
d x d y (3) 

hile: 

a = I x u + I y v + I t (4)

here I x , I y , and I t are the partial derivative of I ( x, y, t ) with re-

pect to x, y and t 

b = 

(
∂u 

∂x 

)2 

+ 

(
∂u 

∂y 

)2 

+ 

(
∂v 
∂x 

)2 

+ 

(
∂v 
∂y 

)2 

(5) 

sing the Euler–Lagrange method for the above minimization

roblem with the differentiation discretization, the case is con-

erted to a fixed point solution. The Horn–Schunck derivation

ask gives the following iterative system: 
 

 

 

 

 

 

 

u 

k +1 = ū 

k + 

−I x 
(
I x ̄u 

k + I y ̄v k + I t 
)

α + I 2 x + I 2 x 

v k +1 = v̄ k + 

−I y 
(
I x ̄u 

k + I y ̄v k + I t 
)

α + I 2 x + I 2 x 

(6) 

here the smoothing weight factor, α = 0 . 1 and k = 1 : n with n

s the max iteration number which is set to 50 in our implemen-

ation. ū k , ū k are the average of the forth adjacent u and v from

he k precedent iteration. 

.2. Motion descriptors 

Because of the paucity of research studies for exploiting the po-

ar or Cartesian components of optical flow for gait recognition, we
ave explored in this paper various types of motion descriptors for

eople identification constructed from the optical flow vectors. The

roposed descriptors are evaluated on different scenarios including

he number of frames, increasing the dataset size and the view-

oint variation to analyze the discriminatory potency of the mo-

ion features under the influence of different factors. In contrast

o previous studies which require a synchronizing point or impose

he condition of detecting at least one full gait cycle, this assump-

ion is relaxed to compose the gait signature from any random

et of consecutive frames. Although, most studies affirmed that an-

hropometric measurements including the height and the different

arts of the human body can boost the identification success rate,

e have avoided using static features to explore solely the use of

ynamic features derived from optical flow. ( Fig. 2 ) 

.2.1. Local optical flow features 

The proposed descriptors are constructed from the optical flow

eatures without the need to apply background subtraction to ob-

ain silhouette data. This is because background subtraction is a

ifficult process to work for real surveillance scenarios. The main

rinciple of this descriptor is to produce an averaged image based

n superimposing images containing the individual on top of each

ther. Given two frames, optical flow using the Horn and Schunck

ethod is applied to generate the motion flow image as shown in

ig. 3 . Thresholding is app lied to remove flow vectors whose mag-

itude is less than a value of 0.001 which is determined empiri-

ally. The initial step is to enclose a bounding box around the walk-

ng subject consistently across all the frames. The height of the

ounding box is determined from the optical flow vectors mean-

hile the width is computed from the anatomical data reflect-

ng the maximum distance when a person strikes their leg on

he ground. The positioning of the bounding box across different

rames is tuned by simple intensity matching of the top part of

he human body as it is less susceptible to articulate and change.

he naming is called local as the features are computed within the

ocality where the person moves ignoring the spatial displacement

cross the walking plane. The first descriptor is computed based

n the magnitude of the optical flow vectors. For a point p ( x, y )

t frame t , the magnitude of the optical flow computed between
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Fig. 3. Estimation of local optical flow descriptors: (a) Magnitude. (b) Angle. (c) 

Local averaged magnitude image. (d) Local averaged angle image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Global optical flow descriptors: Angle (left). Magnitude (right). 
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frame t and t + 1 is computed as given below: 

mag t (x, y ) = 

√ 

u t (x, y ) 
2 + v t (x, y ) 

2 
(7)

Such that u t ( x, y ) and v t ( x, y ) are, respectively, horizontal and ver-

tical Optical flow components in the point p ( x, y ) at frame t . In

order to produce the averaged magnitude image from the bound-

ing boxes of all the frames which must all have the same size. The

Local Flow Magnitude Image (LFMI) descriptor is computed using

equation below: 

LF MI(x ′ , y ′ ) = 

∑ N−1 
t=1 mag t (x ′ + b x t , y 

′ + b y t ) 

