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Abstract—The interest in gait as a biometric is strongly
motivated by the urgent necessity for automated recognition
systems for surveillance applications and forensic analysis.
Many studies have now shown that it is possible to recognize
people by the way they walk i.e. Gait. As yet there has
been little formal study of people recognition using the
kinematic-related gait features. In this research study, we
have investigated the use of Elliptic Fourier Descriptor for the
temporal markerless extraction of human joints. We describe
a model-based method whereby spatial model templates
for the human motion are described in a parameterized
form using the Elliptic Fourier Descriptors accounting for
the different variations of scale and rotation. Gait features
include the angular measurements of the legs as well as the
spatial displacement of the body trunk. To further refine gait
features based on their discriminability, a feature selection
algorithm which is applied using a proposed validation-
criterion based on the proximity of neighbors. Initial ex-
periments have revealed that gait angular measurements
derived from the joint motions mainly the ankle, knee and
hip angles embed most of the discriminatory potency for gait
identification.

Keywords-Elliptic Fourier Descriptor, Gait Recognition,
Gait Biometrics

I. INTRODUCTION

Gait recognition is considered as one of the emerging
research area within computer vision and biometrics due
to its potential use in a plethora of applications including
visual smart surveillance and forensic analysis. Gait, the
way we walk is defined as the manner of locomotion
characterised by loading and unloading the limbs con-
secutively. Gait includes running, walking and hopping
though the word gait is usually used to refer to the
walking pattern. The gait rhythmic pattern is performed
in a repeatable and characteristic manner [1]. Meanwhile,
gait analysis is the systematic study of human walking [2]
concerned with the quantification and understanding of the
locomotion process. Such study involves the observation
and quantification of body movements, mechanics and
muscle activities. Gait analysis is carried out for two
basic purposes [2]: The treatment of patients having gait
abnormalities in addition to enhance the knowledge and
understanding of gait. The study of human gait dates back
to the ancient times with Aristotle (384-322 BC) being
considered as the pioneer to study the human gait in his
work “De Motu Animalium“.

The suitability of gait as a potential biometrics emerges
from the fact that the gait pattern can be captured and per-

ceived from a distance as well as its non-invasive and less-
intrusive nature [3], [4], [5]. In fact, early experimental
studies conducted by Murray, Cutting and Johansson [6],
[7] revealed that the joints motion seen from Moving Light
Displays mounted on a walking subject can sufficiently
render the gait biometric signature so that an observer can
perceive the gender as well as the identity of the person if
they are familiar with their walking pattern. For security
and forensic cases, there are a number of situations in
which gait is the only perceivable trace available from
CCTV surveillance footage of a crime scene. As opposed
to other biometrics such as face and fingerprint recognition
which can be obscured and concealed in most cases. Gait-
based forensic analysis overcomes most of the limitations
as it is hard to conceal, disguise or alter. In fact, Lynnerup
et al. [8], [9] from the Department of Forensic Medicine
in Copenhagen, affirmed the usefulness of gait analysis
for criminal proceedings. The research team was able to
identify a bank robber by matching CCTV surveillance
video from the crime scene against images of the suspect
recorded at the police custody. This evidence was later
used for conviction in a court of law stressing the useful-
ness of gait in forensic analysis.

Because of the dearth of visual marker-less model-
based methods that exploit human dynamic gait traits
for people identification, we have investigated the use of
Elliptic Fourier Descriptor for the temporal markerless
extraction of human joints. We describe a model-based
method whereby spatial model templates for the human
motion are constructed in a parameterized form using the
Elliptic Fourier Descriptors in which different variations as
scale and rotation are accounted for. A recursive evidence
gathering algorithm is employed for the extraction phase in
order to derive the parameters for the Elliptic Descriptors.
In this way, we have established a baseline analysis which
can be deployed in recognition, marker-less analysis and
other areas. Further research is carried out to confirm
the early psychological experiments reporting that the
discriminative features for motion perception and people
recognition are planted in gait kinematics. We show that
the gait angular measurements derived from the joint
motions embed most of the discriminatory power for gait
identification.

