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We discuss some compactness results in 𝐿𝑝 (1 ≤ 𝑝 < ∞) spaces related to the spectral theory of neutron transport equations for
general classes of collision operators and Radon measures having velocity spaces as supports covering most physical models. We
show in particular that the asymptotic spectrum of the transport operator is independent of 𝑝.

1. Introduction and Notations

The Boltzmann equation (1872) is an integrodifferential
equation of the kinetic theory which is devoted to the study
of evolutionary behavior of the gas in the one particle phase
space of position and velocity. The time evolution of the state
of a gas which is contained in a vessel 𝐷 bounded by solid
walls is determined on one hand by the behavior of the gas
molecules at collisions with each other and on the other hand
by the influence of the walls as well as by external forces;
in the case where there are no external forces, this state is
described by a scalar function 𝑓(𝑥, V, 𝑡) which models the
density function of gas particles having position 𝑥 ∈ 𝐷 and
velocity V ∈ R3 at time 𝑡 ∈ R. The integral of this function
∫∫

𝐷×R3
𝑓(𝑥, V, 𝑡)𝑑𝑥 𝑑V gives the expectation value (statistical

average) of the total mass of gas contained in the phase space
𝐷×R3. Under some assumptions, function𝑓must satisfy the
Boltzmann equation

𝜕𝑓

𝜕𝑡
(𝑥, V, 𝑡) = −V ⋅ ∇𝑥𝑓 (𝑥, V, 𝑡) + 𝐽 (𝑓 (𝑥, ⋅, 𝑡)) (V) (⋆)

completed by boundary and initial conditions. The first term
in (⋆) is called streaming operator which is responsible
for the motion of the particles between collisions, while
the second one 𝐽(𝑓(𝑥, ⋅, 𝑡)), which is bilinear, describes the
mechanism of collisions. A solution to the initial boundary

value problem for (⋆) and a proof of 𝐻-theorem are given
by treating it under its abstract form (for more details, see
[1]).

This equation is applied also to the transport of photons
involved in studies of nuclear reactors, including calculations
on the protection against radiation and calculations of warm-
up of materials. The quantum behavior of neutrons occurs
in collisions with nuclei, but for physicists these events
of collisions can be considered as one-time events and
instantaneous, which only the consequences are interested
in. According to the energy of the incident neutron and the
nucleus with which it interacts, different types of reactions
can occur. The neutron can be absorbed or broadcasted
or it causes the fission of the nucleus. Each reaction is
characterized by the microscopic cross section. Between
collisions, neutrons behave as classical particles, described by
their position and speed. Uncharged (neutral particles), they
move in a straight line at least for short distances for whichwe
neglect the effect of the gravitation. The neutronic equations
are naturally linear. Indeed, the neutron-neutron interactions
can be neglected vis-a-vis neutron-matter interactions. The
relationship between the neutron density and the density
of the propagation medium (water, uranium oxyde,. . .) is
of the order 10

−15, which justifies this approximation. This
assumption leads to simplifying the nonlinear version of
the Boltzmann equation used in the kinetic theory of
gases.
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Without delayed neutrons, these equations can be written
under the form

𝜕𝜓

𝜕𝑡
(𝑥, V, 𝑡) + V ⋅ ∇𝑥𝜓 (𝑥, V, 𝑡) − 𝜎 (V) 𝜓 (𝑥, V, 𝑡)

+ ∫
𝑉

𝜅 (𝑥, V, V) 𝜓 (𝑥, V, 𝑡) 𝑑𝜇 (V) = 0

(1)

with initial data 𝜓(𝑥, V, 0) = 𝜓0(𝑥, V), where (𝑥, V) ∈

𝐷 × 𝑉. 𝐷 is a smooth open subset of R𝑛 and 𝜇(⋅) is
a positive Radon measure on R𝑛 such that 𝜇({0}) = 0

and 𝑉 (admissible velocity space) denotes the support of
𝜇. The function 𝜓(𝑥; V; 𝑡) describes the distribution of the
neutrons in a nuclear reactor occupying the region 𝐷. The
functions 𝜎(⋅) and 𝜅(⋅, ⋅, ⋅) are called, respectively, the collision
frequency and the scattering kernel.

Here, the boundary conditions which represent the inter-
action between the particles and ambient medium are given
by a boundary bounded operator 𝐻 satisfying

𝜓− = 𝐻 (𝜓+) , (2)

where 𝜓− (resp., 𝜓+) is the restriction of 𝜓 to Γ− (resp., Γ+)
with Γ− (resp., Γ+) being the incoming (resp., outcoming)
part of the phase space boundary and 𝐻 is a linear bounded
operator from a suitable function space on Γ+ to a similar one
on Γ−. The classical boundary conditions (vacuum boundary,
specular reflections, diffuse reflections, and periodic and
mixed type boundary conditions) are special examples of our
framework.

Let (𝑥, V) ∈ 𝐷 × 𝑉. We define the positive real numbers
𝑡
±
(𝑥; V) by

𝑡
±
(𝑥, V) = sup {𝑡 > 0; 𝑥 ± 𝑠V ∈ 𝐷, ∀0 < 𝑠 < 𝑡} . (3)

Physically, 𝑡±(𝑥, V) is the time taken by a neutron initially in
𝑥 ∈ 𝐷 with animated speed ±V to achieve (for the first time)
the boundary of 𝐷.

