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Abstract

In this paper, we study some properties of boundedly orbitally multi-valued
mappings on complete metric spaces. These results are explored to give an investi-
gation of the existence of fixed points concerning Hardy-Rogers mappings involving
some non-constant coefficients which extend and improve many known contribu-
tions in the literature.

1 Introduction

It is well known that the Banach contraction principle (1922) was the starting point of
the fixed point theory. This result was extended to the case of multi-valued mappings
by J. Nadler (1969) as follows:

If (X, d) is a complete metric space and T is a multi-valued mapping of X into the family
CB(X) of all nonempty closed bounded subsets of X and let H be the Hausdorff metric
with respect to d. Then if there exists α ∈ [0, 1) such that

H(Tx, Ty) ≤ αd(x, y), ∀x, y ∈ X.

Then T has a fixed point, in other words, there exists z ∈ X such that z ∈ Tz.

This contribution is of great importance due to the fact that this class of mappings
plays a central role in applied sciences (Optimization, equilibrium problem, games
theory, differential and partial differential equations involving integral inclusions, ......).
For a good reading concerning theses mappings and their impact in applied sciences,
we can quote for example [1].

Nadler’s result was generalized by S. Reich for mappings with non-constant coefficients
taking values in the family K(X) of all nonempty compact subsets of X satisfying that

H(Tx, Ty) ≤ α((d(x, y))d(x, y), ∀x, y ∈ X.

where α is a function of (0,∞) to [0, 1) such that lim sup
r−→t+

α(r) < 1 for every t ∈ (0,∞)
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The same author asked the question asked whether this contribution holds true if T
takes its values into CB(X) instead K(X). This question was answered positively by
Mizoguchi and Takahashi [13] in almost complete form by replacing the condition on
α by the following stronger condition

lim sup
r−→t+

α(r) < 1 for every t ∈ [0,∞)

The analysis of Mizoguchi-Takahashi was improved and generalized by [4]. In (2011)
Gordji et al [8] gave a positive answer to the Reich conjecture for generalized multi-
valued version of Hardy-Rogers mappings [9] as follows:

Theorem 1.1 [8] Let (X, d) be a complete metric space and let T : X −→ CB(X) be
a multi-valued mapping satisfying that

H(Tx, Ty) ≤ α(d(x, y))d(x, y) + β(d(x, y))(d(x, Tx) + d(y, Ty))

+ γ(d(x, y))(d(x, Ty) + d(y, Tx)),

for all x, y ∈ X where α, β, γ are mappings from [0,+∞) into [0, 1) such that α(t) +
2β(t) + 2γ(t) < 1 and

lim sup
r−→t+

α(s) + β(s) + γ(s)

1− (β(s) + γ(s))
< 1 for every t ∈ [0,∞)

Then there exists z ∈ X such that z ∈ Tz.

Single valued mappings or multi-valued contraction mappings are uniformly continuous
hence continuous which is not the case of other generalized contractions. This implies
that the function x −→ d(x, Tx) is continuous, this fact fails for the other generalized
contractions, by this reason the authors added the lower semicontinuity of the function
x −→ d(x, Tx) to obtain some fixed point results via Caristi’s fixed point theorem which
is also another extension to Nadler’s result (for this subject, we can see [6, 12, 20]). Also,
one of the advantage of contraction or generalized contraction mappings with constant
coefficients is that the principle to study and the investigation of their fixed points
is the same consisting to obtain this fixed point as a limit of a Cauchy sequence (xn)
satisfying that xn+1 ∈ Txn. Unfortunately, when the coefficients are not constant, many
constraints appeared and thus we will have to go through other arguments including
the behavior of the mapping on its orbits.

The organization of our paper is as follows: First of all, we give some preliminaries and
notations which will be used in the sequel. In the section 2, we study some properties of
strictly and uniformly orbitally bounded mappings and their relation with the property
P defined in this section. Finally, in section 3, these results are explored to obtain
fixed point results for generalized Hardy-Rogers mappings involving some functions as
coefficients by reducing the problem on the case of an equivalent problem on bounded
complete metric spaces.
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2 Main Results

Let (X, d) be a complete metric space. Then, for x ∈ X and A ⊆ X, d(x,A) =
inf{d(x, y) : y ∈ A}. The Hausdorff metric with respect to d is defined by

H(A,B) = max{sup
x∈A

d(x,B), sup
z∈B

d(z,A)},

The following properties satisfied by the metric H are used in the sequel.

