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Abstract: This article presents a new approach for the computation of the water surface angle in pipes arranged in parallel. Estimating this
parameter in partially filled pipes is an important task in the solution of many practical problems in the different branches of the engineering
profession such as flow measurement and design of drainage networks, where the flow is mostly of the free surface type. This characteristic
is needed in the trial and error classical solution and huge number of times. The new method is elaborated to overcome the laborious trial
and error method. Here, the computation of the water surface angle becomes easy, simple, and direct. DOI: 10.1061/(ASCE)PS.1949-
1204.0000272. © 2017 American Society of Civil Engineers.
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Introduction

Most free surface flow calculation assumes the flow to be uniform
and steady to simplify the computation of its parameters. Among
these parameters is the water surface angle. These characteristics
are important in engineering practice. Sewer and drainage systems
are frequently assumed to flow with free surfaces. The Manning
equation for free surface flow is considered the best model to de-
scribe this type of flow (Saâtçi 1990; Giroud et al. 2000; Akgiray
2004, 2005; Zeghadnia et al. 2014a, b). Several researchers have
discussed this model such as Chow (1959), Henderson (1966),
Metcalf and Eddy (1981), Carlier (1980), and Hager (2010).
Circular shape is the preferred cross section form for sewer
system design.

Sewersheds can be arranged in series or in parallel; similarly,
pipes can be arranged in series or in parallel. Using the Manning
equation, the computation of the water surface angle is not direct
and has to go through a trial and error method with heavy compu-
tation. Based on the Manning model, a number of researchers have
tried to propose an explicit solution for free surface flow compu-
tation. Among these are Saâtçi (1990), Giroud et al. (2000), and
(Akgiray 2004, 2005). They tried to eliminate the need for trial
and error methods for water surface angle ranging between 0° and
302.41°. Other authors have used the Colebrook-White model, in-
cluding Prabhata (1994), Prabhata and Pushpa (2004), and Achour
and Bedjaoui (2006).

In this study, using the Manning model, the authors propose a
new approach, which is much simpler and more accurate than
existing methods for the computation of the water surface angle for
partially filled pipes arranged in parallel, for all the range of surface
water angles from 0° to 360°.

Manning Equation

This paper discusses sewerage systems involving circular sections
that flow partially full. The Manning equation (Manning 1891) has
been widely used to compute free surface uniform flow, which
indicates the flow must be steady and uniform, where the slope,
cross-sectional flow area, and velocity are time independant, and
are constant along the pipe length (Carlier 1980). Graphs and tables
(Camp 1946; Swarna and Modak 1990) are established to facilitate
the application of the Manning equation for the estimation of
flow characteristics (Terence 1991). The Manning equation can be
written as follows:

Q ¼ 1

n
R2=3
h AS1=2 ð1Þ

V ¼ 1

n
R2=3
h S1=2 ð2Þ

where Q = flow rate (m3=s); Rh = hydraulic radius (m), (which
is defined as the ratio of the channel’s cross-sectional area of
the flow to its wetted perimeter); n = pipe roughness coefficient
(Manning n); A = cross sectional flow area (m2); S = pipe bottom
slope, dimensionless; and V = flow velocity (m=s).

Eqs. (1) and (2) can be rewritten in terms of the water surface
angle of the pipe as shown in Fig. 1 as follows:

Q ¼ 1

n

�
D8

213

�
1=3

�ðθ − sin θÞ5
θ2

�
1=3

s1=2 ð3Þ

V ¼ 1

n

�
D
4

�
2=3

�ðθ − sin θÞ
θ

�
2=3

s1=2 ð4Þ

A ¼ D2

8
½θ − SinðθÞ� ð5Þ

P ¼ θ
D
2

ð6Þ

Rh ¼
A
P
¼ D

4

�
1 − sinðθÞ

θ

�
ð7Þ

1Senior Lecturer, Dept. of Civil Engineering, Faculty of Science and
Technologies, Univ. of Mohamed Cherif Messaadia, Souk Ahras 41000,
Algeria (corresponding author). E-mail: Zeghadnia_lotfi@yahoo.fr; lotfi.
zeghadnia@univ-soukahras.dz

2Professor, Dept. of Civil Engineering, Faculty of Science and
Engineering, Univ. of Laval, Quebec, QC, Canada G1V 0A6.

Note. This manuscript was submitted on May 7, 2015; approved on
February 15, 2017; published online on May 11, 2017. Discussion period
open until October 11, 2017; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Pipeline Systems
Engineering and Practice, © ASCE, ISSN 1949-1190.