We denote by Γ± the set

Γ± = {(𝑥, V) ∈ 𝜕𝐷 × 𝑉; ± V ⋅ 𝑛𝑥 ≥ 0} , (4)

where 𝑛𝑥 is the outer unit normal vector at 𝑥 ∈ 𝜕𝐷.
Let 1 ≤ 𝑝 < ∞; we introduce the functional spaces

𝑊𝑝 = {𝜓 ∈ 𝑋𝑝 such that V ⋅ ∇𝑥𝜓 ∈ 𝑋𝑝} , (5)

where

𝑋𝑝 := 𝐿𝑝 (𝐷 × 𝑉; 𝑑𝑥𝑑𝜇 (V)) . (6)

The spaces of traces are 𝐿
±

𝑝
:= 𝐿𝑝(Γ±; |V ⋅𝑛𝑥|𝑑𝛾(𝑥)𝑑𝜇(V)). Here

𝑑𝛾(⋅) is the Lebesgue measure on 𝜕𝐷.
Recall that, for every 𝜓 ∈ 𝑊𝑝, we can define the traces

𝜓± on Γ±; unfortunately, these traces do not belong to 𝐿
±

𝑝
.The

traces lie only in 𝐿
±

𝑝,loc or precisely in a certain weighted 𝐿𝑝

space (see [2–4], for details).
Define

𝑊𝑝 = {𝜓 ∈ 𝑊𝑝; 𝜓± ∈ 𝐿
±

𝑝
} . (7)

In this case 𝐻 ∈ L(𝐿
+

𝑝
, 𝐿
−

𝑝
) (1 ≤ 𝑝 < ∞) and the associated

advection operator 𝑇𝐻 is given as follows:

𝑇𝐻 : 𝐷 (𝑇𝐻) ⊆ 𝑋𝑝 → 𝑋𝑝,

𝜑 → (𝑇𝐻𝜑)

= −V ⋅ ∇𝑥𝜑 (𝑥, V) − 𝜎 (V) 𝜑 (𝑥, V) ,

(8)

with domain

𝐷(𝑇𝐻) = {𝜓 ∈ 𝑊𝑝 such that 𝜓− = 𝐻 (𝜓+)} , (9)

where the collision frequency 𝜎(⋅) ∈ 𝐿
∞

+
(𝑉) (in other words,

a positive bounded function).
Let 𝜆 ∈ C; consider the boundary value problem

𝜆𝜓 (𝑥, V) + V ⋅ ∇𝑥𝜓 (𝑥, V) + 𝜎 (V) 𝜓 (𝑥, V) = 𝜑 (𝑥, V) ,

𝜓− = 𝐻 (𝜓+) ,

(10)

where 𝜑 ∈ 𝑋𝑝 and the unknown𝜓must belong to𝐷(𝑇𝐻). Let

𝜆
⋆
:= 𝜇 − ess inf

V∈𝑉
𝜎 (V) . (11)

For Re𝜆 + 𝜆
⋆
> 0, (10) can be solved formally by

𝜓 (𝑥, V) = 𝜓 (𝑥 − 𝑡
−
(𝑥, V) V, V) 𝑒−(𝜆+𝜎(V))𝑡

−
(𝑥,V)

+ ∫

𝑡
−
(𝑥,V)

0

𝑒
−(𝜆+𝜎(V))𝑠

𝜑 (𝑥 − 𝑠V, V) 𝑑𝑠.
(12)

Moreover, if (𝑥, V) ∈ Γ+, (10) becomes

𝜓+ (𝑥, V) = 𝜓−𝑒
−(𝜆+𝜎(V))𝜏(𝑥,V)

+ ∫

𝜏(𝑥,V)

0

𝑒
−(𝜆+𝜎(V))𝑠

𝜑 (𝑥 − 𝑠V, V) 𝑑𝑠,
(13)

where 𝜏(𝑥, V) = 𝑡
+
(𝑥, V) + 𝑡

−
(𝑥, V). On the other hand, for

every (𝑥, V) ∈ 𝐷×𝑉, we have (𝑥 − 𝑡
−
(𝑥, V)V, V) ∈ Γ− (for more

details on the time numbers 𝑡+, 𝑡−, and 𝜏, see [1]).
For the abstract formulation of (12) and (13), we define the

following operators depending on the parameter 𝜆:

𝑀𝜆 : 𝐿
−

𝑝
→ 𝐿

+

𝑝
,

𝑢 → 𝑀𝜆𝑢 := 𝑢𝑒
−(𝜆+𝜎(V))𝜏(𝑥,V)

;

𝐵𝜆 : 𝐿
−

𝑝
→ 𝑋𝑝,

𝑢 → 𝐵𝜆𝑢 := 𝑢𝑒
−(𝜆+𝜎(V))𝑡−(𝑥,V)

;

𝐺𝜆 : 𝑋𝑝 → 𝐿
+

𝑝
,

𝜑 → ∫

𝜏(𝑥,V)

0

𝑒
−(𝜆+𝜎(V))𝑠

𝜑 (𝑥 − 𝑠V, V) 𝑑𝑠;

𝐶𝜆 : 𝑋𝑝 → 𝑋𝑝,

𝜑 → ∫

𝑡
−
(𝑥,V)

0

𝑒
−(𝜆+𝜎(V))𝑠

𝜑 (𝑥 − 𝑠V, V) 𝑑𝑠.

(14)
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Straightforward calculations using Hölder’s inequality show
that all these operators are bounded on their respective
spaces. More precisely, we have, for Re𝜆 > −𝜆

⋆,
𝑀𝜆

 ≤ 1,

𝐵𝜆
 ≤ (𝑝 (Re𝜆 + 𝜆

⋆
))
−1/𝑝

,

𝐺𝜆
 ≤ (𝑞 (Re𝜆 + 𝜆

⋆
))
−1/𝑞

,

𝐶𝜆
 ≤

1

Re𝜆 + 𝜆⋆
(

1

𝑝
+

1

𝑞
= 1) .

(15)

1.1. Collision Operators. The collision operator 𝐾 given as
a perturbation of the advection transport operator 𝑇𝐻 is
defined on 𝑋𝑝 by

𝐾 : 𝑋𝑝 → 𝑋𝑝

𝜓 → ∫
𝑉

𝜅 (𝑥, V, V) 𝜓 (𝑥, V) 𝑑𝜇 (V) .

