Model Reference Tracking Control for Uncertain Takagi-Sugeno Systems subject to Sensor Faults

Sabrina AOUAOUDA* and Mohammed Chadli**

*Souk Ahras University,LEER, BP 1553 Souk-Ahras, 41000 **University of Picardie Jules Verne/MIS, Amiens, France <u>sabrina.aouaouda@yahoo.fr</u> <u>mchadli@u-picardie.fr</u>

Objective and main contribution

Objective

Design an active fault tolerant tracking controller strategy to preserve the closed-loop system stability in spite of sensor faults and uncertainties

Contribution

Uncertain nonlinear systems represented by T-S models (Unmeasurable premise variables, Unknown bounded disturbances)

- > Active fault tolerant tracking control law based on the estimated states
- Descriptor observer design to estimate sensor faults and system states

Model Reference Tracking Control for Uncertain Takagi-Sugeno Systems subject to Sensor Faults

Outline

- Objective and main contribution
- 2
- Takagi-Sugeno approach for modeling

Fault tolerant tracking control strategy

Illustrative example

Conclusions and perspectives

Takagi-Sugeno approach for modeling

□ The Takagi-Sugeno model structure is given by :

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_i (\xi(t)) (A_i x(t) + B_i u(t)) \\ y(t) = \sum_{i=1}^{r} \mu_i (\xi(t)) C_i x(t) \end{cases}$$

 $x(t) \in \mathbb{R}^n$ is the system state variable, $u(t) \in \mathbb{R}^m$ is the control input and $y(t) \in \mathbb{R}^p$ the system output

□ Interpolation mechanism

$$\sum_{i=1}^{r} \mu_i(\xi(t)) = 1 \ et \ \mu_i(\xi(t)) \ge 0, \forall t, \forall i \in \{1 \cdots r\}$$

Obtaining a Takagi-Sugeno model

✓ Identification
 ✓ linéarisation Approach
 ✓ Nonlinear sector Approach

Takagi-Sugeno approach for modeling

□ Faulty uncertain system (Sensor faults)

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_i (\xi(t)) (\mathbf{A}_i x(t) + \mathbf{B}_i u(t)) + B_d d(t) \\ y(t) = C x(t) + D_f f(t) \end{cases}$$

f(t): sensor fault vector d(t): unknown bounded disturbance vector $A_{i} = A_{i} + \Delta A_{i}$ $B_{i} = B_{i} + \Delta B_{i}$ $\Delta A_{i} = M_{a} \mathscr{Y}(t) N_{ai}, \Delta B_{i} = M_{b} \mathscr{Y}(t) N_{bi}$ $\mathscr{Y}(t) \mathscr{Y}^{T}(t) \leq I$

I, being the identity matrix, $M_{a,b}$ and $N_{(a,b)i}$ are known real constant matrices of appropriate dimensions.

- *M* represents the maximum percentage of the state matrices variation
- *N* are matrices including the nominal values.

Takagi-Sugeno approach for modeling

Descriptor faulty uncertain system (Sensor faults)

$$\begin{cases} \overline{E}\dot{x}(t) = \sum_{i=1}^{r} h_i(\xi(t))(\overline{\mathbb{A}}_i \overline{x}(t) + \overline{\mathbb{B}}_i u(t)) + \overline{B}_f d(t) + \overline{D}_h g(t) \\ y(t) = \overline{C}\overline{x}(t) = C_0 \overline{x}(t) + g(t) \end{cases}$$

where

$$\bar{x}(t) = \begin{bmatrix} x(t) \\ g(t) \end{bmatrix} \in \mathbb{R}^{n+p} , \ \bar{E} = \begin{bmatrix} I_n & 0 \\ 0 & 0 \end{bmatrix}, \ g(t) = D_f f(t) \in \mathbb{R}^p$$

with

$$\overline{\mathbb{A}}_{i} = \overline{A}_{i} + \overline{\Delta A}_{i} = \begin{bmatrix} A_{i} & 0\\ 0 & -I_{p} \end{bmatrix} + \begin{bmatrix} \Delta A_{i} & 0\\ 0 & 0 \end{bmatrix}, \overline{\mathbb{B}}_{i} = \overline{B}_{i} + \overline{\Delta B}_{i} = \begin{bmatrix} B_{i}\\ 0 \end{bmatrix} + \begin{bmatrix} \Delta B_{i}\\ 0 \end{bmatrix}$$

Objectives

- 1. Adopt a T-S descriptor system representation approach to ensure the estimation of both the state and sensor fault vectors.
- 2. Design a fault tolerant controller to make the uncertain faulty system states follow as closely as possible the model reference states.

