Some Results On Generalized Kirk's Process In Banach Spaces and Application

Abdelkader Dehici (work in collaboration with Nadjeh Redjel)

Laboratory of Informatics and Mathematics University of Souk-Ahras, Algeria

ISAAC 2017 Linnaeus University (SWEDEN), Växjö, August 14-18

Work plan

- 1 Basic definitions and preliminaries
- 2 Fixed points formulas
- 3 The case of asymptotically regular mappings
- 4 Convergence of generalized Kirk's processes
- 5 Application to a nonlinear system

• In applied sciences, many problems are modeled by equations

$$u - Tu = f \tag{1}$$

where T is nonlinear and $f \in X$ (convenable Banach space).

• u_0 is a solution of (1) if and only if u_0 is a fixed point of T_f

$$T_f u = T u + f \tag{2}$$

Definition 1.1

Let C be a nonempty subset of a normed space $X.T:C\longrightarrow C$ is said to be **nonexpansive** if

 $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$

In equations (1) and (2), it is easy to observe that T is nonexpansive if and only if T_f is nonexpansive.

Abdelkader Dehici (work in collaboration with Nadjeh Redjel) Some Results On Generalized Kirk's Process In Banach Spaces and Applicatio

Big Question:

Let X be a Banach space and C a closed bounded convex subset of X. Does every nonexpansive selfmapping T on C has a fixed point?

Some positive answers to the big question

If dim(X) < ∞ then T has a fixed point.
 (Consequence of Brouwer's Theorem (1912)).

• If $dim(X) = \infty$ and

C compact then T has a fixed point.
 (Consequence of Schauder's Theorem (1930)).

C weakly compact and has a normal structure then T has a fixed point.
 (W. Kirk, D. Göhde, F. E. Browder (1965-1966)).

A famous negative answer to the big question

•
$$X = L^{1}([0,1])$$

• $||f|| = \int_{0}^{1} |f(t)| dt$,
• $C = \{f \in L^{1}([0,1]), \int_{0}^{1} f(t) dt = 1, 0 \le f \le 2\}$

•
$$T: C \longrightarrow C$$
 defined by

$$T(f)(t) = \begin{cases} \min\{2f(2t), 2\} & 0 \le t \le \frac{1}{2} \\ \max\{2f(2t-1)-2, 0\} & \frac{1}{2} < t \le 1 \end{cases}$$

Then T is nonexpansive and fixed point free. (D. Alpasch (1981)).

Definition 1.2

Let C be a nonempty convex subset of a Banach space X• Let $T: C \longrightarrow C$ be a selfmapping. Define a sequence $(x_n)_n \subset C$ by $x_{n+1} = \lambda x_n + (1 - \lambda) T(x_n) \qquad \lambda \in (0, 1)$ $(x_n)_n$ is called Krasnoselskii process associated to T. 2 Let $T_1, T_2, ..., T_k$ be selfmappings on C. Define $(x_n)_n \subset C$ by $x_{n+1} = \lambda_0 x_n + \ldots + \lambda_k T_k(x_n),$ where $\lambda_1 > 0$, and $\lambda_i \ge 0$, $i \ne 1$ with $\sum_{i=0}^{i} \lambda_i = 1$ $(x_n)_n$ is called generalized Kirk's process associated to the mappings $T_1, ..., T_k$.

(過) (ヨ) (ヨ)

Remark 1.3

- If λ₂ = ... = λ_k = 0 in the case of generalized Kirk's process, then it is reduced to Krasnoselskii process associated to the mapping T₁.
- If T_i = Tⁱ, ∀i ≥ 1 in the case of generalized Kirk's process, then it reduced to the classical Kirk's process associated to the mapping T.
- In the following, we denote by F(T) the set of fixed points of the mapping T.

We start this section by the following lemma.