(16)

Note that the operator𝐾 is local in 𝑥; it describes the physics
scattering and production of particles (fission), so it can be
viewed as mapping:

𝐾 (⋅) : 𝑥 ∈ 𝐷 → 𝐾(𝑥) ∈ L (𝐿𝑝 (𝑉)) . (17)

We assume that 𝐾(⋅) is strongly measurable,

𝑥 ∈ 𝐷 → 𝐾(𝑥) 𝜑 ∈ 𝐿𝑝 (𝑉) is measurable for any 𝜑

∈ 𝐿𝑝 (𝑉) ,

(18)

and bounded,

ess sup
𝑥∈𝐷

‖𝐾 (𝑥)‖L(𝐿𝑝(𝑉))
< ∞. (19)

It follows that 𝐾 defines a bounded operator on the space
𝐿𝑝(𝐷 × 𝑉) according to the formula

𝜑 ∈ 𝐿𝑝 (𝐷 × 𝑉) (20)

(𝐿𝑝(𝐷 × 𝑉) ≃ 𝐿𝑝(𝐷; 𝐿𝑝(𝑉))) and

‖𝐾 (𝑥)‖L(𝐿𝑝(𝐷×𝑉))
≤ ess sup

𝑥∈𝐷

‖𝐾 (𝑥)‖L(𝐿𝑝(𝑉))
. (21)

The final assumption on 𝐾 is

𝐾 (𝑥) ∈ K (𝐿𝑝 (𝑉)) almost everywhere, (22)

whereK(𝐿𝑝(𝑉)) denotes the set of compact linear operators
on the space 𝐿𝑝(𝑉).

We give now the concept of regular collision operators
introduced by Mokhtar-Kharroubi [5].

Definition 1. A collision operator,

𝐾 (⋅) : 𝑥 ∈ 𝐷 → 𝐾(𝑥) ∈ L (𝐿𝑝 (𝑉)) , (23)

is said to be regular if 𝐾(𝑥) is compact on 𝐿𝑝(𝑉) almost
everywhere on 𝐷 and

𝐾 (⋅) : 𝑥 ∈ 𝐷 → L (𝐿𝑝 (𝑉)) (24)

is a “Bochner measurable function”.

The interest of the class of regular collision operators lies
in the following lemma.

Lemma 2 (see [5, Proposition 4.1]). A regular collision
operator 𝐾 can be approximated, in the uniform topology, by
a sequence {𝐾𝑛} of collision operators with kernels of the form

∑

𝑖∈𝐼

𝑓𝑖 (𝑥) 𝑔𝑖 (𝜉) ℎ𝑖 (𝜉

) , (25)

where𝑓𝑖 ∈ 𝐿
∞

(𝐷),𝑔𝑖 ∈ 𝐿𝑝(𝑉) and ℎ𝑖 ∈ 𝐿𝑞(𝑉) (1/𝑝+1/𝑞 = 1)

(𝐼 is finite).

It is easy to observe that (1) can be written under the
following abstract Cauchy problem:

𝜕𝜓

𝜕𝑡
= (𝑇𝐻 + 𝐾)𝜓 (𝑡) , (𝑡 > 0) ,

𝜓 (0) = 𝜓0.

(26)

Spectral theory of transport operators has known a major
development since the pioneering papers of Lehner andWing
and Jörgens in the late 1950s [6–8]. A considerable literature
has been devoted to the spectral analysis of the transport
operator. This one is studied by means of the nature of the
parameters of the equation (nature of boundary conditions,
nature of the domain of positions or velocity space, and
nature of the collision operator). Let us quote, for example,
[1, 4–6, 9–48].

In general, the time asymptotic behavior of solutions of
(1) is analyzed under two angles: resolvent approach and the
semigroup approach.

(1) Resolvent Approach. For 1 < 𝑝 < ∞, this approach is based
essentially on the compactness (or the compactness of one
iterate) of the bounded linear operator (𝜆 − 𝑇𝐻)

−1
𝐾. Indeed,

Vidav [44] observed that if this condition is satisfied, it leads
via an analytic Fredholm alternative to the fact that the set
𝜎(𝑇𝐻 + 𝐾) ∩ {𝜆 ∈ C : Re𝜆 > 𝑠𝐻} (𝜎 is the spectrum, while 𝑠𝐻

is the spectral bound of the operator𝑇𝐻) composed (at most)
a set of isolated eigenvalues with finite algebraic multiplicities
{𝜆𝑖}𝑖∈𝐽, where {𝜆𝑖,Re𝜆𝑖 ≥ 𝛼} is a finite set for each 𝛼 > 𝑠𝐻. If
𝑝 = 1, it suffices to treat the weak compactness by taking into
account the fact that the square of weakly compact operator
on this space is compact [49, Corollary 13, p. 510]. Recall
that, among relevant results in this direction, we can cite the
works of Mokhtar-Kharroubi [5, 36], Latrach [24–27], and
Song [43].

Thus, if 𝑇𝐻 generates a 𝑐0-semigroup (𝑈(𝑡); 𝑡 ≥ 0), by
Dyson-Phillips theorem of perturbation, 𝑇𝐻 + 𝐾 generates
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a 𝑐0-semigroup (𝑉(𝑡); 𝑡 ≥ 0) given by the following formula
(see [50, Corollary 7.5, p. 29]):

𝑉 (𝑡) 𝜓0 =
1

2𝑖𝜋
lim
𝛾→∞

∫

V+𝑖𝛾

V−𝑖𝛾
𝑒
𝜆𝑡

(𝜆 − 𝑇 − 𝐾)
−1

𝜓0𝑑𝜆,

(𝑡 > 0) ,

(27)

where V is sufficiently large by deforming the contour of
integration in Dunford’s formula. Recover the residues corre-
sponding to the poles (eigenvalues of 𝑇𝐻 +𝐾); we can obtain
a good comprehension of the asymptotic behavior of solution
when the initial data𝜓0 belongs to𝐷(𝑇𝐻+𝐾)

2 (unfortunately
this regular condition is not natural).