1. (CB(X), H) is a complete metric space (see [10]),

2. For arbitrary bounded sets A1 and A2 of X, we have H(A1, A2) = H(A1, A2) (A
denotes the closure of the set A in the metric space (CB(X), H)),

3. If A1 and A2 are bounded subsets of X. Then,

d(x,A2) ≤ H(A1, A2) for all x ∈ A1.

4. If A1 and A2 are bounded subsets of X. Then,

d(x,A1) ≤ d(x,A2) +H(A1, A2).

For x ∈ X, we denote Cx(T ) = {Tnx}n≥0 = {{x}, Tx, T 2x, .......} (T 0x = {x}) and
C(T ) = {Tnx}n≥0,x∈X .

The orbit of T at x is given by

OT (x) =
∞⋃
n=0

Tnx where Tnx =
⋃

ω∈Tn−1x

Tω.

Definition 2.1 Let (X, d) be a metric space and let T : X −→ CB(X) be a multi-
valued mapping. T is said to be closely orbitally continuous at x0 ∈ X if for any point
x ∈ OT (x0) and any sequence {xn} ⊂ OT (x0) such that xn −→ x as n −→∞ in (X, d)
we have Txn −→ Tx as n −→ ∞ in (CB(X), H). T is said to be closely orbitally
continuous on X if it is closely orbitally continuous at any point x0 of X.

Remark 2.1 It is to be noted that a continuous multi-valued mapping is closely or-
bitally continuous but the converse is not necessarily true.

Definition 2.2 Let (X, d) be a metric space and let T : X −→ CB(X) be a multi-
valued mapping. T is said to be strictly orbitally bounded at x ∈ X if for any integer
n ≥ 2, the sets Tnx are bounded. T is said to be orbitally bounded if it is strictly
orbitally bounded at any point x of X.

Remark 2.2 Let (X, d) be a metric space and let T : X −→ CB(X) be a multi-
valued mapping, hence for all x ∈ X, {x} and Tx are bounded sets. By this reason the
previous definition is focused to the case of n ≥ 2.
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Definition 2.3 Let (X, d) be a metric space and let T : X −→ CB(X) be a multi-
valued mapping. T is said to be uniformly orbitally bounded at x ∈ X if the orbit
OT (x) is a bounded set or its diameter is finite, in other words if

δ(OT (x)) = sup{d(u1, u2)/u1, u2 ∈ OT (x)} <∞.

T is said to be uniformly orbitally bounded if it is uniformly orbitally bounded at any
point x ∈ X.

Remark 2.3 Let (X, d) be a metric space and T : X −→ CB(X). Let x ∈ X, it is
easy to observe that if T is uniformly orbitally bounded at x, then T is strictly orbitally
bounded at the same point but the converse is in general not true since in general an
infinite union of bounded sets is not necessarily bounded.

Definition 2.4 Let (X, d) be a metric space and T : X −→ CB(X). We say that T has
the property P if there exists ϕ : C(T ) −→ [0,+∞[ such that H(Z, TZ) ≤ ϕ(Z)−ϕ(TZ)
for all Z ∈ C(T ).

Theorem 2.1 Let (X, d) be a metric space and T : X −→ CB(X) be a strictly
orbitally bounded multi-valued mapping. Then T has the property P if and only if for

all z ∈ X the series
∞∑
n=0

H(Tn+1z, Tnz) are convergent.

Proof. Assume that there exists ϕ : C(T ) −→ [0,+∞[ such that H(Z, TZ) ≤ ϕ(Z) −
ϕ(TZ) for all Z ∈ C(T ), then

ϕ(Z) ≥ ϕ(TZ) ≥ ϕ(T 2Z) ≥ ϕ(T 3Z) ≥ .........

It follows that for all z ∈ X, we have

H(Tnz, Tn+1z) ≤ ϕ(Tnz)− ϕ(Tn+1z).

By summation, we infer that for all integer m ≥ 1
m∑
n=0

H(Tn+1z, Tnz) ≤ ϕ(Tz)− ϕ(Tm+1z) ≤ ϕ(Tz).

By letting m −→∞ in the previous inequality, we obtain the convergence of the series
∞∑
n=0

H(Tn+1z, Tnz).