Lemma 2.1

Let C be a nonempty convex subset of a Banach space X and let T = T be a colfmanning on C For (1) $k = C \begin{bmatrix} 0 & 1 \end{bmatrix}$ with $\sum_{k=1}^{k} 1 = C$

 $T_1, ..., T_k$ be a selfmappings on C. For $(\lambda_i)_{i=0}^k \subset [0, 1]$ with $\sum_{i=0} \lambda_i = 1$, we denote by

$$S = \sum_{i=0}^{k} \lambda_i T_i,$$

with the notation $T_0 = Id_C$, then

$$\bigcap_{i=1}^{k} F(T_i) = F(S) \bigcap \left(\bigcap_{i=1}^{k} F(T_i S) \right).$$

Proof: Let $x_0 \in \bigcap F(T_i)$ then $x_0 \in F(T_i)$ for all integer i = 1, ..., k, which proves that $T_i(x_0) = x_0$ for all i = 1, ..., k and consequently $S(x_0) = \sum_{i=0} \lambda_i T_i(x_0) = x_0$, this gives that $x_0 \in F(S)$ and consequently $x_0 \in F(S) \cap \bigcap^{\kappa} F(T_iS).$ Conversely, let $x_0 \in F(S) \cap \left(\bigcap_{i=1}^k F(T_iS) \right)$, then $S(x_0) = x_0$ and $(T_iS)(x_0) = x_0$ for all integer i = 1, ..., k by composition the equality $S(x_0) = x_0$ by T_i (i = 1, ..., k), we get $(T_iS)(x_0) = T_ix_0 = x_0$ this implies that $x_0 \in F(T_i), \forall i = 1, ..., k$ and consequently k

$$x_0 \in \bigcap_{i=1} F(T_i)$$
, which achieves the proof.

Corollary 2.2

Let *C* be a **nonempty subset** of a Banach space *X* and let $T : C \longrightarrow C$ be a selfmapping then for all $k \ge 1$, we have

 $F(T) = F(T^k) \bigcap F(T^{k+1}).$

Proof: In the proof of Lemma 2.1, it suffices to take that $\lambda_i = 0, T_i = T^i$ for all integer $i \neq k$ and $\lambda_k = 1$ together with $T_k = T^k$.

Remark 2.3

It is easy to observe that **the assumption of the convexity** of the subset C can be **dropped** in Corollary 2.2

Theorem 2.4

Let *C* be a **convex subset** of a Banach space *X* and let $T_1, T_2, ..., T_k$ be a selfmappings satisfying that $\forall x \in C$, and $\forall i, j = 1, ..., k, (i < j)$ there exists an integer n(x) with $1 \le i \le n(x) < j \le k$ such that

$$|T_i(x) - T_j(x)|| \le ||x - T_{n(x)}(x)||$$
(3)

Let
$$(\lambda_i)_{i=0}^k \subset [0,1]$$
 with $\lambda_1 > 0$ and $\sum_{i=0}^k \lambda_i = 1$. We denote

$$S = \sum_{i=0} \lambda_i T_i$$
 (with the notation $T_0 = I_C$). Then

$$\bigcap_{i=1}^k F(T_i) = F(S).$$

▲□ ► ▲ □ ► ▲

Proof It is easy to prove that $\bigcap_{i=1}^{k} F(T_i) \subseteq F(S)$. For the converse, let $x_0 \in F(S)$, thus

$$S(x_0) = \left(\sum_{i=0}^k \lambda_i T_i\right)(x_0) = x_0,$$

this gives that

$$x_0 = \left(\sum_{i=1}^k \left(rac{\lambda_i}{1-\lambda_0}
ight) T_i
ight)(x_0) \quad (\lambda_0
eq 1 \ \textit{since} \ \lambda_1 > 0).$$

Let $\delta = \sup\{||T_i(x_0) - T_j(x_0)||, i, j = 0, ..., k\}$. Assume that $\delta > 0$, the assumption (3) proves that there exists a smallest integer $p(x_0) \in \{1, ..., k\}$ such that

$$\delta = \|x_0 - T_{\rho(x_0)}(x_0)\|.$$

Since
$$\sum_{i=1}^{k} \frac{\lambda_i}{1-\lambda_0} = 1$$
, it follows that
 $x_0 = \gamma_0 T_1(x_0) + (1-\gamma_0)z$,

where $z \in conv\{T_2(x_0), ..., T_k(x_0)\}(\gamma_0 \in (0, 1])$. Thus

$$\begin{split} \delta &= \|x_0 - T_{\rho(x_0)}(x_0)\| = \|\gamma_0 T_1(x_0) + (1 - \gamma_0)z - T_{\rho(x_0)}(x_0)\| \\ &\leq \gamma_0 \|T_1(x_0) - T_{\rho(x_0)}(x_0)\| + (1 - \gamma_0)\|z - T_{\rho(x_0)}(x_0)\| \\ &\leq \gamma_0 \delta + (1 - \gamma_0)\delta = \delta. \end{split}$$