N − 1 

(8)

such that b x t and b 
y 
t are the ( x, y ) coordinates of the top left corner

of the bounding box in the original frame meanwhile x ′ and y ′ are

the new coordinates in the axis whose origin is the top left corner

of the bounding box. For the angle of the optical flow vector at

point p ( x, y ), it is computed as shown in the following equation: 

ang t (x, y ) = arctang 

(
V t (x, y ) 

U t (x, y ) 

)
(9)

In the same way as the local magnitude descriptor, the Local Flow

Angle Image (LFAI) descriptor is based on the angle of the optical

flow vector as described in equation: 

LF AI(x ′ , y ′ ) = 

∑ N−1 
t=1 ang t (x ′ + b x t , y 

′ + b y t ) 

N − 1 

(10)

3.2.2. Global optical flow features 

The global descriptor is constructed keeping into account the

spatial and temporal property of the optical flow vectors as op-

posed to the local descriptors which averages the derived data. In-

stead, the area where the subject walks are superimposed on top

of each other. The walking region is detected based on estimating

the walking plane on the ground. This is done based on the ex-

traction of the heel strikes position as described by the work of

Bouchrika [37] where the striking points of the leg are detected
ased on the accumulation of points detected using the Harris cor-

er detector. The height of the region is based on the same prin-

iple as described for the extraction of the bounding box for the

ocal descriptors. For the descriptor related to the magnitude, it

s computed as concatenating all the frames together and extract-

ng only the regions related where the walking does occur. Given

he walking region is having the top left corner at coordinates ( x ′ ,
 

′ ), the Global Flow Magnitude Image (GFMI) descriptor shown in

ig. 4 is computed as: 

F MI(x ′ , y ′ ) = 

∑ N−1 
t=1 mag t (x ′ + r x , y 

′ + r y ) 

N − 1 

(11)

eanwhile, the Global Flow Angle Image (GFAI) descriptor is com-

uted as: 

F AI(x ′ , y ′ ) = 

∑ N−1 
t=1 ang t (x ′ + r x , y 

′ + r y ) 

N − 1 

(12)

.2.3. Histogram-based optical flow features 

Inspired from research studies on human activity recognition

38] , we considered deriving features from the histogram of com-

uted optical flow angles. The raw angles computed from Eq.

9) are discretized to a natural number enclosed between 0 and

 . In this study, B is set to the value of 16. The zero value re-

ects the non-existence of motion such that the magnitude of the

ptical flow vector is less than the threshold τ = 0 . 001 . Based on

he location of the angular values within the polar coordinate sys-

em which is equally divided into B numbered sections of 360/ B

egrees from 1 to B , the optical flow vector is converted into a

umber reflecting the order within the B th circular portions. This

s denoted using the function expressed in Eq. (13) . Given the com-

uted angle ang ( x, y ) from optical flow ranging from π to −π, the

escriptor value d at the point of coordinate ( x, y ) is determined

s: ( Fig. 5 ) 

 t (x, y ) = f loor 

(
ang t (x, y ) × B 

π

)
+ 1 (13)

Having estimated the discretized value for every optical flow

ector, two types of motion orientation histograms are computed.

e first compute a local histogram without taking into account the

emporal and spatial information from all the information in the

rames as shown in Eq. (14) . LH ( i ) refers the local histogram bin of

alue i which is computed across all frames as illustrated in the

ollowing equation: 

H(i ) = 

N−1 ∑ 

t=1 

h t (i ) (14)
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Fig. 5. Histogram-based descriptor: a) Global. b) Local. 
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Fig. 6. Examples from the CASIA-B dataset. 
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uch that the function h t is to estimate the histogram at frame t

efined in Eq. (15) where b is a Boolean function returning 1 for

rue cases and 0 otherwise: 

 t (i ) = 

∑ 

x,y ∈ f t 
b(d t (x, y ) == i ) (15) 

he global histogram which takes into account the temporal char-

cteristics, is constructed via concatenating the histograms com-

uted within every frame individually as shown in the following

quation: 

H = [ h 1 h 2 ... h N−1 ] (16)