Conversely, assume that

∞∑
n=0

H(Tn+1x, Tnx) <∞ for all x ∈ X. If we put

ϕ : C(T ) −→ [0,+∞[.

defined by ϕ(Z) =

∞∑
n=0

H(Tn+1Z, TnZ), Z ∈ C(T ). Hence ϕ has the desired property.
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Theorem 2.2 Let (X, d) be a complete metric space and T : X −→ CB(X) be a
strictly orbitally bounded multi-valued mapping having the property P. Then T is a
uniformly orbitally bounded multi-valued mapping.

Proof. First of all, we will prove that for all x ∈ X, {Tnx}n is a Cauchy sequence in
(CB(X), H). Indeed, from our assumptions together with Theorem 2.1, we deduce

that
∞∑
n=0

H(Tn+1x, Tnx) <∞ for all x ∈ X. Now, let z an arbitrary element of X. For

all integers n,m(n < m), we have

H(Tnz, Tmz) = H(Tnz, Tmz) ≤ H(Tnz, Tn+1z) + ........H(Tm−1z, Tmz)

≤
∞∑
k=n

H(Tnz, Tn+1z).

the Cauchy criterion concerning convergent series shows that for all ε > 0 there exists an

integer n0 ≥ 1 for which
∞∑
k=n

H(Tnz, Tn+1z) < ε for n ≥ n0. This proves that {Tnz}n

is a Cauchy sequence in (CB(X), H) and consequently there exists A ∈ CB(X) such
that Tnz −→ A with respect to the metric H. Fix ε > 0, then there exists an integer
n1 ≥ 1 such that H(Tnz,A) < ε

2 for all n ≥ n1. Hence

d(u,A) ≤ H(Tnz,A) = H(Tnz,A) < ε
2 for all u ∈ Tnz

Let n ≥ n1 and let x1, x2 ∈ Tnz, then

d(x1, A) ≤ H(Tnz,A) = H(Tnz,A) <
ε

2
;

and

d(x2, A) ≤ H(Tnz,A) = H(Tnz,A) <
ε

2
;

By the definition of the infimum, we obtain the existence of v1, v2 ∈ A such that

d(x1, v1) ≤ H(Tnz,A) +
ε

2
;

and

d(x2, v2) ≤ H(Tnz,A) +
ε

2
;

Thus

d(x1, x2) ≤ d(x1, v1) + d(v1, v2) + d(v2, x2)

≤ 2ε+ d(v1, v2)

≤ 2ε+ δ(A).

This gives that

δ(Tnz) = sup
x1,x2∈Tnz

{d(x1, x2)} ≤ 2ε+ δ(A);
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Moreover, the fact that T is strictly orbitally bounded implies that the sets {Tnz}n∈{0,1,....,n1−1}
are bounded. Consequently, by the reasoning given above, we deduce that the setOT (x)
is bounded which gives the desired result.

Proposition 2.1 Let (X, d) be a complete metric space and T : X −→ CB(X) be a
closely continuously orbitally multi-valued mapping at y ∈ X. Then OT (y) is invariant
under T .

Proof. Let z ∈ OT (y) then there exists a sequence (zn)n ⊂ OT (y) such that zn −→ z
in (X, d). Moreover, the fact that T is strictly continuously orbitally bounded shows
that Tzn −→ Tz in (CB(X), H). Now if y ∈ Tz, then

d(y, Tzn) ≤ d(y, Tz) +H(Tz, Tzn);

Since H(Tz, Tzn) −→ 0 (n −→∞) and y ∈ Tz we get d(y, Tzn) −→ 0 (n −→∞). The
definition of the infimum shows that for any integer n ≥ 1, there exists yn ∈ Tzn for
which

d(y, yn) ≤ d(y, Tzn) + 1
n ;

which implies that d(y, yn) −→ 0(n −→ ∞). On the other hand since (yn)n ⊂ OT (y),
then Tzn ⊂ OT (y). This proves that Tz ⊂ OT (y) and gives the desired result.

3 Fixed Point Results

3.1 Caristi fixed point theorem and some consequences

It is well known that Caristi’s fixed point theorem is one of the powerfull result existing
in the fixed point theory. The multivalued version of this theorem was established
by Mizoguchi-Takahashi [13] who proved that this version is equivalent to Eukeland’s
principle. Also, this theorem was used by [4, 13] to obtain some fixed point results and
weakly inwardness property for some generalized contractions.