- (i) If $p(x_0) = 1$, this is a contradiction, since, we obtain that $||T_1(x_0) T_1(x_0)|| = 0 = \delta$.
- (*ii*) If $p(x_0) > 1$, by the assumption (3), we obtain the existence of an integer $m(x_0) < p(x_0)$ such that

$$\delta \leq \|T_1(x_0) - T_{\rho(x_0)}(x_0)\| \leq \|x_0 - T_{m(x_0)}(x_0)\|$$

伺い イラト イラト

which gives that
$$||x_0 - T_{m(x_0)}(x_0)|| = \delta$$
 and contradicts the fact that $p(x_0)$ is the smallest integer such that $\delta = ||x - T_{p(x_0)}(x_0)||$. Necessarily, we get $\delta = 0$ and $||x_0 - T_i(x_0)|| = 0$ for all integer $i = 1, ..., k$, consequently $x_0 \in \bigcap_{i=1}^{k} F(T_i)$ which achieves the proof.

・ロト ・四ト ・ヨト ・ヨト

ъ.

Corollary 2.5

Let C be convex subset of a Banach space X and let $T : C \longrightarrow C$ be nonexpansive . Denote by

$$S = \sum_{i=0}^{k} \lambda_i T^i$$

with the notation $T^0 = I_C$ where $(\lambda_i)_{i=0}^k \subset [0, 1]$ together with $\lambda_1 > 0$. and $\sum_{i=0}^n \lambda_i = 1$.

Then F(S) = F(T).

Proof: The result follows from Theorem 2.4 by taking $T_i = T^i$ for all integer *i*. In this case, we have $\bigcap_{i=1}^{k} F(T^i) = F(T)$ since $F(T) \subset F(T^i)$ for all integer $i \ge 1$ and n(x) = j - i $(1 \le i < j \le k)$ for all $x \in C_{i}$.

Definition 3.1

Let *C* be a nonempty subset of a Banach space *X* and let $T : C \longrightarrow C$ is said to be **asymptotically regular** if, for all $x \in C$, we have

$$\lim_{n \to \infty} \|T^{n+1}(x) - T^n(x)\| = 0.$$

Remark 3.2

1 If **T** is a **Banach contraction** then **T** is **asymptotically regular**.

If T is a nonexpansive, then δ_n = ||Tⁿ⁺¹(x) - Tⁿ(x)|| is decreasing but does not converge necessarily to 0.

Indeed, it suffices to take

- $C = X = \mathbb{R}$ equipped with it's usual norm.
- $T : \mathbb{R} \longrightarrow \mathbb{R}$ defined by T(x) = 1 x.

< ロ > < 同 > < 三 > < 三 >

Definition 3.3

A uniformly convex Banach space X is a Banach space such that for every $0 < \epsilon \le 2$ there is some $0 < \delta$ such that for any two vectors x, y with ||x|| = ||y|| = 1, the condition $||x - y|| \ge \epsilon$ implies $\frac{||x + y||}{2} \le 1 - \delta$.

This concept was firstly introduced by James. A. Clarckson in (1936).

Remark 3.4

Intuitively, X is a uniformly convex Banach space if it's unit ball is sufficiently round.

Examples 3.5

Hilbert spaces and L_p([0,1])(1
 L₁([0,1]) and L_∞([0,1]) are not uniformly convex.

イロト イポト イラト イラト

Theorem 3.6

Let *C* be a convex subset of a uniformly convex Banach space *X* and let $T_1, T_2, ..., T_k$ be nonexpansive selfmappings on *C* satisfying assumption (3). Denote by

$$S = \sum_{i=0}^{\kappa} \lambda_i T_i \text{ (with the notation } T_0 = Id_C)$$

where $(\lambda_i)_{i=0}^k \subset [0,1]$ and $\lambda_1 > 0$ with $\sum_{i=1}^n \lambda_i = 1$. If $\bigcap_{i=1}^n F(T_i) \neq \phi$.

Then S is asymptotically regular.