(2) Semigroup Approach. Even if 𝜎(𝑇𝐻 + 𝐾) ∩ {𝜆 ∈ C :

Re𝜆 > 𝑠𝐻} is reduced to isolated eigenvalues of finite algebraic
multiplicities, the set 𝜎(𝑉(𝑡)) ∩ {𝜂 ∈ C : |𝜂| > 𝑒

𝑠𝐻𝑡} can
contain the continuous spectrum due to the absence of a
spectral mapping theorem for the mapping 𝜆 → 𝑒

𝑡𝜆. Vidav
[45] has shown that the time asymptotic behavior of𝑉(𝑡)𝑡≥0 is
connected to the analysis of its spectrumand the compactness
of remainder terms of the Dyson-Phillips expansion 𝑅𝑛(𝑡) =

∑
∞

𝑗=𝑛
𝑈𝑗(𝑡) (where 𝑈0(𝑡) = 𝑈(𝑡) and 𝑈𝑛(𝑡) = ∫

𝑡

0
𝑈(𝑡 −

𝑠)𝐾𝑈𝑛−1(𝑠)𝑑𝑠 for all 𝑛 ≥ 1) is an appropriate tool to exclude
the eventual presence of the continuous spectrum and to
restore the following spectral mapping theorem:

𝜎 (𝑉 (𝑡)) ∩ {𝜂 ∈ C :
𝜂
 > 𝑒

𝑠𝐻𝑡}

= 𝑒
𝑡𝜎(𝑇𝐻+𝐾) ∩ {𝑒

𝑡𝜆
: 𝜆 > 𝑠𝐻} .

(28)

This technique has the advantage of not imposing any
condition on the initial data; it has been used by [36, 44, 45,
51] and other authors to study the time asymptotic behavior
of solutions of transport equations for absorbing boundary
conditions (𝐻 = 0) or 𝜓|Γ−

= 0; in other words, it has been
used in the case where each neutron which arrives at a point
of 𝜕𝐷 and coming from the interior of 𝐷 disappears, and no
neutron arrives from outside and where𝐷 is bounded. Many
contributions have been made in this direction, showing in
particular the compactness of the second-order remainder of
the Dyson-Phillips expansion, sometimes through heavy cal-
culations in the case of non absorbing boundary conditions.
Recently and always for absorbing boundary conditions,
dealing with regular collision operators by assuming that
the domain of positions has a finite volume (not necessarily
bounded), Mokhtar-Kharroubi [40] has established the com-
pactness of the first remainder term of the Dyson-Phillips
expansion on𝐿𝑝(𝐷×𝑉) (1 < 𝑝 < ∞).This analysis simplifies
considerably the spectral analysis of transport equations and
extends all known results made in the framework of the
study of the compactness of the second-order remainder
term; this is due to the fact that if 𝑅𝑛(𝑡) is compact, thus
𝑅𝑛+1(𝑡) is also compact, and it implies that (𝑈(𝑡))𝑡≥0 and
(𝑉(𝑡))𝑡≥0 have the same essential spectra and consequently
the same essential types. Unfortunately, this argument cannot
be applied to the casewhere𝑝 = 1 since its proofwas obtained
in the framework of 𝐿2(𝐷 × 𝑉) (and extended to 𝐿𝑝(𝐷 × 𝑉)

space (1 < 𝑝 < ∞) via some interpolation techniques) using
some properties of Fourier transform and Hilbert-Schmidt
operators. Better than that, Mokhtar-Kharroubi conjectured
that the first remainder term of the Dyson-Phillips expansion
𝑅1(𝑡), 𝑡 > 0 is not compact on 𝐿1(𝐷 × 𝑉); additionally, its
weakly compactness is an open problem (see [5, Problem 7,
p. 94]).

In this work, we study the impact of compactness results
on 𝑝-independence of the asymptotic spectrum of the trans-
port operator 𝐴𝐻. These results are established by means of
some geometrical properties of the space of positions 𝐷 and
the Radonmeasure 𝜇 having the velocity space𝑉 as a support
and the natures of the collision operator𝐾 and the boundary
linear operator 𝐻.

2. Main Results

2.1. Compactness Results and 𝑝-Independence of 𝜎𝑠(𝐴𝐻). We
assume that the measure 𝜇 satisfies the following specific
geometrical property:

∫
𝑐1≤‖𝑥‖≤𝑐2

𝑑𝜇 (𝑥) ∫

𝑐3

0

𝜒𝐴 (𝑡𝑥) 𝑑𝑡 as |𝐴| → 0, (29)

for every 0 < 𝑐1 < 𝑐2 < ∞ and 𝑐3 < ∞, where |𝐴| is
the Lebesgue measure of the set 𝐴 and 𝜒𝐴 is the indicator
function of 𝐴.

Remark 3. As indicated in [5, Remark 4.3], the above condi-
tion is satisfied by the Lebesgue measure onR𝑛 or on spheres
(multigroup model).

We start our analysis by the following fundamental
compactness result which will be used in the rest of this
section.

Theorem 4. If 𝑝 = 1, let 𝐻 ∈ L(𝐿
+

1
, 𝐿
−

1
), ‖𝐻‖ < 1 be a

weakly compact boundary linear operator and let 𝜇 be a Radon
measure satisfying the condition (29). Assume that the collision
operator 𝐾 is regular. Thus,

(i) if𝐷 is bounded, then𝐾(𝜆−𝑇𝐻)
−1

𝐾 is weakly compact
on 𝐿1(𝐷 × 𝑉, 𝑑𝑥𝑑𝜇);

(ii) if 𝐷 is a bounded convex set in R𝑛 and 𝐻 is let to be
compact, then 𝐾(𝜆 − 𝑇𝐻)

−1
𝐾 is compact on 𝐿1(𝐷 ×

𝑉, 𝑑𝑥𝑑𝜇).