This paper is organized as follows. The next section
outlines the previous approaches for markerless extraction
of gait biometric features including mainly model-based



methods. The theoretical description of the presented
markerless method for extracting and constructing gait-
based biometric signature is detailed in Section 3. Subse-
quently, experimental results are outlined in Section 4.

II. RELATED WORK

Much of the interest in the field of gait analysis has
originated from physical therapy, orthopaedics and re-
habilitation practitioners for the diagnosis and treatment
of patients having walking abnormalities. As gait has
recently emerged as an attractive biometric, gait analysis
has become a challenging computer vision problem. Many
research studies have aimed to propose an automated
system capable of overcoming the difficulties imposed
by the extraction and tracking of human motion features.
Aggarwal et al. [10] categorised the different vision-
based methods for human motion analysis into two ma-
jor clasees: non-model based and model-based methods.
For the non-model based approach, features extraction
is performed via prediction, velocity, shape, texture and
colour analysis. For the model-based approach, a prior
shape template is established to match real images to
this predefined model thus extracting the corresponding
features once the best match is obtained.

Gait features can be classified into two major cate-
gories, namely static and dynamic-based features. The
static features concern the geometry-based measurements
of the anatomical structure of the human body such as the
person’s height and length or width of the different body
parts. Static features can be derived from the observed gait
as the stride length between two heel strikes. The dynamic
features are the traits which describe the kinematics of the
locomotion, such as the angular motion of the lower legs
extracted from the joints. As the static cues are less taxing
to extract and compute, it would seem straightforward
to recognise people using static features as the stride
length and body height and so forth. Furthermore, recent
research on gait via static features for recognition proved
that promising recognition rates can be attained [11].
BenAbdelkader et al. [12] reported that gait recognition
can be achieved using the subject height and the stride
parameters (stride and cadence) as there exists a linear
relationship between the two gait variables.

Recently, Zeng et al. [13] described a model-based
method for human gait recognition from the sagittal
plane via deterministic learning. The joint angles for the
lower limbs are considered as the main gait features for
composing a biometric signature. Identification of people
via gait dynamics is performed by using radial basis
function neural networks through deterministic learning
attaining a recognition rate of 91.9%. Bouchrika et al
[14], [15] introduced a re-identification system for inter-
camera tracking through the use of gait biometrics. The
gait signature is derived via extracting the joints positions
using Haar-like templates. Bashir et al [16] proposed the
Gait Entropy Image which encodes into a single image the
randomness of pixel values in the silhouette images over
a complete gait cycle. Kusakunniran [17], [18] proposed a

silhouette-based approach for feature extraction to view-
invariant gait biometrics.

III. PROPOSED APPROACH

A. Markerless Extraction of Gait Features

In this research study, a model-based method is de-
scribed for extracting the joints’ positions of a single
walking person through the use of Elliptic Fourier De-
scriptors. Although, the Fourier series is considered as the
most accurate way for modelling gait motion, numerous
methods have adopted simple models [19] to extract gait
angular motion via evidence gathering using only a few
parameters. This is mainly because of complexity and
computational cost of the search space. Grant [20] used
the Fourier descriptors to parameterize the templates of
moving shapes in a continuous form combined with the
temporal evidence gathering method in order to extract the
global gait pattern.

