Common Fixed Point Theorems For Semigroup Actions Of Kannan type On Strictly Convex Banach spaces

Abdelkader Dehici

Abstract

Let C be a weakly compact convex subset of a strictly convex Banach space X. Let S be a semitopological semigroup which acts on C so that the action is weakly separately continuous of weakly continuous Kannan mappings with some additional conditions for which the functions $s \in S \longrightarrow f_x(s) = f(sx)$ and $s \in S \longrightarrow f_x(s) = f(xs)$ belongs to Z a closed linear subspace of $l^{\infty}(S)$ containing constants and invariant under translations for every $f \in C(S)$. We prove that if Z has a left invariant mean then C has a common fixed point of S.

Mathematics Subject Classification (2010): 47H10

1 Introduction

Let S be a semitopological semigroup, in other words a semigroup with a Hausdorff topology such that the mappings $s \in S \longrightarrow st$ and $s \in S \longrightarrow ts$ are continous from S into S for each $t \in S$. Let $l^{\infty}(S)$ be the Banach space of bounded real-valued functions on S with the supremum norm. For $s \in S$ and $g \in l^{\infty}(S)$, the left and right translations of g in $l^{\infty}(S)$ are defined by

$$l_s g(t) = g(st)$$
 and $r_s g(t) = g(ts)$

for all $t \in S$.

Let X be a closed linear subspace of $l^{\infty}(S)$ containing constants and invariant under translations, i.e., $l_s(X) \subset X$ and $r_s(X) \subset X$. A linear functional $\mu \in X^*$ is called a left invariant mean on X if $\|\mu\| = \mu(1) = 1$ and $\mu(l_sg) = \mu(g)$ for each $s \in S$ and $g \in X$. By a same way, we can define a right invariant mean. Let C(S) the closed subalgebra consisting of all continuous functions on S and let LUC(S) be the space of left uniformly continuous functions on S, i.e. all functions $f \in C(S)$ such that the mappings $s \in S \longrightarrow l_s f$ from S to C(S) is continuous if C(S) is equipped with the sup norm topology.

Keywords: strictly convex Banach space, weakly compact convex subset, Kannan semigroup action, invariant mean, weakly almost periodic function, common fixed point.

Corresponding author address: Laboratory of Informatics and Mathematics University of Souk-Ahras, P.O.Box 1553, Souk-Ahras 41000, Algeria

E-mails: dehicikader@yahoo.fr

A function $f \in C(S)$ is strongly almost periodic if the set $\{l_a f; a \in S\}$ is relatively compact in C(S) equipped with the sup norm topology. We denote by AP(S), the space of strongly almost periodic functions on S which is a sup norm closed translation invariant subalgebra of C(S) containing constants. Also, it is known that $f \in AP(S)$ if and only if the set $\{r_a f; a \in S\}$ is relatively compact in C(S) equipped with the sup norm topology.

A function $f \in C(S)$ is strongly weakly almost periodic if the set $\{l_a f; a \in S\}$ (equivalently, $\{r_a f; a \in S\}$) is relatively weakly compact in C(S) equipped with the sup norm topology. We denote by WAP(S), the space of strongly weakly almost periodic functions on S. In general, we have

$$AP(S) \subset WAP(S) \cap LUC(S)$$

and if S is a discrete set, we obtain the following inclusions

$$AP(S) \subset WAP(S) \subset LUS(S) = l^{\infty}(S)$$

Let K be a subset of a Banach space X with a norm $\|.\|$. An action of S on K is a mapping of the set $S \times K$ into K, denoted by $(s, x) \longrightarrow s.x = T_s x$ for which $(s_1s_2).x = s_1(s_2.x)$ for all $s_1, s_2 \in S, x \in K$. A point $x \in K$ is a common fixed point of S with respect to this action if $s.x = T_s x = x$ for all $s \in S$. An action of S on K is called of Kannan's type if it satisfies that:

$$||sx - sy|| = ||T_sx - T_sy||$$

$$\leq \frac{1}{2}(||x - sx|| + ||y - sy||) \text{ for all } x, y \in K.$$

A strictly convex Banach space X is a Banach space such that for every $x, y \in X$, if $x \neq 0, y \neq 0$ and ||x + y|| = ||x|| + ||y|| then necessarily we obtain that x = cyfor some c > 0. This is equivalently to the fact that, if for any $x_1, x_2, x_3 \in X$ and $||x_1 - x_2|| + ||x_2 - x_3|| = ||x_1 - x_3||$, then necessarily x_2 belongs to the segment $[x_1, x_3] = \{tx_1 + (1 - t)x_3; t \in [0, 1]\}$.

Remark 1.1 It is well known that Hilbert spaces and $L_p([0,1](1 are strictly convex. Also, every uniformly convex space is strictly convex but the converse is in general not true (see [2]).$

2 Main Results

First of all, we give the following basic lemma.

Lemma 2.1 Let S be a semitopological semigroup and Z a closed linear subspace of $l^{\infty}(S)$ containing constants and invariant under translations. Suppose that S acts on a weakly compact subset K of a Banach space X so that the action is weakly separately continuous and there exists $x \in K$ such that for every $h \in C(K)$, the function $s \in S \longrightarrow h_y(s) = h(s.y)$ belongs to Z. If Z has a left mean, then there exists a nonempty weakly compact and norm-separable subset $F_0 \subset K$ such that $sF_0 = \{s.y : y \in F_0\} = F_0$ for every $s \in S$.

Remark 2.1 The existence of F_0 given in the previous lemma is connected to the properties of probability Radon measures on K corresponding to some functionals associated to left means on Z (see Lemma 3.5 in [7]).

Our main result in this work is given by the following theorem for which the proof is based essentially of many techniques used by [3, 7].

Theorem 2.1 Let S be a semitopological semigroup and Z a closed linear subspace of $l^{\infty}(S)$ containing constants and invariant under translations. Assume that S acts on a weakly compact subset D of a strictly convex Banach space X such that the action is weakly separately continuous of weakly continuous Kannan mappings satisfying the following assumptions:

(*i*) For every neighborhood \widetilde{V} of 0 in X, there exists $\delta > 0$ with $N_{\delta} \subset \widetilde{V}$ such that for every $z \in D$, there exists a sequence $\{t_j\}_{j=1}^{\infty} \subset S$ and $\{x_j\}_{j=1}^{\infty} \subset D$ for which

$$T_{s_j}((x_j + N_{\delta}) \cap D) \subseteq (z + N_{\delta} + \tilde{V}) \cap D$$

where $s_j = t_j t_{j-1} \dots t_1$ for all $j \ge 1$.

(*ii*) For every $\epsilon > 0$ and for every integers $j, p \ge 1 (j \le p)$, we have

$$T_{t_p t_{p-1},\ldots,t_{j+1}}((z+N_{\delta}) \cap D) \subseteq T_{t_p t_{p-1},\ldots,t_{j+1}}(z) + N_{\epsilon}$$

Assume that the function $s \in S \longrightarrow h_y(s) = h(s,y)$ belongs to Z for every $y \in D$ and every $h \in C(D)$. If Z has a left invariant mean then there is a common fixed point of S in D.