Reference model

Control law

$$\begin{cases} \dot{x}_{r}(t) = \sum_{i=1}^{r} h_{i}(\xi(t)) (A_{i}x_{r}(t) + B_{i}u(t)) \\ y(t) = Cx_{r}(t) \end{cases}$$

$$u_{FTC}(t) = u(t) + \sum_{j=1}^{r} h_j\left(\hat{\xi}(t)\right) \left(K_j\left(\hat{\boldsymbol{x}}(t) - x_r(t)\right)\right)$$

 $\checkmark K_i \in \mathbb{R}^{m \times n}$ are the state-feedback gain matrices to be determine

✓ The FT tracking control law is chosen now as a classical PDC law, but based on the knowledge of "fault free" estimated states

□ State descriptor observer

$$\begin{cases} \mathbf{E}Z\dot{(}t) = \sum_{j=1}^{r} h_j \left(\hat{\xi}\right) \left(\mathbf{F}_j Z(t) + \bar{B}_j u_{FTC}(t)\right) \\ \hat{x}(t) = Z(t) + \mathbf{L}y(t) \\ \hat{y}(t) = C_0 \hat{x}(t) = C\hat{x}(t) \end{cases}$$

- $\checkmark z(t) \in \mathbb{R}^{n+p}$ is the auxiliary state vector of the observer
- $\checkmark \hat{\xi}(t)$ is the unmeasured premise variable depending partially or completely on the estimated state $\hat{x}(t)$.
- \checkmark F_i , E and L are the observer gains to be determined.

Observer and controller gain design

✓ Define the state estimation error and state tracking error signals as:

$$\binom{e_t(t)}{e_s(t)} = \binom{x(t) - x_r(t)}{\bar{x}(t) - \hat{x}(t)}$$

✓ Dynamic of the state estimation error and state tracking error

$$\dot{e}_{s}(t) = \sum_{i=1}^{r} \sum_{j=1}^{r} h_{i}(\xi(t))h_{j}(\hat{\xi}(t)) [S_{ij}e_{s}(t) + Te_{t}(t) + \mathfrak{G}_{ij}x(t) + \mathfrak{H}(t) + Qu(t)]$$

$$\dot{e}_{t}(t) = \sum_{i=1}^{r} \sum_{j=1}^{r} h_{i}(\xi(t))h_{j}(\hat{\xi}(t)) (\Delta A_{i} + \mathbb{B}_{i}K_{j})e_{t}(t) + \Delta B_{i}u(t)$$

with

$$F_{j} = \begin{bmatrix} A_{j} & 0 \\ -C & -I_{p} \end{bmatrix}, L = \begin{bmatrix} 0 \\ I_{p} \end{bmatrix}, E = \begin{bmatrix} I_{n} + \Theta C & \Theta \\ RC & R \end{bmatrix}$$

 $\Theta \in \mathbb{R}^{p \times p}$ and $R \in \mathbb{R}^{n \times p}$ are free matrices to be determined which are chosen to ensure the non singularity of matrix *E*.

Observer and controller gains design

✓ Defining the augmented state vector

$$\boldsymbol{X}^{T}(t) = \begin{bmatrix} \boldsymbol{e}_{t}^{T}(t) & \boldsymbol{e}_{s}^{T}(t) & \boldsymbol{x}^{T}(t) \end{bmatrix}$$

✓ The following closed-loop system is obtained

$$\dot{\boldsymbol{X}}(t) = \sum_{i=1}^{r} \sum_{j=1}^{r} h_i (\xi(t)) h_j (\hat{\xi}(t)) \times \{ \mathfrak{S}_{ij} [\boldsymbol{X}(t)] + \mathfrak{K}_i \cdot [\boldsymbol{Y}(t)] \}$$

where

$$\mathfrak{S}_{ij} = \begin{pmatrix} \left(\Delta A_i + \mathbb{B}_i K_j \right) & 0 & 0 \\ T & S_{ij} & \mathfrak{C}_{ij} \\ \mathbb{B}_i K_j & -\mathbb{B}_i \widetilde{K}_j & \mathbb{A}_i \end{pmatrix} \qquad \mathfrak{S}_i = \begin{pmatrix} \Delta B_i & 0 \\ V & \mathfrak{H}_i \\ \mathbb{B}_i & B_f \end{pmatrix}$$

and

$$\Upsilon(t) = (u(t) \quad d(t))^T$$

Stability analysis

✓ Consider the quadratic Lyapunov function

$$V(X(t)) = X^{T}(t)\mathbb{P}X(t) \quad \mathbb{P} = \mathbb{P}^{T} = diag[P_{1} \quad P_{2} \quad P_{3}]$$

Error convergence to 0 (absence of disturbances)