.3. Gait recognition 

For the identification of people from the computed descriptor

erived using optical flow information, the Knn classifier is applied

ombined with the Euclidean distance metric. Normalization is ap-

lied for all instances to limit all the measurements between 0 and

. The Knn rule is applied at the classification phase due to its sim-

licity and therefore fast computation in tandem with the ease to

onduct comparative analysis against existing techniques being ap-

lied on the same dataset. To infer the identity of an unknown

ubject, a matching process is applied to find the nearest k in-

tances from the training dataset. Further, the use of Deep Learning

s a more advanced classifier is considered in this research. Neu-

al networks are the basis of the classifier in order to learn a new

epresentation from the raw data using multiple layers to learn

ew features. The autoencoder which is a special type of neural

etwork, is deployed as a layer to extract lower number of new

iscriminative features in an unsupervised fashion separately from

he other layers [39] . For gait biometrics using dynamic features,

hree layers of autoencoders are concatenated together to reduce

he dimensionality of the biometric data followed with a softmax

ayer for the classification phase. 

. Experimental results 

To demonstrate the efficacy of proposed method for gait recog-

ition using dynamic features derived from optical flow, the sys-

em has been evaluated on a variety of scenarios and conditions.

he CASIA-B database [40] has been considered as the real test-

ed of the proposed appearance-based method. The CASIA-B gait

ataset shown in Fig. 6 , contains 124 subjects recorded walking on

 straight line using 11 different camera orientations (0 °, 18 °, 36 °,
4 °, 72 °, 90 °, 108 °, 126 °, 144 °, 162 °, 180 °). The 90 ° corresponds to

he side view walking direction. The video sequences have a spatial

esolution and frame rate of 320 × 240 pixels and 25 fps respec-

ively. The process of feature extraction method has been applied

o a set of 10 0 0 video sequences from the CASIA-B dataset for 100

ifferent walking people with 10 sessions for every individual. The

essions for every subject include normal cases of a walking per-

on, in addition to other covariate cases as clothing and load car-

ying. The lateral view corresponding to the 90 ° is considered for

ssessing the proposed approach meanwhile the other views are

ater used to test the viewpoint impact on the described biomet-

ic descriptors. For the computational time of estimating optical

ow, the system was implemented using Matlab whilst all execu-

ions have been performed on an Intel Xeon server 2.4 GHz with

6 GB of RAM. The computation time to process dense optical flow

s estimated as 3 fps (Frames per Second) without the use of any

edicated hardware (parallel computing, GPU, grid computing and

PGA) to boost the processing time. Although there are methods to

stimate optical flow at real-time implemented on GPU [41] , Zhu

t al. [42] proposed an optimized implementation of dense optical

ow capable of processing 10 frames per second without the use

f parallel architectures. 

.1. Classification results 

In order to compute the correct classification rate (CCR) for gait

ecognition using kinematic-based features, the leave one out cross

alidation method is applied with the Knn classifier on the set of

0 0 0 video sequences taken from the CASIA-B dataset. In order

o construct the gait biometric signatures, 24 consecutive frames

re processed from each video sequence on the basis to include

pproximately one full gait cycle. Table 1 shows the classification

esults using the different types of the proposed descriptors from

ptical flow compared against the Gait Energy Image [15] being

pplied on the same collected dataset. Surprising, higher recogni-

ion rates are achieved using solely features describing purely the

ynamics of the locomotion process. The Local Flow Angle Image

LFAI) is reported to offer better recognition rates compared to the

ait Energy Image and all other derived descriptors. Meanwhile, it

s observed that the angular components of the optical flow vec-

ors possess more discriminatory capability than the magnitude.

urther, the histogram-based descriptors perform poorly compared

o the local and global descriptors which retain the spatial and
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Table 1 

Classification results for gait biometrics. 

Knn Neural 

K = 1 K = 3 networks 

Local LFMI 97.5 84.2 95.0 

LFAI 97.8 89.0 88.3 

Global GFMI 53.6 52.8 75.3 

GFAI 44.6 43.5 44.0 

Histogram LH 77.9 73.4 17.0 

GH 34.2 33.4 12.5 

GEI 94.1 85.9 80.0 

All features 50.5 40.9 –

Rida et al. [43] 88.7 

Jeevan et al. [44] 57.3 

Bashir et al. [45] 74.1 

Kusakunniran et al. [46] 69.4 

Medikonda et al. [47] 97.5 

Tang et al. [48] 95.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Cumulative match score for gait biometrics. 