Proof. We recall that a subset $Y \subseteq D$ is called invariant if $sy \in Y$ for all $s \in S, y \in Y$. So, by Kuratowski-Zorn's lemma, there exists a nonempty minimal weakly compact and convex subset C of D which is invariant under S. Again, by the same lemma, there exists a nonempty minimal weakly compact subset K of D which is invariant under S. Fix $x \in K$ then if $h \in C(K)$ we have $h_x = \tilde{h}_x \in Z$, where $\tilde{h}_x : D \longrightarrow \mathbb{C}$ is an extension of h_x to the set D. Applying lemma 2.1 to ensure the existence of a weakly compact and norm-separable subset F_0 of K such that $sF_0 = F_0$ for every $s \in S$. From minimality of K, we obtain $F_0 = K$ is separable and $\{T_s.x = x : s \in S\}$ is weakly dense in K for every $x \in K$. Now, by taking account to assumptions (i) and (i) and the proof of Lemma 5.2 in [4], we get that K is norm-compact. If diam(K) = 0, then K is a singleton, then the point in this set is a common fixed point of S. Assume then that K has at least two points. Let $\delta(K) = diam(K) > 0$. Now, let $s \in S$, by the Schauder-Tychonoff fixed point theorem, we have $sw_s = w_s$ for some $w_s \in K$. Since Kis compact, then there exists $y_0 \in K$ such that $||y_0 - w_s|| = \sup\{||x - w_s|| : x \in K\}$. Also, the fact that $y_0 = s\tilde{y}_0$ for some $\tilde{y}_0 \in K$ gives that

$$||w_s - y_0|| = ||sw_s - s\tilde{y_0}|| \le \frac{1}{2} ||\tilde{y_0} - s\tilde{y_0}|| \le \frac{1}{2} \delta(K).$$

By the choice of $\tilde{y_0}$, it follows that

$$||w_s - x|| \le \frac{1}{2}\delta(K) \quad \text{for all } x \in K.$$
(2.1)

Also, the compactness of K implies the existence of $x_1, x_2 \in K$ such that $||x_1 - x_2|| = \delta(K)$. Hence

$$\delta(K) = \|x_1 - x_2\| \le \|x_1 - w_s\| + \|x_2 - w_s\| \le \delta(K).$$
(2.2)

Consequently, we get

$$||x_1 - x_2|| = ||x_1 - w_s|| + ||x_2 - w_s||.$$

Since X est strictly convex, it follows that, $w_s = t_0 x_1 + (1 - t_0) x_2$ $(t_0 \in]0, 1[)$. Now, by (2.1), we prove easily that $t_0 = \frac{1}{2}$ and shows that $w_s = \frac{1}{2}(x_1 + x_2)$ for all $s \in S$. If we denote by $w_0 = \frac{1}{2}(x_1 + x_2)$, it follows that w_0 is a unique common fixed point of S.

Remark 2.2 For Kannan's action, the uniqueness of the common fixed point is ensured which is not the case for nonexpansive actions.

Theorem 2.2 Let S be a semitopological semigroup. Assume that S acts on a weakly compact subset D of a strictly convex Banach space X such that the action is weakly separately continuous (i.e., separately continuous when D is equipped with the weak topology), weakly quasi-equicontinuous of weakly continuous Kannan mappings satisfying the following assumptions:

(i) For every neighborhood \widetilde{V} of 0 in X, there exists $\delta > 0$ such that $N_{\delta} \subset \widetilde{V}$ such that for every $z \in D$, there exists a sequence $\{t_j\}_{j=1}^{\infty} \subset S$ and $\{x_j\}_{j=1}^{\infty} \subset D$ for which

$$T_{s_i}((x_j + N_{\delta}) \cap D) \subseteq (z + N_{\delta} + V) \cap D)$$

where $s_j = t_j t_{j-1} \dots t_1$ for all $j \ge 1$.

(*ii*) For every $\epsilon > 0$ and for very integers $j, p \ge 1 (j \le p)$, we have

$$T_{t_p t_{p-1} \dots t_{j+1}}((z+N_{\delta}) \cap D) \subseteq T_{t_p t_{p-1} \dots t_{j+1}}(z) + N_{\epsilon}$$

Assume that WAP(S) has a left invariant mean, then S has a common fixed point on S.

Proof. If WAP(S) has a left invariant mean, the fact that the action is weakly separately continuous and weakly quasi-equicontinuous, by using ([5], Lemma 3.2), we get that $h_x(s) = h(s.x), s \in S$ belongs to WAP(S) for every $h \in C(D)$ and $x \in D$. Now, the assumptions of Theorem 2.1 are satisfied with Z = WAP(S) and consequently, we obtain the common fixed point of S in D.