Proof: First of all , since T_i is nonexpansive for all integer $i \in \{1, 2, ..., k\}$, then S is nonexpansive. Moreover, Theorem 2.4 implies that $F(S) = \bigcap F(T_i) \neq \phi$. Assume that $y \in C$ is a fixed point of S and let $x \in C$. Define a sequence $(x_n) \subset C$ by $x_n = S^n x, n \in \mathbb{N}$ with the notation $S^0 = Id_C$. It is easy to show that the sequence $\{||x_n - y||\}_n$ is decreasing, then $\lim_{n \to \infty} ||x_n - y|| = \alpha \ge 0.$ [(i)] If $\alpha = 0$, then $\lim_{n \to +\infty} x_n = y$, since S is continuous (S is nonexpansive), it follows that $\lim_{n \to +\infty} x_{n+1} = \lim_{n \to +\infty} S(x_n) = S(\lim_{n \to +\infty} x_n) = S(y) = y$

and consequently

$$\lim_{n \to +\infty} \|S^{n+1}(x) - S^n(x)\| = \|y - y\| = 0.$$

[(*ii*)] If
$$\alpha > 0$$
, thus
 $x_{n+1} - z_0 = S(x_n) - y = \sum_{i=0}^k \lambda_i T_i(x_n) - y = \lambda_0(x_n - y) - (1 - \lambda_0)z_n$,

where

$$z_n = \frac{1}{1-\lambda_0} \sum_{i=1}^k \lambda_i \left(T_i(x_n) - y \right).$$

Since
$$y \in \bigcap_{i=1}^{k} F(T_i)$$
, we get
$$\|T_i(x_n) - y\| = \|T_i(x_n) - T_i(y)\| \le \|x_n - y\|$$

・ロト ・回ト ・ヨト ・ヨト

2

The fact that
$$\sum_{i=0}^{k} \lambda_i = 1$$
 implies that $\overline{\lim} ||z_n|| \le \alpha$. Moreover, since $\lim_{n \to +\infty} ||x_n - y|| = \alpha$, gives that $\lim_{n \to +\infty} ||x_{n+1} - y|| = \alpha$. From the uniform convexity of X , we get that

$$\lim_{n\longrightarrow +\infty} \|x_n - y - z_n\| = 0,$$

and consequently

$$\lim_{n \to +\infty} x_{n+1} - x_n = \lim_{n \to +\infty} (1 - \lambda_0)(x_n - y - z_n) = 0,$$

which achieves the proof.

(日) (同) (三) (三)

Theorem 4.1

Let X be a uniformly convex Banach space and let $T_1, T_2, ..., T_k$ be nonexpansive compact selfmappings on X satisfying the assumption (3). Denote by S the mapping

$S = \sum_{i=0}^{k} \lambda_i T_i$

with the notation $T_0 = Id_X$, where $(\lambda_i)_{i=0}^k \subset [0, 1], \lambda_1 > 0$ and $\sum_{i=0}^k \lambda_i = 1.$

If $\bigcap_{i=1}^{n} F(T_i) \neq \emptyset$, then for each $x_0 \in X$ the Picard sequence $\{S^n(x_0)\}$ converges to a common fixed point of the mappings $T_1, T_2, ..., T_k$.

- 4 周 ト 4 戸 ト 4 戸 ト

Proof: It follows from Theorem 3.6 that *S* is asymptotically regular with $F(S) = \bigcap_{i=1}^{k} F(T_i) \neq \emptyset$. First of all, we prove that the mapping I - S

maps bounded closed subsets of X into closed subsets of X. Indeed, let C an arbitrary bounded closed subset of X and assume that

 $\lim_{n \to +\infty} (y_n - Sy_n) = y, y_n \in C.$ We will show that $y \in (I - S)(C)$. The fact that each $T_i, 1 \leq i \leq k$ is compact implies the existence of a subsequence $(y_{n^i(I)})_I$ such that $T_i(y_{n^i(I)})_I$ converges to $z_i \in X, 1 \leq i \leq k$ which proves the existence of a subsequence $(y_{f(I)})_I$ of $(y_I)_I$ (with f(1) is the smallest integer multiple of $n^1(1), n^2(1), ..., n^k(1)$) such that $T_i(y_{f(I)})$ converges to $z_i \in X$. Thus

$$(I - S)(y_{f(l)}) = y_{f(l)} - \sum_{i=0}^{k} \lambda_i T_i(y_{f(l)})$$
$$= (1 - \lambda_0) y_{f(l)} - \sum_{i=1}^{k} \lambda_i T_i(y_{f(l)}).$$