Theorem 3.1 [12] Let (X, d) be a complete metric space and let T : X −→ CB(X) a
multi-valued mapping such that for each x ∈ X, there exists y ∈ Tx satisfying

ψ(y) + d(x, y) ≤ ψ(x),

where ψ is a proper, bounded below and lower semicontinuous function of X into
(−∞,+∞). Then T has a fixed point, that is there exists z ∈ X such that z ∈ Tz.

In the next proposition, we will prove that multi-valued mapppings having the property
P have fixed points if some additional assumptions on the function ϕ are required. More
precisely, let (X, d) be a complete metric space and T : X −→ CB(X) a multi-valued
mapping having the property P, we denote by ϕ̃ : X −→ [0,+∞[ the function defined
by

ϕ̃(x) = ϕ({x});

Thus we have
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Proposition 3.1 Let (X, d) be a complete metric space and let T : X −→ CB(X) a
multi-valued mapping having the property P for which ϕ̃ is lower semicontinuous and
satisfies that for each x ∈ X there exists y ∈ Tx satisfying that ϕ(Tx) ≥ ϕ̃(y). Then
T has a fixed point, that is there exists z ∈ X such that z ∈ Tz.

Proof. For each x ∈ X, we have

H({x}, Tx) ≤ ϕ({x})− ϕ(Tx)

≤ ϕ̃(x)− ϕ̃(y).

On the other hand since y ∈ Tx, we have

d(x, y) ≤ H({x}, Tx) = max{d(x, Tx), sup
z∈Tx

d(z, x)};

Hence, we get

d(x, y) ≤ ϕ̃(x)− ϕ̃(y);

Now, the result follows immediately from Theorem 3.1.

3.2 Fixed point theorems for Hardy-Rogers mappings

First of all, we prove that Hardy-Rogers mappings are strictly orbitally bounded.

Theorem 3.2 Let (X, d) be a complete metric space and T : X −→ CB(X) be such
that

H(Tx, Ty) ≤ k1d(x, y) + k2(d(x, Tx) + d(y, Ty)) + k3(d(x, Ty) + d(y, Tx)),

for ki ≥ 0 (i = 1, 2, 3) such that k1 + 2k2 + 2k3 < 1 and all x, y ∈ X. Then T is strictly
orbitally bounded.

Proof. Let x ∈ X. It suffices to prove that T 2x is bounded, the case for n > 2 can be
deduced by induction. Let u1 ∈ T 2x, then there exists w1 ∈ Tx such that u1 ∈ Tw1.
Now, if u2 ∈ T 2x, then u2 ∈ Tw2 for some w2 ∈ Tx.

Let ε > 0, thus there exists v1 ∈ Tw2 such that

d(u1, v1) ≤ H(Tw1, Tw2) + ε.

Hence

d(u1, u2) ≤ d(u1, v1) + d(v1, u2)

≤ H(Tw1, Tw2) + ε+ d(v1, u2)

≤ k1d(w1, w2) + k2(d(w1, Tw1) + d(w2, Tw2))

+ k3(d(w1, Tw2) + d(w2, Tw1)) + ε+ d(v1, u2). (?)

Now, since w1 ∈ Tx, we have
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d(w1, Tw1) ≤ H(Tx, Tw1)

≤ k1d(x,w1) + k2(d(x, Tx) + d(w1, Tw1)) + k3(d(x, Tw1) + d(w1, Tx))

≤ k1(d(x, Tx) + d(w1, Tx)) + k2(d(x, Tx) + d(w1, Tw1))

+ k3(d(x, Tw1) + d(w1, Tx))

= k1d(x, Tx) + k2(d(x, Tx) + d(w1, Tw1)) + k3d(x, Tw1)

≤ k1d(x, Tx) + k2(d(x, Tx) + d(w1, Tw1) + k3(d(x, Tx) + d(w1, Tw1)).

Therefore

d(w1, Tw1) ≤
k1 + k2 + k3
1− k2 − k3

d(x, Tx)

By a similar way, we can show that

d(w2, Tw2) ≤
k1 + k2 + k3
1− k2 − k3

d(x, Tx)

By substituting in (?), we obtain that

d(u1, u2) ≤ k1d(w1, w2) + k2(d(w1, Tw1) + d(w2, Tw2))

+ k3(d(w1, Tw2) + d(w2, Tw1)) + ε+ d(v1, u2)

≤ (k1 + 2k3)δ(Tx) + 2(k2 + k3)(
k1 + k2 + k3
1− k2 − k3

)d(x, Tx) + ε+ δ(Tw2).