Fig. 8. Effect of frames number. 

Table 2 

Impact of the number of frames on gait biometrics. 

FR Local Global Hist GEI 

FMI FAI FMI FAI LH GH 

4 46.0 44.5 13.2 10.6 12.3 13.4 29.0 

8 61.9 60.2 17.1 13.8 20.4 17.0 45.0 

12 80.3 80.5 25.0 16.1 37.4 19.6 66.6 

16 82.8 85.6 25.0 19.2 37.8 24.9 65.2 

20 89.6 90.1 28.1 21.5 51.0 28.3 78.9 

24 93.0 94.3 30.5 24.0 64.4 27.7 86.2 

28 95.6 95.5 37.3 30.5 65.1 29.4 89.1 

32 95.0 97.3 39.7 36.2 71.4 33.8 91.5 

36 96.7 97.8 46.1 39.5 76.8 35.0 93.6 

40 97.5 97.8 53.6 44.6 77.9 34.2 94.1 
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temporal information which are therefore considered vital for the

recognition process. On combining all the features, a low recogni-

tion rate of 50.5% is attained using the Knn classifier. This is be-

cause the concatenated features may contain irrelevant and redun-

dant elements that affect negatively the classification process. Fea-

ture selection can be considered in future work to determine the

more discriminative elements. 

Further, Deep Learning is applied on the same CASIA dataset

with a three-fold cross validation. Training and test sets are com-

posed of normal gait in addition to video sequences with covariate

factors as clothing and load carrying. The architecture of the deep

learning classifier is composed of three stacked autoencoders with

a softmax network layer on top to classify the newly generated

100 features vector using the scale conjugate gradient training al-

gorithm. The initial numbers of the raw features for the descriptors

are 16, 64, 1461 and 8654 for LH, GH, LMFI/LAFI and GMFI/GAFI,

respectively. As shown in Table 1 , the local optical flow descrip-

tors are observed to perform better reaching a CCR of 95% using

the magnitude information. Although the obtained results are sat-

isfactory using the local flow descriptors, the performance rates for

the neural networks are less accurate than the simple Knn clas-

sifier. Poor results are reported for the histogram-based descrip-

tors mainly due to the low size of the feature vectors. Compara-

tive analysis is conducted using the Gait Energy Image (GEI) being

tested on the same dataset using the same evaluation paradigm.

Consistently with the results obtained using the proposed descrip-

tors, the GEI achieved a higher CCR of 94.1% using Knn against

97.8% using the proposed LFAI descriptor. Furthermore, the ob-

tained results are compared against recent and well-established

methods being evaluated on the CASIA-B gait dataset using the Knn

classifier with k = 1 as depicted in Table 1 . 

The Cumulative Match Score (CMS) method introduced by

Phillips et al. in the FERET protocol [49] is used to assess the iden-

tification performance of the proposed approach as shown in Fig. 7 .

The measure examines the ranking capabilities of the recognition

system by producing a list of scores that indicate the probabili-

ties that the correct classification for a given candidate is within

the top n matched identities. In other words, The CMS curve pro-

vides a measure of the classification rate of data samples at differ-

ent trials to be correctly classified. The scoring function employs

the Knn rule with the value of k = 1 . It is worth noting that the

CMS at rank R = 1 is equivalent to the Correct Classification Rate.

It is observed that a CMS score of 100% is achieved at rank R = 6

for the LFMI descriptor meanwhile the same rate is achieved by

the Gait Energy Image at rank R = 12 . All the global descriptors

are observed to converge poorly reaching the CCR of 100% after a

large number of iterations. 
.2. Effect of frames number 

There is a limited number of research studies addressing how

any frames are needed for gait recognition as the majority of

pproaches make use of one complete synchronized gait cycle for

ecognition. But cycle synchronization and having all frames of a

omplete gait cycle is not always an available option for real ap-

lications due to hardware failure or errors encountered during

he detection and tracking phases. We analyze the effects of in-

reasing or decreasing the number of frames from the constructed

ait signature using optical flow and explore how the classification

erformance is affected. Martín-Félez et al. [50] studied the num-

er of gait cycles required to derive a discriminant signature from

veraged gait silhouettes. A number of extensive experiments are

onducted in this study such that various gait signatures are con-

tructed by considering a varying number of consecutive frames

anging from 4 to 40 as shown in Fig. 8 . In contrast to previous

tudies, the gait signatures are not synchronized where the start-

ng frame is totally selected at random. Table 2 shows the effects
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Table 3 

Cross-frame matching using the LFMI descriptor. 