Since
$$y_{f(l)} - S(y_{f(l)})$$
 converges to $y \ (l \longrightarrow +\infty)$, we get

$$\lim_{l \to +\infty} (1 - \lambda_0) y_{f(l)} = y + \sum_{i=1}^k \lambda_i z_i$$

which implies $\lim_{l \to +\infty} y_{f(l)} = \frac{y}{1 - \lambda_0} + \sum_{i=1}^{k} (\frac{\lambda_i}{1 - \lambda_0}) z_i \in C$ (since C is closed) then $\lim_{l \to +\infty} y_{f(l)} = \tilde{y} \in C$, which gives that

$$\widetilde{y} - S\widetilde{y} = y,$$

it proves that $y \in (I - S)(C)$ which is the desired result. Now the result follows from Theorem 6 in (F. E. Browder and W. V. Petryshin, *The solution by iteration of linear functional equations in Banach spaces*, Bull. Amer. Math. Soc., (72) (1966), 566-570).

・ロト ・ 同ト ・ ヨト ・ ヨト …

Theorem 4.2

Let X be a uniformly convex Banach space, C a closed bounded convex subset of X, and let $T_1, T_2, ..., T_k$ be a nonexpansive mappings satisfying the assumption (3). Define

$$S = \sum_{i=0}^{k} \lambda_i T_i$$

with the notation $T_0 = Id_C$ where $(\lambda_i)_{i=0}^k \subset [0, 1], \lambda_1 > 0$ and $\sum_{i=0}^k \lambda_i = 1$. Assume that $\bigcap_{i=1}^k F(T_i) = \{z_0\}$. Then for each $x_0 \in C$, the Picard sequence $\{S^n(x_0)\}$ converges weakly to z_0 in C.

Proof: Since S is nonexpansive, then the mapping I - S is demiclosed (F. E. Browder, *Nonexpansive nonlinear operators in a Banach space*, Proc. Nat. Acad. Sci. USA., (54) (1965), 1041-1044).

マヨン イラン イラン

Now let $x_0 \in C$ and let $(x_n)_n$ the Picard sequence $x_n = S^n x_0 (n \in \mathbb{N})$, since X is uniformly convex, then X is reflexive (K. Goebel and W. A. Kirk, *Topics in metric fixed point theory*, Cambridge Studies in Advanced Mathematics. First edition (1990)), this implies the existence of a subsequence $\{x_{n_k}\}_k$ of $\{x_n\}_n$ such that x_{n_k} converges weakly to y_0 . Theorem 3.6 gives that S is asymptotically regular, thus

$$\lim_{k\longrightarrow +\infty} (I-S)(x_{n_k}) = \lim_{k\longrightarrow +\infty} \left(S^{n_k}(x_0) - S^{n_k+1}(x_0) \right) = 0.$$

By definition of demiclosedness, it follows that

$$(I-S)(y_0)=0,$$

which proves that y_0 is a fixed point of S. But $F(S) = \bigcap_{i=1}^{k} F(T_i)$ (see Theorem 2.4), hence $y_0 = z_0$ and y_0 is the unique fixed point of S. Consequently, every weakly convergent subsequence of $\{x_n\}$ converges

weakly to z_0 . By a standard argument using the reflexivity of X and the fact that the sequence $\{x_n\}_n$ is bounded, we infer that $\{x_n\}_n$ converges weakly to z_0 which is the desired result.

Remark 4.3

Notice that Theorems 4.1 and 4.2 are extensions respectively of Corollary and Theorem 3 in (W. A. Kirk, On successive approximations for nonexpansive mappings, Glasgow. Math. J., Vol (2) (1), (1971), 6-9) by taking $T_i = T^i$ for all integer $i \ge 1$.

Lemma 4.4

(see Lemma 1 in C. W. Groetsch, A nonstationary iterative process for nonexpansive mappings, Proc. Math. Soc., 43 (1) (1974), 155-158) If $\{x_n\}_n$ and $\{y_n\}_n$ are sequences in a uniformly convex space with

$$\|y_n\| \le \|x_n\|$$
 and $x_{n+1} = (1 - \alpha_n)x_n + \alpha_n y_n$ $(0 \le \alpha_n \le 1)$

where
$$\sum_{n=1}^{\infty} \min(\alpha_n, 1 - \alpha_n) = \infty$$
.