Since u2 is arbitrary in T 2x, this shows that T 2x is included in the closed ball of center

u2 and radius r = (k1 + 2k3)δ(T (x)) + 2(k2 + k3)(
k1 + k2 + k3
1− k2 − k3

)d(x, Tx) + ε + δ(Tw2)

which gives the result.

Lemma 3.1 Let (X, d) be a complete metric space and h1, h2, h3 : X ×X −→ [0,∞)
three functions satisfying that

sup{h1(x, y) + 2h2(x, y) + 2h3(x, y) : a ≤ d(x, y) ≤ b} < 1,

for each finite closed interval [a, b] ⊂ (0,∞). Assume that if (xn, yn) ∈ X×X such that

lim
n−→∞

d(xn, yn) = 0 then lim
n−→∞

(h1(xn, yn) + 2h2(xn, yn) + 2h3(xn, yn)) = η for some

η ∈ [0, 1). Then

sup{h1(x, y) + 2h2(x, y) + 2h3(x, y) : 0 ≤ d(x, y) ≤ b} < 1.

Proof. Assume that sup{h1(x, y) + 2h2(x, y) + 2h3(x, y) : 0 ≤ d(x, y) ≤ b} = 1. Thus
there exists (xn, yn) ∈ X ×X such that

h1(xn, yn) + 2h2(xn, yn) + 2h3(xn, yn) −→ 1.

Necessarily (xn, yn) has a subsequence (xnk
, ynk

) such that d(xnk
, ynk

) −→ 0, hence by
assumption

lim
k−→∞

(h1(xnk
, ynk

) + 2h2(xnk
, ynk

) + 2h3(xnk
, ynk

)) = η for some η ∈ [0, 1).

which is a contradiction.
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Theorem 3.3 Let (X, d) be a complete metric space and let T : X −→ CB(X)
satisfying that

H(Tx, Ty) ≤ h1(x, y)d(x, y)+h2(x, y)(d(x, Tx)+d(y, Ty))+h3(x, y)(d(x, Ty)+d(y, Tx))

where h1, h2, h3 : X ×X −→ [0,∞) three functions with

sup{h1(x, y) + 2h2(x, y) + 2h3(x, y) : 0 ≤ d(x, y) ≤ b} < 1,

Then T has the property P.

Proof. Let x ∈ X. Following Theorem 2.1, it suffices to show that the series
∞∑
n=0

H(Tn+1x, Tnx)

is convergent. First, we prove that the sequence H(Tn+1x, Tnx) is decreasing.

Let u1 ∈ Tnx =
⋃

z∈Tn−1x

Tz and Tn+1x =
⋃

v∈Tnx

Tv. Then

d(u1, T
n+1x) = inf

y∈Tn+1x
d(u1, y)

≤ d(u1, T v) for each v ∈ Tnx
≤ H(Tu, Tv) for some u ∈ Tn−1x
≤ h1(u, v)d(u, v) + h2(u, v)(d(u, Tu) + d(v, Tv)) + h3(u, v)(d(v, Tu) + d(u, Tv))

≤ h1(u, v)(d(u, Tnx) + d(v, Tnx)) + h2(u, v)(d(u, Tnx) + d(Tu, Tnx))

+ d(v, Tnx) + d(Tv, Tnx)) + h3(u, v)(d(v, Tnx) + d(Tu, Tnx)

+ d(u, Tnx) + d(Tv, Tnx))

≤ h1(u, v)d(u, Tnx) + h2(u, v)(d(u, Tnx) +H(Tn+1x, Tnx))

+ h3(u, v)(H(Tn+1x, Tnx) + d(u, Tnx))

≤ h1(u, v)H(Tn−1x, Tnx) + h2(u, v)(H(Tn−1x, Tnx)+

H(Tn+1x, Tnx)) + h3(u, v)(H(Tn+1x, Tnx) +H(Tn−1x, Tnx))

≤ (h1(u, v) + h2(u, v) + h3(u, v))H(Tn−1x, Tnx)

+ (h2(u, v) + h3(u, v))H(Tn+1x, Tnx).