Proof. If ‖𝐻‖ < 1, 𝑇𝐻 generates a 𝑐0-semigroup (𝑈𝐻(𝑡); 𝑡 ≥

0) on 𝑋1, and then its resolvent exists as bounded linear
operator satisfying

(𝜆 − 𝑇𝐻)
−1

= Γ
𝐻

𝜆
+ 𝐶𝜆, (30)

where Γ
𝐻

𝜆
= ∑𝑛≥0 𝐵𝜆𝐻(𝑀𝜆𝐻)

𝑛
𝐺𝜆, and


(𝜆 − 𝑇𝐻)

−1
≤

1

Re𝜆 + 𝜆⋆
, (Re𝜆 > −𝜆

⋆
) . (31)

Thus,

𝐾(𝜆 − 𝑇𝐻)
−1

𝐾 = 𝐾Γ
𝐻

𝜆
𝐾 + 𝐾𝐶𝜆𝐾. (32)
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Obviously, if 𝐻 is weakly compact, then Γ
𝐻

𝜆
is weakly

compact. On the other hand, it is easy to observe that 𝐶𝜆

is nothing but the resolvent of the streaming operator with
vacuum boundary conditions 𝑇0. Now, under condition (29)
and by applying [5, Theorem 4.4(𝚤)], we obtain that 𝐾(𝜆 −

𝑇0)
−1

𝐾 is weakly compact on 𝑋1 if 𝐷 is bounded. Moreover,
if 𝐷 is convex, then, by applying [5, Theorem 4.4(𝚤𝚤)], we
get the compactness of the operator 𝐾(𝜆 − 𝑇0)

−1
𝐾. Since

the compactness andweak compactness property concerning
bounded linear operators is stable under summation, we
obtain the desired result.

Question 1. It is known that for 1 < 𝑝 < ∞ and if the
boundary linear operator 𝐻 is compact, then 𝑇𝐻 generates
a 𝑐0-semigroup (𝑈𝐻(𝑡); 𝑡 ≥ 0) on 𝑋𝑝 (see [31, Theorem
6.8]); is the result still true for 𝑝 = 1 under the condition
that 𝐻 is weakly compact multiplicative boundary operator
(‖𝐻‖ ≥ 1)?

Let (𝐷𝑖, 𝜇𝑖), 𝑖 = 0, 1, be measure spaces with 𝜎-finite
positive measures 𝜇𝑖.

Theorem 5 (Riesz-Thorin theorem). Assume that 1 ≤ 𝑝𝑖,
𝑞𝑖 ≤ ∞, for 𝑖 = 0, 1, and let 𝑇 be a linear operator which
maps 𝐿𝑝𝑖(𝐷0, 𝜇0) continuously into 𝐿𝑞𝑖

(𝐷1, 𝜇1)with norm𝑀𝑖.
If 0 < 𝜃 < 1 and 1/𝑝 = (1−𝜃)/𝑝0+𝜃/𝑝1, 1/𝑞 = (1−𝜃)/𝑞0+𝜃/𝑞1,
then 𝑇 maps 𝐿𝑝(𝐷0, 𝜇0) continuously into 𝐿𝑞(𝐷1, 𝜇1) with
norm 𝑀 ≤ 𝑀

1−𝜃

0
𝑀
𝜃

1
.

This theorem shows that the boundedness of linear
operators can be interpolated between 𝐿𝑝-spaces. In 1960,
Krasnoselskii [52] showed that compactness can be also
interpolated. Thus, we can announce the following result.

Theorem 6. Assume that 1 ≤ 𝑝𝑖, 𝑞𝑖 ≤ ∞, for 𝑖 = 0, 1, and
let 𝑇 : 𝐿𝑝𝑖

(𝐷0, 𝜇0) → 𝐿𝑞𝑖
(𝐷1, 𝜇1) be compact. If 0 < 𝜃 < 1

and 1/𝑝 = (1 − 𝜃)/𝑝0 + 𝜃/𝑝1, 1/𝑞 = (1 − 𝜃)/𝑞0 + 𝜃/𝑞1, then
𝑇 : 𝐿𝑝(𝐷0, 𝜇0) → 𝐿𝑞(𝐷1, 𝜇1) is also compact.

By combining Theorem 6 and [53, Corollary 1.6.2], the
following lemma can be derived.

Lemma 7. Let 1 ≤ 𝑝0, 𝑝1 < ∞. Assume that a linear operator
𝑇 : 𝐿𝑝0

(𝐷) ∩ 𝐿𝑝1
(𝐷) → 𝐿𝑝0

(𝐷) ∩ 𝐿𝑝1
(𝐷) can be extended

to bounded linear operators on 𝐿𝑝𝑖
(𝐷), (𝑖 = 0, 1) such that at

least one of them is power compact. Then

(i) 𝑇 can be extended to a power compact operator on
𝐿 𝑠(𝐷) for each 𝑠 ∈ (𝑝0, 𝑝1);

(ii) denote the extension of 𝑇 to 𝐿 𝑠(𝐷) by 𝑇𝑠. If 𝑇𝑝𝑖
is

power compact, then 𝜎(𝑇𝑠) = 𝜎(𝑇𝑝𝑖
) for all 𝑠 ∈ (𝑝0, 𝑝1)

and the spectral projections corresponding to nonzero
eigenvalues are independent of 𝑝.

Let 𝑇𝑝
𝐻
(resp.,𝐴𝑝

𝐻
) be the closed densely defined operator

𝑇𝐻 (resp., 𝐴𝐻) on 𝑋𝑝, (1 ≤ 𝑝 < ∞). We denote by 𝐾𝑝

and (𝑈
𝑝

𝐻
(𝑡); 𝑡 ≥ 0) the bounded linear operators 𝐾 and

(𝑈𝐻(𝑡); 𝑡 ≥ 0) defined on 𝑋𝑝. Let 𝜎
𝑝

𝑠
(𝐴𝐻) = 𝜎(𝐴

𝑝

𝐻
) ∩ {𝜆 ∈

C/Re𝜆 > −𝜆
⋆
} (the asymptotic spectrum of the operator

𝐴
𝑝

𝐻
).
Now, we establish the fundamental result of this work

which describes 𝑝-independence of 𝜎𝑝
𝑠
(𝐴𝐻).