© ASCE 04017013-1 J. Pipeline Syst. Eng. Pract.

 J. Pipeline Syst. Eng. Pract., 2017, 8(4): -1--1 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

L
ot

fi
 Z

eg
ha

dn
ia

 o
n 

05
/1

1/
17

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.1061/(ASCE)PS.1949-1204.0000272
https://doi.org/10.1061/(ASCE)PS.1949-1204.0000272
mailto:Zeghadnia_lotfi@yahoo.fr
mailto:lotfi.zeghadnia@univ-soukahras.dz
mailto:lotfi.zeghadnia@univ-soukahras.dz


where D = pipe diameter (m); P = wetted perimeter (m); and
θ = water surface angle (radian).

In the equations mentioned above, the computation of the water
surface angle is not direct and requires an iterative procedure. A
number of authors tried to propose an explicit formula for the com-
putation of the water surface angle. Among these, the authors par-
ticularly note the work of Saatçi (1990) and Akgiray (2005). Saatçi
(1990) has proposed an approximate equation to determine θ to
avoid the need for the trial and error methods using Eq. (8):

θSaatçi ¼
3π
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πQn

D8=3S0.5

rsvuut ð8Þ

The Saatçi (1990) equations can only be used for water surface
angles that are smaller than 265° (Saatçi 1990).

Akgiray (2005) tried to improve the approaches proposed earlier
and proposed an explicit approximate solution for two cases: when
the Manning coefficient n is constant (which is a common and con-
ventional practice), and when n varies with the flow depth as doc-
umented by Camp (1946). In both cases, n is assumed to be known.
In this research, the authors are interested in the first problem. For
this particular case, Akgiray (2005) has proposed the following
equation to estimate the water surface angle:

θ ¼ 2 × 65=13K3=13f1þ ½sin−1ð2.98KÞ�0.8 − 2K0.946g ð9Þ

where

K ¼ Qn

D8=3S0.5
ð10Þ

Eq. (9) is valid for θ between 0° and 301.41° where the maxi-
mum error equals 0.72%. The flow velocity can be estimated using
Eqs. (4) and (9) with maximum deviation of 0.29%.

Analytical Formulation

Sewersheds may be arranged in series (Zeghadnia et al. 2014b) or
in parallel. In this study, the authors focus on the second case,
where the pipes are arranged in parallel as shown in Fig. 2:
• Pipe M1-N1 collects water from sewershed CC1, which takes

on number 1;
• Pipe M2-N1 collects water from the equivalent sewershed CC2,

which takes on number 2; and
• Pipe N1-N2 collects water from the equivalent sewershed CC3,

which takes on number 3. Therefore

CC3¼CC2 þ CC1 ð11Þ

The flow Q can be estimated using traditional methods such as
the rational or other methods (Viessman and Lewis 2003). Four
scenarios can be found for the computation of the water surface
angle using the concept of a reference. A reference pipe is a pipe
with known flow characteristics. The scenarios are as follow:
1. The computation of θ3 as a function of the pipe 01 character-

istics (pipe 01 is the reference pipe).
2. The computation of θ3 as a function of the pipe 02 character-

istics (pipe 02 is the reference pipe).
3. The computation of θ2 as a function of the pipe 01

characteristics (pipe 1 is the reference pipe).
4. The computation of θ1 as a function of the pipe 02 character-

istics (pipe 2 is the reference pipe).

Cases One and Two

Let us consider that the pipe M2-N1, pipe 02, is the reference pipe
with known parameters. Therefore, diameter D2, hydraulic radius
Rh2, surface water angle θ2, water cross section A2, and slope S2
are known data. The slope S3 and roughness n3 are considered
to be known parameters for pipe N1-N2, or pipe 03.

Q1 is produced in sewershed CC1 and transported in pipe
M1-N1, Q2 is produced in sewershed CC2 and transported in pipe
M2-N1, and Q3 is produced in sewershed CC3 and transported in
pipe N1-N2.