Probes frames number 

8 16 24 28 32 36 40 

Gallery frames 

number 

4 50.1 54.8 57.5 59.1 58.6 57.6 57.6 

8 60.2 74.6 78.2 79.8 81.5 81.2 80.7 

12 75.5 83.8 87.4 89.0 90.2 90.4 92.1 

16 73.6 85.6 90.6 89.6 92.2 92.7 92.6 

20 79.8 88.4 91.8 92.6 95.4 95.8 96.0 

24 81.2 92.0 94.3 93.8 95.3 95.7 95.9 

28 82.3 91.2 94.1 95.5 96.4 97.0 96.9 

32 82.7 92.6 95.3 96.6 97.3 97.5 97.3 

36 85.2 94.0 96.3 96.8 97.9 97.8 97.5 

40 85.3 93.6 95.9 97.3 97.5 97.7 97.8 
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Table 4 

Number of sequences effects on studies features. 

Subj./ Local Global Hist GEI 

seq. FMI FAI FMI FAI LH GH 

100 100 100 74.0 65.0 93.0 48.0 98.0 

200 98.5 98.5 67.5 62.5 92.5 49.0 95.5 

300 97.6 98.0 64.0 55.0 88.6 47.3 95.3 

400 97.0 97.5 56.7 47.5 85.2 43.0 95.2 

500 96.8 97.6 56.0 48.2 82.0 39.4 95.0 

600 97.0 97.8 54.3 46.1 80.1 38.3 94.8 

700 96.8 97.4 50.5 44.8 79.1 36.4 93.8 

800 97.1 97.6 50.8 44.5 79.0 35.1 94.0 

900 97.2 97.6 51.3 44.0 77.6 35.0 94.1 

10 0 0 97.5 97.8 53.6 44.6 77.9 34.2 94.1 

Table 5 

Viewpoint effects on gait biometrics. 

View Local Global Hist GEI 

point FMI FAI FMI FAI GH LH 

36 100 100 80.8 76.6 50.8 85.8 61.6 

54 100 100 83.3 80.0 43.3 92.5 76.6 

72 100 100 82.5 78.3 58.3 92.5 98.3 

108 100 100 85.0 78.3 49.2 85.8 100 

126 100 100 70.8 75.0 25.0 67.5 93.3 

Table 6 

Cross viewpoint matching against 90 ° using LFMI. 

Test Local Global Hist GEI 

ang FMI FAI FMI FAI GH LH 

36 28.3 15.8 27.2 14.8 10.8 15.0 07.5 

54 85.0 65.8 27.2 41.8 30.0 38.3 11.7 

72 98.3 98.3 76.3 98.3 35.8 70.8 88.3 

108 81.6 71.7 59.6 71.7 28.3 22.5 86.6 

126 32.5 03.3 18.4 03.3 05.0 05.0 20.8 
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f increasing the number of frames on the classification results for

ll the proposed optical flow descriptors in addition to the Gait

nergy Image. The results are achieved on the same CASIA dataset

sing the Leave-out-one cross validation with the use of the knn

lassifier where k = 1 . Overall, the classification results are consis-

ent with the number of frames required to construct a gait signa-

ure. The more number of frames considered, the better achieved

lassification rate. The GEI descriptor requires 32 frames in order

o achieve a CCR of 91.5% meanwhile the LFAI descriptor needs

nly 20 frames to attain a CCR of 90.1%. For the case of cross-

atching signatures composed of different size of frames number,

sing the descriptors constructed from optical flow, 8 frames can

e sufficient to achieve an acceptable recognition rate of 81% when

roposed a dataset composed of 24 frames. 