Theorem 8. Under assumptions of Theorem 4, we have

(i) 𝜎
𝑝

𝑠
(𝐴𝐻) = 𝜎

1

𝑠
(𝐴𝐻) for all 𝑝 > 1;

(ii) if 𝜆 ∈ 𝜎
𝑝

𝑠
(𝐴𝐻) = 𝜎

1

𝑠
(𝐴𝐻), we have N((𝜆 − 𝐴

𝑝

𝐻
)
𝑚
) =

N((𝜆 − 𝐴
1

𝐻
)
𝑚
) for every positive integer 𝑚 and every

𝑝 > 1, where N(𝑇) designates the null space of
the linear operator 𝑇. As a consequence, both the
geometrical multiplicity and algebraic multiplicity of 𝜆
are 𝑝-independent.

Proof. Let 𝑝 > 1; we have

𝐾𝑝|𝐿𝑝∩𝐿1
= 𝐾1|𝐿𝑝∩𝐿1

,

𝑈
𝑝

𝐻
(𝑡)|𝐿𝑝∩𝐿1

= 𝑈
1

𝐻
(𝑡)|𝐿𝑝∩𝐿1

, (𝑡 ≥ 0) .

(33)

The resolvent of 𝑇𝑝
𝐻
can be written as the Laplace transform

of 𝑈𝑝
𝐻
(𝑡) as follows:

(𝜆 − 𝑇
𝑝

𝐻
)
−1

𝜑 = ∫

∞

0

𝑒
−𝜆𝑡

𝑈
𝑝

𝐻
(𝑡) 𝜑 𝑑𝑡. (34)

Thus for 𝜆 ∈ C such that Re𝜆 > −𝜆
⋆, we get

(𝜆 − 𝑇
𝑝

𝐻
)
−1

|𝐿𝑝∩𝐿1
= (𝜆 − 𝑇

1

𝐻
)
−1

|𝐿𝑝∩𝐿1
. (35)

By applying Theorem 4, we obtain the compactness of ((𝜆 −

𝑇
1

𝐻
)
−1

𝐾1)
2 on 𝐿1(𝐷 × 𝑉). On the other hand, Lemma 7

implies the compactness of ((𝜆 − 𝑇
𝑝

𝐻
)
−1

𝐾𝑝)
2 on 𝐿𝑝(𝐷 × 𝑉)

and consequently 𝜎(((𝜆 − 𝑇
𝑝

𝐻
)
−1

𝐾𝑝)
2
) = 𝜎(((𝜆 − 𝑇

1

𝐻
)
−1

𝐾1)
2
)

for every 𝑝 > 1. Hence, Gohberg-Schmul’yan theorem
[22, Theorem 11.4] shows that 𝜎

𝑝

𝑠
(𝐴𝐻) consists of discrete

eigenvalues with finite algebraic multiplicity. Moreover, it is
easy to observe that 1 ∈ 𝜎(((𝜆 − 𝑇

𝑝

𝐻
)
−1

𝐾𝑝)
2
) if and only if

𝜆 ∈ 𝜎
𝑝

𝑠
(𝐴𝐻); therefore, taking into account assertion (ii) in

Lemma 7, we get that 𝜎𝑝
𝑠
(𝐴𝐻) = 𝜎

1

𝑠
(𝐴𝐻) for all 𝑝 ≥ 1.

Next, following estimation (31), we obtain that
limRe𝜆→+∞‖(𝜆 − 𝑇

𝑝

𝐻
)
−1

𝐾𝑝‖ = 0. This gives that, for
Re𝜆 sufficiently large, we have

(𝐼 − (𝜆 − 𝑇
𝑝

𝐻
)
−1

𝐾𝑝)

−1

=

∞

∑

𝑗=0

((𝜆 − 𝑇
𝑝

𝐻
)
−1

𝐾𝑝)

𝑗

. (36)

Thus, for Re𝜆 sufficiently large, it follows that

(𝐼 − (𝜆 − 𝑇
𝑝

𝐻
)
−1

𝐾𝑝)

−1

|𝐿𝑝∩𝐿1

= (𝐼 − (𝜆 − 𝑇
1

𝐻
)
−1

𝐾1)

−1

|𝐿𝑝∩𝐿1

.

(37)
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Using the analyticity of the operator valuation function 𝜆 →

(𝐼− (𝜆−𝑇
𝑝

𝐻
)
−1

𝐾𝑝)
−1 on the set {𝜆 ∈ C/Re𝜆 > −𝜆

⋆
} \ 𝜎

𝑝

𝑠
(𝐴𝐻)

for each 𝑝 ≥ 1, we get that for

𝜆 ∈ {𝜇 ∈ C/Re𝜇 > −𝜆
⋆
} \ 𝜎

𝑝

𝑠
(𝐴𝐻)

= {𝜇 ∈ C/Re𝜇 > −𝜆
⋆
} \ 𝜎

1

𝑠
(𝐴𝐻)

(38)

we have

(𝐼 − (𝜆 − 𝑇
𝑝

𝐻
)
−1

𝐾𝑝)

−1

|𝐿𝑝∩𝐿1

= (𝐼 − (𝜆 − 𝑇
1

𝐻
)
−1

𝐾1)

−1

|𝐿𝑝∩𝐿1

.

(39)

Using the formula (𝜆−𝐴
𝑝

𝐻
)
−1

= (𝐼−(𝜆−𝑇
𝑝

𝐻
)
−1

𝐾𝑝)
−1

(𝜆−𝑇
𝑝

𝐻
)
−1

for each 𝑝 ≥ 1 and 𝜆 ∈ {𝜇 ∈ C/Re𝜇 > −𝜆
⋆
} \ 𝜎

𝑝

𝑠
(𝐴𝐻), one

sees that

(𝜆 − 𝐴
𝑝

𝐻
)
−1

|𝐿𝑝∩𝐿1
= (𝜆 − 𝐴

1

𝐻
)
−1

|𝐿𝑝∩𝐿1
(40)

for 𝜆 ∈ {𝜇 ∈ C/Re𝜇 > −𝜆
⋆
} \ 𝜎

𝑝

𝑠
(𝐴𝐻).