By a same way, we can prove that

d(z, Tnx) ≤ (h1(u, v) + h2(u, v) + h3(u, v))H(Tn−1x, Tnx)

+ (h2(u, v) + h3(u, v))H(Tn+1x, Tnx),

for all z ∈ Tn+1x. Hence

H(Tnx, Tn+1x) ≤ (h1(u, v) + h2(u, v) + h3(u, v))H(Tn−1x, Tnx)

+ (h2(u, v) + h3(u, v))H(Tn+1x, Tnx),

This gives that

H(Tnx, Tn+1x) ≤ h1(u, v) + h2(u, v) + h3(u, v)

1− h2(u, v)− h3(u, v))
H(Tn−1x, Tnx) ≤ H(Tn−1x, Tnx),
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Now, let ε > 0, thus for every integer n ≥ 1 and yn ∈ Tn−1x, we can choose zn ∈ Tnx
such that

d(yn, zn) ≤ d(yn, T
nx) + ε, (??)

Hence

d(yn, zn) ≤ H(Tn−1x, Tnx) + ε,

Since (??) is true for every yn ∈ Tn−1x and the fact that the sequence H(Tnx, Tn+1x)
is decreasing implies that the sequence {d(yn, zn)} is bounded for all n.

Let r0 = lim
n−→∞

H(Tnx, Tn+1x). Since sup{h1(x, y)+2h2(x, y)+2h3(x, y) : 0 ≤ d(x, y) ≤

r0+ε} < 1, there exists k ∈ [0, 1) such that sup{h1(yn, zn) + h2(yn, zn) + h3(yn, zn)

1− h2(yn, zn)− h3(yn, zn)
} =

k.

It follows that for every u1 ∈ Tnx,

d(u1, T
n+1x) ≤ h1(yn, zn)d(yn, zn) + h2(yn, zn)(d(yn, T yn) + d(zn, T zn))

+ h3(yn, zn)(d(yn, T zn) + d(zn, T yn))

≤ h1(yn, zn)(d(yn, T
nx) + d(zn, T

nx)) + h2(yn, zn)(d(yn, T
nx)

+ d(Tnx, Tyn) + d(zn, T
nx) + d(Tzn, T

nx)) + h3(yn, zn)(d(yn, T
nx)

+ d(Tnx, Tzn) + d(zn, T
nx) + d(Tyn, T

nx))

≤ h1(yn, zn)H(Tn−1x, Tnx) + h2(yn, zn)(H(Tn−1x, Tnx)

+H(Tnx, Tn+1x) +H(Tn+1x, Tnx)) + h3(yn, zn)(H(Tn−1x, Tnx)

+H(Tnx, Tn+1x) +H(Tn+1x), Tnx)).

Similarly, we can prove that for each u2 ∈ Tn+1x, we have

d(u2, T
nx) ≤ h1(yn, zn)H(Tn−1x, Tnx) + h2(yn, zn)(H(Tn−1x, Tnx)

+H(Tnx, Tn+1x) +H(Tn+1x, Tnx)) + h3(yn, zn)(H(Tn−1x, Tnx)

+H(Tnx, Tn+1x) +H(Tn+1x, Tnx)).

Consequently, we get

H(Tnx, Tn+1x) ≤ h1(yn, zn)H(Tn−1x, Tnx) + h2(yn, zn)(H(Tn−1x, Tnx)

+H(Tnx, Tn+1x) +H(Tn+1x, Tnx)) + h3(yn, zn)(H(Tn−1x, Tnx)

+H(Tnx, Tn+1x) +H(Tn+1x, Tnx)).

Thus,

H(Tnx, Tn+1x) ≤ kH(Tn−1x, Tnx)

and by induction, we deduce that
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H(Tnx, Tn+1x) ≤ knH({x}, Tx)

and shows the convergence of the series
∞∑
n=0

H(Tnx, Tn+1x) which achieves the proof.

In the following result we will prove that the fixed point result for Hardy-Rogers or-
bitally continuous mappings is equivalent to the same result in the case of bounded
complete metric spaces.

Theorem 3.4 [11, 7] Let (Y, d) be a complete metric space and T : Y −→ CB(Y ) be
a closely orbitally continuous multi-valued mapping such that

H(Tx, Ty) ≤ k1d(x, y) + k2(d(x, Tx) + d(y, Ty)) + k3(d(x, Ty) + d(y, Tx)),

for ki ≥ 0 (i = 1, 2, 3) with k1 + 2k2 + 2k3 < 1 and all x, y ∈ Y . Then there exists
z ∈ X such that z ∈ Tz.