Then $0 \in \overline{\{x_n - y_n, n \in \mathbb{N}\}}$ (where \overline{C} denotes the closure of the set C).

Some Results On Generalized Kirk's Process In Banach Spaces and Applicatio

Let
$$(\alpha_{ij})_{i=0}^{\infty}$$
 $(j = 0, 1, ..., k)$ a set of positive reals such that
 $0 \le \alpha_{ij}, 0 < \alpha \le \alpha_{i1}$ with $\sum_{j=0}^{k} \alpha_{ij} = 1$ for each i and
 $\sum_{i=0}^{\infty} \min(\alpha_{i0}, 1 - \alpha_{i0}) = \infty.$

Define the mappings S_i by

$$S_i = \alpha_{i0}I + \alpha_{i1}T_1 + \dots + \alpha_{ik}T_k \quad (i = 0, 1, 2, \dots,)$$

A non-stationary generalized Kirk's process is given by the formula

$$x_{n+1} = S_n x_n \quad (n = 0, 1, 2, ...) \tag{4}$$

It is easy to observe that if

• $T_1, T_2, ..., T_k$ are nonexpansives mappings,

•
$$z_0 \in \bigcap_{i=1}^k F(T_i).$$

Then

$$\|x_{n+1} - z_0\| = \|\sum_{j=0}^k \alpha_{nj} (T_j x_n - T_j z_0)\| \le \|x_n - z_0\|$$

(日) (同) (三) (三)

Proposition 4.5

Let *C* be a convex subset of uniformly convex Banach space and let $T_1, T_2, ..., T_k$ be nonexpansive selfmappings on *C* with $\bigcap_{i=1}^k F(T_i) \neq \phi$ and let (x_n) defined by equation (4), then $0 \in \overline{\{x_{n+1} - x_n, n \in \mathbb{N}\}}$.

Proof: Let
$$x_0 \in \bigcap_{i=1}^k F(T_i)$$
. Define $y_n = x_n - x_0$ and

$$z_n = \frac{1}{1-\alpha_{n0}}\sum_{j=1}^k \alpha_{nj}(T_j x_n - T_j x_0).$$

It follows that

$$y_{n+1} = x_{n+1} - x_0 = S_n x_n - x_0 = \alpha_{n0} x_n + \dots + \alpha_{nk} T_k x_n - (\sum_{j=0}^k \alpha_{nj}) x_0$$

$$= \alpha_{n0}(x_n - x_0) + \sum_{j=1}^k \alpha_{nj}(T_j x_n - T_j x_0)$$
$$= \alpha_{n0}y_n + (1 - \alpha_{n0})z_n.$$

We have $||z_n|| \le ||x_n - x_0|| = ||y_n||$, because the mappings $T_1, T_2, ..., T_k$ are nonexpansive. It follows by Lemma 4.4, that $0 \in \overline{\{y_n - z_n, n \in \mathbb{N}\}}$. On the other hand,

$$\begin{aligned} \|y_n - z_n\| &= \|x_n - x_0 - \frac{1}{1 - \alpha_{n0}} \sum_{j=1}^k \alpha_{nj} T_j x_n + x_0 \| \\ &= \|x_n - \frac{1}{1 - \alpha_{n0}} \sum_{j=0}^k \alpha_{nj} T_j x_n + \frac{\alpha_{n0}}{1 - \alpha_{n0}} x_n \| \\ &= \frac{1}{1 - \alpha_{n0}} \|x_n - x_{n+1}\| \\ &\geq \|x_n - x_{n+1}\| \text{ since } \frac{1}{1 - \alpha_{n0}} \ge 1 \end{aligned}$$

this proves the existence of a subsequence $\{x_{n_k}\}$ such that $\lim_{k \to +\infty} ||x_{n_k} - x_{n_k+1}|| = 0$, which is the desired result.

3 N

Theorem 4.6

Assume in addition to the hypotheses of Proposition 4.5, that the mappings $T_1, T_2, ..., T_k$ satisfy the assumption (3) and each T_i $(1 \le i \le k)$ is compact. Then for each $x_1 \in C$, the sequence $\{x_n\}_n$ defined by the equation (4) converges to a common fixed point for the mappings $T_1, T_2, ..., T_k$.