Now, if we denote by P𝜆(𝐴
𝑝

𝐻
) the spectral projection

corresponding to an eigenvalue 𝜁 of 𝐴
𝑝

𝐻
, then for 𝛽 > 0

sufficiently small

P𝜆 (𝐴
𝑝

𝐻
) =

1

2𝑖𝜋
∫
|𝑧−𝜁|=𝛽

(𝑧 − 𝐴
𝑝

𝐻
)
−1

𝑑𝑧. (41)

According to (40) and (41), it follows that for each 𝜆 ∈

𝜎
𝑝

𝑠
(𝐴𝐻) = 𝜎

1

𝑠
(𝐴𝐻)

P𝜆 (𝐴
𝑝

𝐻
)
|𝐿𝑝∩𝐿1

= P𝜆 (𝐴
1

𝐻
)
|𝐿𝑝∩𝐿1

. (42)

Since the space of infinitely differentiable functions with
compact supports C∞

0
(𝐷 × 𝑉) is dense in 𝑋𝑝, then

P𝜆(𝐴
𝑝

𝐻
)(C∞

0
(𝐷×𝑉)) is dense inP𝜆(𝐴

𝑝

𝐻
)(𝑋𝑝), but these two

vector spaces are finite-dimensional; hence

P𝜆 (𝐴
𝑝

𝐻
) (C

∞

0
(𝐷 × 𝑉)) = P𝜆 (𝐴

𝑝

𝐻
) (𝑋𝑝) ,

(𝑝 ≥ 1) .

(43)

According to (42) and (43), we obtain that P𝜆(𝐴
𝑝

𝐻
)(𝑋𝑝) =

P𝜆(𝐴
1

𝐻
)(𝑋1) for all 𝑝 ≥ 1 and 𝜆 ∈ 𝜎

𝑝

𝑠
(𝐴𝐻). Afterwards,

since, for every 𝑘 ≥ 1, we have N((𝜆 − 𝐴
𝑝

𝐻
)
𝑘
) ⊂

P𝜆(𝐴
𝑝

𝐻
)(𝑋𝑝) = P𝜆(𝐴

1

𝐻
)(𝑋1) and N((𝜆 − 𝐴

1

𝐻
)
𝑘
) ⊂

P𝜆(𝐴
1

𝐻
)(𝑋1) = P𝜆(𝐴

𝑝

𝐻
)(𝑋𝑝), it follows thatN((𝜆−𝐴

1

𝐻
)
𝑘
) =

N((𝜆 − 𝐴
𝑝

𝐻
)
𝑘
) ⊂ 𝑋𝑝 ∩ 𝑋1.

In the spirit of the above theorem, we can prove the
following result without weak compactness hypothesis on the
boundary linear operator 𝐻 and the geometrical property
(29) with boundedness of𝐷 but based on the weak compact-
ness of one remainder of the Dyson-Phillips expansion.

Let 
𝑝

𝑠
(𝐴𝐻) = 𝜎(𝐴

𝑝

𝐻
)⋂{𝜆 ∈ C/Re𝜆 > 𝑠(𝑇𝐻)}, where

𝑠(𝑇𝐻) is the spectral bound of the operator 𝑇𝐻 in 𝑋𝑝 for all
𝑝 ≥ 1.

Proposition 9. Let 𝐾 be a regular collision operator and let
𝐻 ∈ L(𝐿

+

𝑝
, 𝐿
−

𝑝
) (1 ≤ 𝑝 < ∞) such that 𝑇𝐻 generates a 𝑐0-

semigroup (𝑈𝐻(𝑡); 𝑡 ≥ 0) on𝑋𝑝. If one of the remainder terms
of the Dyson-Phillips series 𝑅

𝐻

𝑛
(𝑡) is weakly compact on 𝑋1,

then

(i) 
𝑝

𝑠
(𝐴𝐻) = 

1

𝑠
(𝐴𝐻) for all 𝑝 > 1;

(ii) if 𝜆 ∈ 
𝑝

𝑠
(𝐴𝐻) = 

1

𝑠
(𝐴𝐻), then N((𝜆 − 𝐴

𝑝

𝐻
)
𝑚
) =

N((𝜆 − 𝐴
1

𝐻
)
𝑚
) for every positive integer 𝑚 and every

𝑝 > 1. As a consequence, both the geometrical
multiplicity and algebraic multiplicity of 𝜆 are 𝑝-
independent.

Proof. Following the proof of Theorem 8, it suffices to show
that there exists 𝑚 ≥ 1 such that ((𝜆 − 𝑇𝐻)

−1
𝐾)

𝑚 is compact
for 𝜆 ∈ C such that Re𝜆 > 𝑠(𝑇𝐻). Indeed, assume that there
exists 𝑛 ≥ 1 such that 𝑅𝐻

𝑛
(𝑡) is weakly compact on 𝑋1. Then,

according to [5, Theorem 2.6], 𝑈𝑛(𝑡) = ([𝑈𝐾]
𝑛
∗ 𝑈)(𝑡) is

weakly compact and consequently by [5, Theorem 2.3] the
strong integral

∫

𝑁

0

𝑒
−𝜆𝑡

𝑈𝑛 (𝑡) 𝑑𝑡 is weakly compact on 𝑋1. (44)

On the other hand, we have

∫

𝑁

0

𝑒
−𝜆𝑡

𝑈𝑛 (𝑡) 𝑑𝑡 → ∫

∞

0

𝑒
−𝜆𝑡

𝑈𝑛 (𝑡) 𝑑𝑡 in L (𝑋1) . (45)