 \succ \mathcal{L}_2 Constraint

$$\int_0^t \boldsymbol{X}^T(\tau) \boldsymbol{\mathcal{Q}} \, \boldsymbol{X}(\tau) \, d\tau \leq \eta^2 \int_0^t \boldsymbol{\Upsilon}^T(\tau) \boldsymbol{\Upsilon}(\tau) \, d\tau$$

Where η represents the attenuation level and $Q = diag(I \ I \ 0)$

Conditions

✓ The tracking and the estimation errors must therefore satisfy the following inequality: $\begin{cases}
min & \eta \\
X^{T}(t)\Im(\mathbb{P}^{T} \mathfrak{S}_{ij})X(t) + \Im(X^{T}(t)\mathbb{P}\mathfrak{K}_{i}\Upsilon(t)) + X^{T}(t)QX(t) - \eta^{2}\Upsilon^{T}(t)\Upsilon(t) < 0
\end{cases}$

The main idea for the development is to separate the constant and the time-varying parts in $\mathfrak{S}_{ij}(t)$ and $\mathfrak{A}_i(t)$

□ Theorem

The uncertain T-S system is asymptotically stable via the fault tolerant tracking controller if there exist symmetric definite positive matrices P_1 , P_{21} , P_{22} , P_3 , matrices W_1 , W_2 and the scalars λ_1^b , λ_3^b , λ_4^b , λ_5^b , λ_6^a , λ_1^a , λ_2^a , λ_3^a such that the following LMI conditions are satisfied for all $i, j = 1, 2 \cdots, r$ and $i \neq j$:

Minimize $\eta > 0$ such that:

 $\Psi_{ii} < 0$

$$\frac{2}{r-1}\Psi_{ii} + \Psi_{ij} + \Psi_{ji} < 0 \quad \text{where} \quad \Psi_{ij} = \begin{pmatrix} \Psi_{ij}^{11} + \Xi_{ij} & (*) & (*) \\ \Sigma_{ij} & -\zeta & (*) \\ \Psi_{ij}^{12} & (0) & \Psi^{22} \end{pmatrix}$$

with

$$\Psi_{ij}^{12} = diag \begin{bmatrix} B_i K_j & P_{21} & & \\ P_1 & B_{i-j} K_j & P_{22} & 0 & 0 & 0 \\ B_i K_j & P_{21} & P_{22} & 0 & 0 & 0 \\ C B_{i-j} K_j & C B_{i-j} K_j & & \end{bmatrix}$$

with	า			_		_			
		$ \begin{array}{ccc} M_a^T P_1 & M_b^T P_{21} \\ M^T P_2 & M_2^T P_2 \end{array} $	$M_{h}^{T}P_{21}$	M_a^T M^T	$M_b^1 P_1$ $M_b^T P_{21}$	0			
	$\sum_{ij} = di$	$ag \begin{vmatrix} M_b & I_1 \\ N_{bi} & K_i \end{vmatrix} = \begin{pmatrix} M_b & I_2 \\ N_{bi} & K_i \end{vmatrix}$	$M_h^T C^T P_2$ M	$\begin{bmatrix} C^T P_{22} \end{bmatrix} l$	$M_h^T C^T P_{22}$	0			
		$\begin{bmatrix} N & j \\ 0 & N_{ai}P_{21} \end{bmatrix}$	0	0	M_b^T	0			
	/ I	*		*	*	*	* \		
		$\Im(P_{21}^T A_j) + \Im(W$	$(I_1C) + I$	*	*	*	*		
	0	$-P_{22}CA_j - W_2C$	$T - W_1^T \qquad \Im(V$	$V_2) + I$	*	*	*		
	$\Psi_{ij}^{11} = \left \begin{array}{c} B_i K_j \end{array} \right $	$-B_i K_j + A_{i-j}$	$^{T}P_{21}$ –(CA	$_{i-j})^T P_{22}$	$\Im(A_i)$	*	*		
	0	$B_{i-j}{}^T P_{21}$	-(CB)	$\left(i - j \right)^T P_{22}$	B_i^T	$-\eta^2 I$	*		
	(0	$B_f^T P_{21}$	-(C.	$(B_f)^T P_{22}$	B_f^T	0	$-\eta^2 I$		
	$(\lambda_1^a N_{ai}^T N_{ai} + \lambda_1^b N_b^T)$	N _{bi} *	*			*		*	*\
Ξ =	0	$N_{bi}^T N_{bi}$	*			*		*	*
	0	$0 \lambda_3^a$	$N_{ai}^T N_{ai} + \lambda_6^b N_{bi}^T$	N _{bi}		*		*	*
-1	0	0	0	$\lambda_4^a N$	$V_{ai}^T N_{ai} + \lambda$	$^{a}_{2}M_{a}M_{a}$	$\lambda_a^T + \lambda_5^b N_{bi}^T N_{bi}$	*	*
	0	0	0			0		0	*
	\setminus 0	0	0			0		0	0/