Eq. (4) can be written as follows (Zeghadnia et al. 2009):

V ¼
��

S1=2

n

�
3
�
2Q
D

�
2
�
1=5

θ−2=5 ð12Þ

In the case of a partially filled pipe and according to Eq. (12), the
previous formula can be rewritten as follows, where pipe 02 is the
reference pipe (Zeghadnia et al. 2014a):

V3 ¼
�
Q3

Q2

�
1=4

�
S0.53

n3

�
3=4� n2

S0.52

�
3=20

�
2Q2

D2θ2

�
2=5

ð13Þ

Similarly, in the case where pipe M1-N1 is the reference pipe,
the flow velocity can be calculated as follows (Zeghadnia et al.
2014a):

V3 ¼
�
Q3

Q1

�
1=4

�
S0.53

n3

�
3=4� n1

S0.51

�
3=20

�
2Q1

D1θ1

�
2=5

ð14Þ

Fig. 1. Water surface angle

Fig. 2. Subwatersheds and pipes arranged in parallel
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Eq. (15) can be obtained using Eq. (12) as follows:

θ ¼
��

S0.5

n

�
3
�
2Q
D

�
2
�
1=2 1

V5=2 ð15Þ

Based on Eqs. (15) and (13), one can deduce the water surface
angle of pipe 03 as a function of the known characteristics of the
reference pipe 02 as follows:

θ3 ¼
�
n3
S0.53

�
3=8

�
Q2

Q3

�
5=8

�
2Q3

D3

��
D2θ2
2Q2

��
S0.52

n2

�
3=8

ð16Þ

From Eq. (16), the computation of the water surface angle be-
comes direct, easy, and simpler and eliminates the need for calcu-
lating of θ3 iteratively. It produces the exact values of the water
surface angle in pipe 03 as a function of the reference pipe 02 char-
acteristics. Similarly, for the case when pipe 01 is the reference
pipe, the expression of the water surface angle θ3 can be written
as follows:

θ3 ¼
�
n3
S0.53

�
3=8

�
Q1

Q3

�
5=8

�
2Q3

D3

��
D1θ1
2Q1

��
S0.51

n1

�
3=8

ð17Þ

Cases Three and Four

Here, the characteristics of the first pipe using the second pipe char-
acteristics (reference pipe) will be shown in the following sections.
For the case of a partially full pipe, and according to Eq. (12), the
flow velocity can be calculated as follows (Zeghadnia et al. 2014a):

V1 ¼
�
Q1

Q2

�
1=4

�
S0.51

n1

�
3=4� n2

S0.52

�
3=20

�
2Q2

D2θ2

�
2=5

ð18Þ

For the case when pipe 01 is the reference pipe, the same results
can be obtained as follows:

V2 ¼
�
Q2

Q1

�
1=4

�
S0.52

n2

�
3=4� n1

S0.51

�
3=20

�
2Q1

D1θ1

�
2=5

ð19Þ

Using Eqs. (15) and (18), one can deduce the water surface
angle of pipe 01 as a function of the known characteristics of the
reference pipe 02 as follows:

θ1 ¼
�
n1
S0.51

�
3=8

�
Q2

Q1

�
5=8

�
2Q1

D1

��
D2θ2
2Q2

��
S0.52

n2

�
3=8

ð20Þ

Similarly, for the case when pipe 01 is the reference pipe, the
expression of the water surface angle θ2 in pipe 02 can be written as
follows:

θ2 ¼
�
n2
S0.52

�
3=8

�
Q1

Q2

�
5=8

�
2Q2

D2

��
D1θ1
2Q1

��
S0.51

n1

�
3=8

ð21Þ

Eqs. (20) and (21) produce the exact values of the water surface
angle in pipe 01 as a function of the reference pipe 02 character-
istics, or in pipe 02 as a function of the reference pipe 01 character-
istics, where the computation become easy and faster.

Accuracy Test Method

To calculate the values of each column in table 01, one should apply
following steps:

Step 1: Take in consideration the entire range of theta θ between
0° and 360°.

Step 2: Using Eq. (3), calculate the value of the flow Q2 (where
D ¼ D2, n ¼ n2, S ¼ S2 are known); the pipe 02 is considered as a
reference pipe with known parameters.

Step 3: Using Eq. (3), calculate the value of the flow Q3 (where
D ¼ D3, n ¼ n3, S ¼ S3 are known).

Step 4: Using the parameters computed above, apply Eq. (16).
Step 5: One estimates the maximum deviation between the the

Manning Eq. (3) and the proposed Eq. (16) or (17) using the fol-
lowing formula:

AbsðθManning − θZeghadniaÞ
θManning

Step 6: The same steps can be used to evaluate the deviation for
Akgiray (2005) or Saâtçi (1990) (as explained above).

For Cases three and four, the same steps can be used as shown
above. If the reference pipe was chosen, it will be easy to compute
the parameters of the second pipe.