Hence, ∫∞
0

𝑒
−𝜆𝑡

𝑈𝑛(𝑡)𝑑𝑡 is weakly compact on 𝑋1. Since the
Laplace transform of ([𝑈𝐾]

𝑛
∗ 𝑈)(𝑡) is nothing but ((𝜆 −

𝑇𝐻)
−1

𝐾)
𝑛
(𝜆 − 𝑇𝐻)

−1, this gives the weak compactness of
((𝜆 − 𝑇𝐻)

−1
𝐾)

𝑛
(𝜆 − 𝑇𝐻)

−1 for 𝜆 ∈ C such that Re𝜆 > 𝜔,
where 𝜔 is the type of (𝑈𝐻(𝑡); 𝑡 ≥ 0); by analytic arguments,
we obtain that ((𝜆 − 𝑇𝐻)

−1
𝐾)

𝑛
(𝜆 − 𝑇𝐻)

−1 is weakly compact
for 𝜆 ∈ C such that Re𝜆 > 𝑠(𝑇𝐻) and implies compactness of
((𝜆 − 𝑇𝐻)

−1
𝐾)

2𝑛+2 which gives the needed result.

Now, we focus our study on the case of slab geometry.

Theorem 10. If𝐷 =]−𝑎, 𝑎[, 𝑉 = [−1, 1], 𝜇 = V (the Lebesgue
measure on R) and 𝐻 is a bounded boundary linear operator
from 𝐿

+

𝑝
to 𝐿

−

𝑝
, then

(i) 𝜎
𝑝

𝑠
(𝐴𝐻) = 𝜎

1

𝑠
(𝐴𝐻) for all 𝑝 > 1;

(ii) if 𝜆 ∈ 𝜎
𝑝

𝑠
(𝐴𝐻) = 𝜎

1

𝑠
(𝐴𝐻), then N((𝜆 − 𝐴

𝑝

𝐻
)
𝑚
) =

N((𝜆 − 𝐴
1

𝐻
)
𝑚
) for every positive integer 𝑚 and every

𝑝 > 1. As a consequence, both the geometrical
multiplicity and algebraic multiplicity of 𝜆 are 𝑝-
independent.

Proof. Here, the time of sojourn of particles in 𝐷 is
bounded from below by 2𝑎; indeed, in this case we have
inf {𝜏(𝑥, V); (𝑥, V) ∈ Γ+} = 2𝑎 > 0. As an immediate
consequence, 𝑇𝐻 generates a 𝑐0-semigroup for any boundary
linear operator 𝐻 [29, Remark 6]. Moreover, we have


(𝜆 − 𝑇𝐻)

−1
≤

𝛼

Re𝜆 + 𝜆⋆
, (∀𝜆 ∈ Λ 0) , (46)
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where 𝛼 is a positive constant depending on ‖𝐻‖ and Λ 0 =

{𝜆 ∈ C/Re𝜆 > 𝜆0} with

𝜆0 =

{{

{{

{

−𝜆
⋆
, if ‖𝐻‖ ≤ 1,

−𝜆
⋆
+

1

2𝑎
ln (‖𝐻‖) , if ‖𝐻‖ > 1.

(47)

On the other hand, we have ((𝜆 − 𝑇𝐻)
−1

𝐾)
2 is compact for

all 1 ≤ 𝑝 < ∞ [25, Theorem 2.1]. By adopting the same
techniques given in the proof of Theorem 8, we obtain the
desired result.

Remark 11. We note that 𝐾(𝜆 − 𝑇𝐻)
−1 is not weakly compact

in general on 𝐿1(𝐷 × 𝑉) (see [18]).

Question 2. In the case of slab geometry, is (𝜆 − 𝑇𝐻)
−1

𝐾

weakly compact on𝐿1(]−𝑎, 𝑎[×[−1, 1])under the assumption
that 𝜇 is a diffuse (nonatomic) measure on R?
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[2] M.Cessenat, “Théorèmes de trace pour des espaces de fonctions
de la neutronique,” Comptes Rendus de l Académie des Sciences,
Series I, no. 299, p. 16, 1984.
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[28] K. Latrach and A. Dehici, “Spectral properties and time asymp-
totic behaviour of linear transport equations in slab geometry,”
MathematicalMethods in the Applied Sciences, vol. 24, no. 10, pp.
689–711, 2001.

[29] B. Lods, “A generation theorem for kinetic equations with non-
contractive boundary operators,” Comptes Rendus Mathema-
tique, vol. 335, no. 7, pp. 655–660, 2002.
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Université de Franche-Comté, Besancon, France, 2002.

[31] B. Lods, “Semigroup generation properties of streaming opera-
tors with non-contractive boundary conditions,”Mathematical
and Computer Modelling, vol. 42, pp. 1141–1162, 2005.

[32] J. T. Marti, “Mathematical foundations of kinetics in neutron
transport theory,” Nucleonik, vol. 8, no. 3, pp. 159–163, 1966.



8 Journal of Function Spaces

[33] J.Mika, “Time dependent neutron transport in plane geometry,”
Nucleonik, vol. 9, no. 4, pp. 200–205, 1967.

[34] J. Mika, “The effects of delayed neutrons on the spectrum of the
transport operator,” Nucleonik, vol. 9, no. 1, pp. 46–51, 1967.

[35] M. Mokhtar Kharroubi, Propriétés spectrales de l’opérateur de
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1995-1996.

[40] M. Mokhtar-Kharroubi, “Optimal spectral theory of the linear
Boltzmann equation,” Journal of Functional Analysis, vol. 226,
no. 1, pp. 21–47, 2005.

[41] A. Palczewski, “Spectral properties of the space inhomogeneous
linearizedBoltzmannoperator,”TransportTheory and Statistical
Physics, vol. 13, no. 3-4, pp. 409–430, 1984.

[42] M. Sbihi, Analyse spectrale de modèles neutroniques [Ph.D.
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