Proof: By the previous Proposition, there exists a subsequence $\{x_{x_k}\}$ with $x_{n_{k+1}} - x_{n_k} \longrightarrow 0$. The assumption given on the set $(\alpha_{ij})_{i=0}^{\infty}$ (j = 0, 1, ..., k) shows that, we can extract a subsequences $\alpha_{m_k j}$ of the sequence $\{\alpha_{n_k j}\}$ such that $\lim_{k \longrightarrow +\infty} \alpha_{m_k j} = \alpha_j \in [0, 1]$ with $\alpha_1 > 0$. Let

$$S = \alpha_0 I + \alpha_1 T_1 + \dots + \alpha_k T_k.$$

We get

$$x_{m_k} - Sx_{m_k} = x_{m_k} - S_{m_k}x_{m_k} + S_{m_k}x_{m_k} - Sx_{m_k},$$

伺い イラト イラト

Where

$$x_{m_k}-S_{m_k}x_{m_k}=x_{m_k}-x_{m_k+1}\longrightarrow 0.$$

If $x_0 \in \bigcap_{i=1}^{k} F(T_i)$, since the sequence $\{||x_n - x_0||\}_n$ is decreasing and the mappings $T_1, T_2, ..., T_k$ are nonexpansive, it follows that

$$||T_j x_{m_k} - x_0|| = ||T_j x_{m_k} - T_j x_0|| \le ||x_{m_k} - x_0|| \le ||x_1 - x_0||.$$

Since

$$||T_j x_{m_k} - x_0|| \le ||x_1 - x_0||.$$

We obtain that

$$\|T_j x_{m_k}\| \le \|x_1 - x_0\| + \|x_0\| = \gamma$$
 for all $j = 0, 1, ..., k$

Thus

$$\begin{split} \|S_{m_k} x_{m_k} - S x_{m_k}\| = \|\sum_{j=0}^k (\alpha_{m_k j} - \alpha_j) T_j x_{m_k}\| \\ \leq \gamma \sum_{j=0}^k |\alpha_{m_k j} - \alpha_j| \longrightarrow 0 \ (k \longrightarrow +\infty). \end{split}$$

We infer that $x_{m_k} - Sx_{m_k} \longrightarrow 0$ $(k \longrightarrow +\infty)$. Since each T_i (i < 1 < k)is compact, Theorem 4.1 shows that I - S maps closed bounded subsets into closed subsets. On the other hand, from the decreasness of the sequence $\{\|x_n - x_0\|\}_n$, we deduce that $\{\overline{x_n, n \in \mathbb{N}}\}$ is closed and bounded. Afterwards, Proposition 4.5 implies that $0 \in (I - S)(\{\overline{x_n, n \in \mathbb{N}}\})$. This proves the existence of $y_0 \in \{\overline{x_n, n \in \mathbb{N}}\}$ with $S(y_0) = y_0$ and here y_0 is a fixed point of S. Now, by Theorem 2.4, we get $y_0 \in \bigcap F(T_i)$. Apply for a second time the decreasness of the sequence $\{\|x_n - y_0\|\}_n$, it follows that $x_n \longrightarrow y_0$ $(n \longrightarrow +\infty)$, which completes the proof.

Abdelkader Dehici (work in collaboration with Nadjeh Redjel)

Some Results On Generalized Kirk's Process In Banach Spaces and Applicatio

Let be the nonlinear system

$$\begin{array}{lll} x - T_1 x &= f_1 \\ \dots &= \dots \\ \dots &= \dots \\ \dots &= \dots \\ x - T_k x &= f_k \end{array}$$
 (*)

in a convex subset C of a Banach space X where $f_i \in C$ for all i = 1, ..., k and $T_1, ..., T_k$ are selfmappings on C.