As a novel contribution in this paper, we have conducted cross-

atching of biometric signatures composed of different number

f frames using only the Local Flow Magnitude Image (LFMI) de-

criptor. The results for the cross-matching process is shown in

able 3 . The purpose of this experiment is to examine the require-

ent of whether matching two biometric signatures need to have

he same number of frames. From the attained results, it can be

nferred that setting the number of frames for the gait signature

as no major impact on the classification performance. The same

onclusion applies to synchronizing the signatures to the same off-

et as higher CCRs are achieved without setting the gait signatures

o start from the same time whilst probing signatures against sig-

atures of different sizes. For instance, higher classification rates of

ver 90% are achieved when matching gait signatures consisting of

4 frames against galleries of signatures composed from at least 16

rames. Lower CCRs are reported when the signature is composed

nly from 4 or 8 frames. 

.3. Effect of database size 

In order to analyze the scalability aspect of gait biometrics us-

ng the proposed descriptors from optical flow, we have performed

nother set of experiments on the CASIA dataset by varying incre-

entally the dataset size. Starting with an initial subset of 10 peo-

le picked up at random with 10 sequences for each person, the

lassification rate is computed using the leave-one-cross validation

ith the Knn classifier. Subsequently, 10 more people are added to

he subset at every new iteration. Table 4 shows the computed re-

ults for the classification performance when increasing the dataset

ize. For a smaller dataset of 10 people, 100% is achieved for both

ocal descriptors meanwhile using the GEI descriptor, 98% is at-

ained. When augmenting the dataset to reach 100 subjects, the

ffect on performance is marginal for the LFAI and LFMI descrip-

ors with a decrease of 2.2% and 2.5%, respectively, compared to

.9% for the Gait Energy Image (GEI). 
.4. Effects of viewpoint 

Changing the viewpoint is the most challenging covariate for

ait recognition in particular for the case of appearance-based

ethods. We have conducted two experiments to explore the im-

act of viewpoint on the proposed descriptors considering only

he following six different views from the CASIA dataset (36 °, 54 °,
2 °, 90 °, 108 °, 126 °). For the first experiment, smaller dataset of

0 people with 6 sequences per person are taken for each view-

oint and the classification results are estimated for every view-

oint separately using the leave-one-cross validation. The results

re shown in Table 5 . In alignment with other reported results, the

ocal descriptors from optical flow including LFMI and LFAI are not

ffected when changing the viewpoint in contrast to the gait En-

rgy Image which is susceptible to viewpoint variation. For the sec-

nd experiment, the subsets constructed for different viewpoints

uring the first experiment are probed against a gallery database

onsisting only of people walking in the lateral view (90 ° view-

oint). The identification results for the viewpoint cross-matching

s shown in Table 6 where it is shown that all appearance-based

escriptors are prone to be affected highly by the viewpoint varia-

ion. 

. Conclusions 

In this research paper, we have explored the use of kinematic-

ased features derived from optical flow for people identifica-

ion by the way they walk. A set of biometric descriptors con-

tructed from optical flow data are proposed accounting for the

patial, temporal and orientation aspects of the motion process of

he gait pattern. The biometric signature is derived purely from
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kinematic-based features without incorporating static and anthro-

pometric cues. A set of experiments are carried out using the

CASIA-B dataset to assess the discriminatory potency of motion-

based features subjected to different covariate factors including

clothing and carrying conditions. The local features taken from the

optical flow images are reported to achieve remarkable classifica-

tion results compared to other appearance-based descriptors in-

cluding the Gait Energy Image. Further experiments are conducted

to explore the effects of the dataset size, the number of frames

in addition to the impact of viewpoint variation on gait biomet-

rics. The number of frames to compose the gait signature has a

marginal impact on the classification performance using the pro-

posed descriptors. Similar promising result are reported for the

same descriptors when assessing the scalability aspect of gait bio-

metrics. However, all appearance-based descriptors are prone to

be affected highly by the viewpoint variation for the case f cross-

matching. In conclusion, the attained results confirm that people

identification using dynamic gait features is still perceivable with

better recognition rates even under the influence of different co-

variate factors. 
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