Assume that the boundedness assumption on the metric space does not weaken the
previous theorem. We give a proof of this equivalence after the following theorem

Theorem 3.5 Let (Y, d) be a bounded complete metric space and T : Y −→ CB(Y )
be a closely orbitally continuous multivalued mapping such that

H(Tx, Ty) ≤ k1d(x, y) + k2(d(x, Tx) + d(y, Ty)) + k3(d(x, Ty) + d(y, Tx)),

for ki ≥ 0 (i = 1, 2, 3) with k1 + 2k2 + 2k3 < 1 and all x, y ∈ Y . Then there exists
z ∈ X such that z ∈ Tz.

Proof. It is easy to observe that Theorem 3.4 implies Theorem 3.5. For the converse,
since T is closely orbitally continuous multivalued mapping, then Theorem 3.3 and 2.2
together with Proposition 2.1 show that the set Ox(T ) is bounded and invariant. Now,
by taking Y = Ox(T ) in Theorem 3.5, we get the result.

Remark 3.1 It is be noted that generalized contractions with non constant coefficients
are not in general Nadler’s contractions (see Example 1 in [8]).

Corollary 3.1 Let (X, d) be a complete metric space and let T : X −→ CB(X) be a
closely orbitally continuous multi-valued mapping such that

H(Tx, Ty) ≤ h1(x, y)d(x, y) + h2(x, y)(d(x, Tx) + d(y, Ty))

+ h3(x, y)(d(x, Ty) + d(y, Tx)),

such that h1, h2, h3 : X ×X −→ [0,∞) are three functions satisfying that

sup{h1(x, y) + 2h2(x, y) + 2h3(x, y) : a ≤ d(x, y) ≤ b} < 1.

for each finite closed interval [a, b] ⊂ (0,∞). Assume that if (xn, yn) ∈ X ×X is such
that lim

n−→∞
d(xn, yn) = 0, then lim

n−→∞
(h1(xn, yn) + 2h2(xn, yn) + 2h3(xn, yn)) = k for

some k ∈ [0, 1). Then T has a fixed point in X.
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Proof. From Lemma 3.1, we have

sup{h1(x, y) + 2h2(x, y) + 2h3(x, y) : 0 ≤ d(x, y) ≤ b} < 1

Since T is closely orbitally continuous, Proposition 2.1 shows that OT (x) is invariant
under T for x ∈ X. Moreover, by Theorem 3.3, it is a bounded set. Thus T restricted
to OT (x) reduces to a Hardy-Rogers multivalued mapping. Then following Theorem
3.5, T has a fixed point in X.

We note that our results extend and generalize in a certain sense those of [5]. Also, the
results of this subsection can be adopted to obtain a same results concerning Kannan’s
and Reich’s multivalued mappings [15] and as a corollaries of theses results, we can
obtain

Corollary 3.2 Let (X, d) be a complete metric space and let T : X −→ CB(X) be a
closely orbitally continuous multi-valued mapping such that

H(Tx, Ty) ≤ h1(x, y)d(x, y) + h2(x, y)(d(x, Tx) + d(y, Ty)),

where h1, h2, h3 : X ×X −→ [0,∞) are two functions satisfying that

sup{h1(x, y) + 2h2(x, y) : a ≤ d(x, y) ≤ b} < 1.

for each finite closed interval [a, b] ⊂ (0,∞). Assume that if (xn, yn) ∈ X ×X is such
that lim

n−→∞
d(xn, yn) = 0, then lim

n−→∞
(h1(xn, yn) + 2h2(xn, yn)) = k for some k ∈ [0, 1).

Then T has a fixed point in X.

Corollary 3.3 Let (X, d) be a complete metric space and let T : X −→ CB(X) be a
closely orbitally continuous multi-valued mapping such that

H(Tx, Ty) ≤ h1(x, y)d(x, y) + h2(x, y)(d(x, Ty) + d(y, Tx)),

where h1, h2 : X ×X −→ [0,∞) are two functions satisfying that

sup{h1(x, y) + 2h2(x, y) : a ≤ d(x, y) ≤ b} < 1.

for each finite closed interval [a, b] ⊂ (0,∞). Assume that if (xn, yn) ∈ X ×X is such
that lim

n−→∞
d(xn, yn) = 0, then lim

n−→∞
(h1(xn, yn) + 2h2(xn, yn)) = k for some k ∈ [0, 1).

Then T has a fixed point in X.
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