Denote by B_i , i = 1, ..., k the mapping given by $B_i x = T_i x + f_i$ with the notation $B_0 = Id_X$. For all $(\lambda_i)_{i=0}^k \subset [0, 1]$ with $\lambda_1 > 0$ and $\sum_{i=0}^k \lambda_i = 1$, if

we denote by $\gamma_i = rac{\lambda_i}{1-\lambda_0}$ (i=1,....,k), then we have

Lemma 5.1

Let $z_0 \in X$. Then z_0 is a solution of the system (*) if and only if z_0 is at the same time the solution of the nonlinear equation

$$\mathsf{x} = \sum_{i=1}^{k} \gamma_i B_i \mathsf{x}$$

(5)

- 4 同 ト - 4 三 ト - 4 三 ト

and the system

$$x = B_i \left(\sum_{j=0}^k \lambda_j B_j \right) x, \qquad i = 1, \dots, k \qquad (\star\star)$$

Lemma 5.2

Assume that the mappings $(B_i)_{i=1}^k$ given in (\star) satisfy the assumption (3). Then x is a solution of the system (\star) if and only if x is the solution of the nonlinear equation (5).

Let X be a Banach space and C a convex subset of X. For a finite family of nonexpansive selfmappings $\{T_i\}_{i=1}^k$ of C. For $\alpha \in]0, 1[$, P. Kuhfittig (Common fixed points of nonexpansive mappings by iteration, Pacific. J. Math., Vol (97) (1), (1981), 137-139)) has defined the following iterative process

$$x_{n+1} = U_k(x_n), \qquad n = 0, 1, ...,$$

where

$$\begin{cases} U_0 = I \\ U_1 = (1 - \alpha)I + \alpha T_1 U_0 \\ \dots = \dots \\ U_k = (1 - \alpha)I + \alpha T_k U_{k-1}, \quad \forall k \in \mathbb{R}, \quad k \in$$

Theorem 5.3

Let *C* be a convex compact subset of a strictly convex Banach space *X* and let $\{T_i\}_{i=1}^k$ be a family of nonexpansive selfmappings of *C*. If the nonlinear equation (5) has at least a solution and the mappings $\{B_i\}_{i=1}^k$ satisfy the assumption (3).

Then for an arbitrary $z_0 \in C$, the sequence $\{U_k^n z_0\}$ converges strongly to a solution of the system (*).

Theorem 5.4

If X is a Hilbert space and C is a closed convex subset of X. Assume that the mappings $\{T_i\}_{i=1}^k$ are nonexpansive selfmappings of C. If the nonlinear equation (5) has at least a solution and the mappings $\{B_i\}_{i=1}^k$ satisfy the assumption (3).

Then for any $z_0 \in C$, the sequence $\{U_k^n z_0\}$ converges weakly to a solution of the system (*).

< ロ > < 同 > < 回 > < 回 >

- F. E. Browder, *Nonexpansive nonlinear operators in a Banach space*, Proc. Nat. Acad. Sci. USA., (54) (1965), 1041-1044.
- F. E. Browder and W. V. Petryshyn, The solution by iteration of linear functional equations in Banach spaces, Bull. Amer. Math. Soc., (72) (1966), 566-570.
- K. Goebel and W. A. Kirk, *Topics in metric fixed point theory,* Cambridge Studies in Advanced Mathematics. First edition (1990).
- C. W. Groetsch, A nonstationary iterative process for nonexpansive mappings, Proc. Math. Soc., 43 (1) (1974), 155-158.
- D. Göhde, *Zum Prinzip der kontraktiven Abbildungen*, Math., 30 (1966), 251-258.
- M. A. Khamsi and W. A. Kirk, *An introduction to metric spaces and fixed point theory*, Pure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs and Tracts, 2001.

- A. R. Khan, Common fixed point and solution of nonlinear functional equations, Fixed. Point. Theor. Appl., (2013), Doi 10.1186/1687-2013-290.
 - W. A. Kirk, *A fixed point theorem of mappings which do not increase distance,* Amer. Math. Monthly., 76 (1965), 1004-1006.
- W. A. Kirk, On successive approximations for nonexpansive mappings, Glasgow. Math. J., Vol (2) (1), (1971), 6-9.
- P. F. Kuhfittig, Common fixed points of nonexpansive mappings by *iteration*, Pacific. J. Math., Vol (97) (1), (1981), 137-139.
- A. T. Lau, Normal structure and common fixed point properties for semigroups of nonexpansive mappings in Banach spaces, Fixed.
 Point. Theor. Appl., Vol (2010), Article ID580956, 14 pages, Doi:10.1155/2010/580956.

.

Thank you for your attention

Abdelkader Dehici (work in collaboration with Nadjeh Redjel) Some Results On Generalized Kirk's Process In Banach Spaces and Applicatio

<ロ> <四> <四> <日> <日> <日</p>

э