The observer gains:

$$R = (P_{21}^{-1}W_2 - CP_{22}^{-1}W_1)^{-1}$$

$$\Theta = P_{21}^{-1}W_1R$$

$$F_j = \begin{bmatrix} A_j & 0 \\ -C & -I_p \end{bmatrix}, L = \begin{bmatrix} 0 \\ I_p \end{bmatrix}, E = \begin{bmatrix} I_n + \Theta C & \Theta \\ RC & R \end{bmatrix}$$

Numerical example

Uncertain T-S faulty system

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{2} \mu_i (\xi(t)) (\mathbb{A}_i x(t) + \mathbb{B}_i u(t)) + B_d d(t) \\ y(t) = C x(t) + D_f f(t) \end{cases}$$

with

$$A_{1} = \begin{bmatrix} -2 & 1 \\ 2 & -3 \end{bmatrix}, A_{2} = \begin{bmatrix} -3 & 2 \\ 2 & -3 \end{bmatrix}, B = \begin{bmatrix} 1 & 0.5 \\ 1 & 2 \end{bmatrix}, B_{d} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$
$$C = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}, D_{f} = \begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix}$$

The uncertain matrices:

$$\Delta A_i = M_a \mathcal{Y}(t) N_{ai} \quad \text{and} \quad \Delta B_i = M_b \mathcal{Y}(t) N_{bi}$$

with $i = 1,2$: $M_a = N_{ai} = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}$, $M_b = N_{bi} = \begin{bmatrix} 0.1 & 0 \end{bmatrix}$

The uncertainties are defined by:

 $\mathbf{y}(\mathbf{t}) = sin(1.5t).$

Uncertain T-S faulty system

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{2} \mu_i (\xi(t)) (\mathbb{A}_i x(t) + \mathbb{B}_i u(t)) + B_d d(t) \\ y(t) = C x(t) + D_f f(t) \end{cases}$$

Membership functions:

$$\mu_1(x_1(t)) = (1 - tanh(0.5 - x_1(t)))/2$$

$$\mu_2(x_1(t)) = 1 - \mu_1(x_1(t))$$

The fault signals

$$f_{1}(t) = 0.1sin10(t-6) \qquad occurs \ at \ 5sec \le t \le 9sec$$

$$f_{2}(t) = \begin{cases} 0.02(t-1) & 12sec \le t < 14sec \\ 0.01(t-1) & 14sec \le t \le 16sec \\ 0 & otherwise \end{cases}$$

Controller and Observer gains

$$K_{1} = \begin{bmatrix} 32.7680 & -1.3849 \\ -1.3849 & -7.8231 \end{bmatrix}; K_{2} = \begin{bmatrix} -36.0529 & 4.0075 \\ 4.0075 & 5.9421 \end{bmatrix}$$
$$L = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{T}$$
$$F_{1} \begin{pmatrix} -2 & 1 & 0 & 0 \\ 2 & -3 & 0 & 0 \\ -0.1 & 0 & -1 & 0 \\ 0 & -0.1 & 0 & -1 \end{pmatrix}, F_{2} \begin{pmatrix} -3 & 2 & 0 & 0 \\ 2 & -3 & 0 & 0 \\ -0.1 & 0 & -1 & 0 \\ 0 & -0.1 & 0 & -1 \end{pmatrix}$$
$$R = \begin{pmatrix} 0.1193 & 0.0090 \\ 0.0120 & 0.0614 \end{pmatrix}; \Theta = \begin{pmatrix} -9.9702 & -0.0563 \\ 0.0860 & -9.9357 \end{pmatrix}$$
$$E = \begin{pmatrix} 0.0030 & -0.0056 & -9.9702 & -0.0563 \\ 0.0086 & 0.0064 & 0.0860 & -9.9357 \\ 0.0119 & 0.0099 & 0.1193 & 0.0090 \\ 0.0012 & 0.0061 & 0.0120 & 0.0614 \end{pmatrix}$$

Figure . Faults (f_1, f_2) and their estimates (right), uncertain states (x_1, x_2) , reference states (x_{1r}, x_{2r}) and their estimates (left)

Conclusions and perspectives

Conclusions

Model reference tracking control of faulty nonlinear systems represented by uncertain T-S structure has been considered

> A sensor fault tolerant control scheme based on a descriptor observer with a guaranteed \mathcal{L}_2 performance is proposed

Convergence conditions expressed in an optimisation problem with LMI constraints

Perspectives

Extension of that work to nonlinear systems with time varying parameters

Extension to the case of discrete time T-S models with uncertainties

Thanks for your attention