Discussion

After investigation, the authors found that the Saatçi (1990) and
Akgiray (2005) approaches are less accurate than the proposed
approach as shown in Table 1. In the Saatçi (1990) formula, the
maximum deviation for the applicable range of θ (between 0 and
265 degrees) as compared with Eq. (3) is unacceptably high. Sim-
ilarly, the maximum deviation for the Akgiray (2005) equation
in the applicable range of θ is 41.36%, and it is 18.14% for θ be-
tween 0° and 301°. On the other side, the proposed approach using
Eqs. (16), (17), (20), and (21) in all cases cited above produces an
exact solution for all θ values as shown in Table 1.

Table 1. Comparison between Eq. (3) Results and Those of Eq. (16),
Saatçi (1990) and Akgiray (2005)

θ1 and θ2
(degrees)

Manning
Eq. (3)
in radian

Proposed
Eq. (16)
in radian

Error
%

Saatçi
(1990)
Eq. (16)
error %

Akgiray
(2005)
Eq. (9)
error %

1 0, 02 0, 02 0, 00 2,69 × 10þ4 9.56 × 10−3
2 0, 03 0, 03 0, 00 1,34 × 10þ4 4.58 × 10−3
3 0, 05 0, 05 0, 00 8,901 × 0þ3 3.26 × 10−3
4 0, 07 0, 07 0, 00 6,65 × 10þ3 9.93 × 10−3
5 0, 09 0, 09 0, 00 5,30 × 10þ3 1.43 × 10−2
6 0, 10 0, 10 0, 00 4,40 × 10þ3 2.05 × 10−2
7 0, 12 0, 12 0, 00 3,76 × 10þ3 2.91 × 10−2
8 0, 14 0, 14 0, 00 3,27 × 10þ3 3.76 × 10−2
9 0, 16 0, 16 0, 00 2,90 × 10þ3 4.75 × 10−2
10 0, 17 0, 17 0, 00 2,60 × 10þ3 5.86 × 10−2
20 0, 35 0, 35 0, 00 1,24 × 10þ3 0.236
35 0, 61 0, 61 0, 00 6,60 × 10þ2 0.735
45 0, 79 0, 79 0, 00 4,84 × 10þ2 1.224
90 1, 57 1, 57 0, 00 1,66 × 10þ2 4.834
100 1, 74 1, 74 0, 00 1,32 × 10þ2 5.884
120 2, 09 2, 09 0, 00 7,92 × 10þ1 8.157
135 2, 36 2, 36 0, 00 4,84 × 10þ1 9.959
145 2, 53 2, 53 0, 00 3,08 × 10þ1 11.181
190 3, 31 3, 31 0, 00 2,89 × 10þ1 16.267
200 3, 49 3, 49 0, 00 3,91 × 10þ1 17.139
235 4, 10 4, 10 0, 00 6,96 × 10þ1 18.847
245 4, 27 4, 27 0, 00 7,73 × 10þ1 18.914
290 5, 06 5, 06 0, 00 N/A 17.743
300 5, 23 5, 23 0, 00 N/A 17.985
308 5, 37 5, 37 0, 00 N/A 20.620
335 5, 84 5, 84 0, 00 N/A 32.894
345 6, 02 6, 02 0, 00 N/A 36.612
360 6, 28 6, 28 0, 00 N/A 41.361
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Conclusion

This research aims at proposing an analytic solution for the com-
putation of the water surface angle using a known reference pipe’s
characteristics in the case of pipes arranged in parallel. Based on
this approach, the computation of the water surface angle becomes
straightforward. The authors have shown that the proposed equa-
tions are much better than other approaches. It eliminates the need
for calculating the water surface angle, iteratively and produces an
exact solution with zero deviation.

Notation

The following symbols are used in this paper:
A = cross section (m2);

CC1 = subwatershed number 01.
CC2 = subwatershed number 02;
CC3 = equivalent watershed;

M1-N1 = pipe which collect water from subwatershed 01;
M2-N1 = pipe which collect water from subwatershed 02;
N1-N2 = pipe which collect water from the equivalent

watershed;
n = channel roughness coefficient (Manning n);
Q = flow rate (m3=s);
Q1 = flow produced in subwatershed 01;
Q2 = flow produced in subwatershed 02;
Q3 = flow produced in the equivalent watershed;
Rh = hydraulic radius of channel (m);
Rq = ratio of flows;
S = slope of pipe bottom, dimensionless;
V = velocity of flow (m=s); and
θ = water surface angle (rad).
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