Theorem 2.3 Let S be a semitopological semigroup. Assume that S acts on a weakly compact subset D of a strictly convex Banach space X such that the action is weakly separately continuous (i.e., separately continuous when D is equipped with the weak topology), weakly quasi-equicontinuous of weakly continuous Kannan mappings satisfying the following assumptions:

(*i*) For every neighborhood \widetilde{V} of 0 in X, there exists $\delta > 0$ such that $N_{\delta} \subset \widetilde{V}$ such that for every $z \in D$, there exists a sequence $\{t_j\}_{j=1}^{\infty} \subset S$ and $\{x_j\}_{j=1}^{\infty} \subset D$ for which

$$T_{s_j}((x_j + N_{\delta}) \cap D) \subseteq (z + N_{\delta} + V) \cap D)$$

where $s_j = t_j t_{j-1} \dots t_1$ for all $j \ge 1$.

(*ii*) For every $\epsilon > 0$ and for very integers $j, p \ge 1 (j \le p)$, we have

$$T_{t_p t_{p-1}, \dots, t_{j+1}}((z+N_{\delta}) \bigcap D) \subseteq T_{t_p t_{p-1}, \dots, t_{j+1}}(z) + N_{\epsilon}$$

Assume that AP(S) has a left invariant mean, then S has a common fixed point on S.

Proof. If AP(S) has a left invariant mean, the fact that the action is weakly separately continuous and weakly quasi-equicontinuous, by using ([6], Lemma 3.1), we get that $h_x(s) = h(s.x), s \in S$ belongs to WAP(S) for every $h \in C(D)$ and $x \in D$. Now, the assumptions of Theorem 2.1 are satisfied with Z = WAP(S) and consequently, we obtain the common fixed point of S in D.

Remark 2.3 In the case of nonexpansive mappings, it is easy to observe that for every $n \in \mathbb{N}, T^n$ is nonexpansive which is not the case of Kannan mappings. Indeed, it suffices to take $T : \mathbb{R} \longrightarrow \mathbb{R}$ given by Tx = 1 - x, thus T is a Kannan mapping but $T^2 = I$ which is not a Kannan mapping. But if $f : \mathbb{R} \longrightarrow \mathbb{R}$ given by

$$f(x) = \begin{cases} 0 & \text{if } x \le 2\\ -\frac{1}{2} & \text{if } x > 2. \end{cases}$$

It is easy to observe that f is a Kannan mapping with $f^2 = 0$ and consequently $S = \{0, f\}$ is a Kannan semigroup which acts on \mathbb{R} (it can be equipped with it's discrete topology).

References

- R. Demarr, Common fixed points for commuting contractive mappings, Pacific. J. Math., (13) (1963), 1139-1141.
- [2] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics. First edition (1990).
- [3] A. T. Lau and C. S. Wong, Common fixed points for semigroups of mappings, Proc. Amer. Math. Soc., 41 (1) (1973), 223-228.
- [4] A. T. Lau and W. Takahashi, Invariant means and fixed point properties for nonexpansive representations of topological semigroups, Topol. Methods. Nonlinear. Anal., (5) (1995), 39-57.
- [5] A. T. Lau and Y. Zhang, Fixed point properties for semigroups of nonlinear mappings and amanability, J. Func. Anal., (254) (2008), no. 10, 2534-2554.
- [6] A. T. Lau, Invariant means on almost periodic functions and fixed point properties, Rocky. Mountain. J. Math., (3) (1973), 69-76.
- [7] A. Wisnicki, Amenable semigroups of nonexpansive mappings on weakly compact convex sets, J. Nonlinear. Convex. Anal., 17 (2016), 2119-2127.
- [8] C. S. Wong, Fixed points of generalized nonexpansive mappings on an interval, Proc. Amer. Math. Soc., 42 (1974), 234-235.