The Fourier Transform (FT) has been employed for the
analysis and representations of boundaries of shapes as
it provides a way for constructing visual descriptors that
can be useful for deriving features from images that are
central for image understanding. The Fourier descriptors
are computed by expanding the parametric representation
of a curve in Fourier series. Given f as the function for the
closed boundary of any arbitrary shape, f can be expressed
via the elliptic Fourier Descriptors [21], where the Fourier
series is based on a curve represented by the complex
parametric form as shown in Equation (1):

f(t) = x(t) + iy(t) (1)

where t ∈ [0, 2π] . x(t) and y(t) are approximated via the
Fourier summation by n terms as shown in equation (2)[

x(t)
y(t)

]
=

[
a0
b0

]
+

[
Xt

Yt

]
(2)

where a0 and b0 define the centre position of the shape.
Xt and Yt are calculated as defined in equation (3) :

Xt =
n∑
k=1

axk
cos(kt) + bxk

sin(kt)

Yt =
n∑
k=1

aykcos(kt) + byksin(kt)
(3)

such that axk
,ayk , bxk

and byk are the set of the elliptic
phasors which can be estimated using Riemann summation
[22] shown as follows:
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(4)

where m is the number of points (xs, ys) in the shape
template. The value of k represents the number of ellipses
that construct the shape. According to the Nyquist sam-
pling theorm, k lies between 1 to m/2. The larger values



of k, the more accurate representation is reconstructed for
the boundary.

For a representation invariant to rotation and scaling, f
must be written in a parametrized form to account for all
the possible graphs or shapes which can be obtained by
applying appearance transformation as rotation, translation
and scaling. Therefore, the function f can be expressed in
the parametric form shown in Equation (5):[

xt
yt

]
=

[
a0
b0

]
+

[
cos(α) −sin(α)
sin(α) cos(α)

] [
sxXt

syYt

]
(5)

such that α is the rotation parameter, sx and sy are
the horizontal and vertical scaling factors respectively.
Equation (5) can be rewritten in its complex form as
defined in Equation (6): f = T +Rα (sxXt + syYti)

T = a0 + b0i
Rα = cos(α) + sin(α)i

(6)

Based on the parametric representation of f expressed
in Equation (6), any closed boundary of a given shape
can be written using only five parameters which are: a0,
b0, α, sx and sy . Xt and Yt. This parameters account for
the different transformation factors including translation,
rotation and scaling. In fact, the number of parameters
needed for the Hough Transform is totally independent
of the complexity or nature of the shape which is rep-
resented using the Elliptic Fourier Descriptors, as the
defined parameters are purely related to the appearance
transformations covering all possible shapes that can be
produced from the original shape.

The Hough Transform is used in order to determine
the best set of parameters through a matching procedure
of detected low-level points across the whole sequence
against the parametric representation. Votes are accumu-
lated for the respective possible set of parameters. The best
parameters for the shape to be extracted are taken from
the indices of the accumulator space having the largest
cast value. For this study, an ancillary phase is performed
after the extraction of the global gait motion pattern at a
temporal level; an exhaustive local search is done within
every frame to determine the joints’ positions. The local
search process is guided by the global motion pattern
derived during the first stage to limit the search space.
To accurately obtain the joints positions and restrict the
search space, the lower legs pose estimation method uses
the anatomical proportions of the human body segments
as a filtering process.

To utilize the Hough Transform with a set of pre-
defined templates written using the parametric represen-
tation as described in Equation (6), a five-dimensional
array is needed for accumulating the cast votes. Thus,
the algorithm would be computationally infeasible to
implement. In spite of the fact that numerous approaches
were described in the literature to address the compu-
tational requirements of the Hough Transform [23], the
computational cost of such methods does not satisfy the
requirements of most vision applications. Instead, gait

knowledge is considered to address the computational
cost via detecting the heel strikes of a walking sub-
ject. The distance between two striking points is em-
ployed to reduce the parameter space dimensionality and
therefore reduce the computational costs of the evidence
gathering algorithm. The Hough Transform is applied
infer the remaining free parameters through a matching
process of points increasing votes in the accumulator
space accordingly. A pseudo-code for the evidence gath-
ering algorithm used for the extraction of the joints’
positions of a walking subject is shown in Listing I.

Algorithm III.1: RECREVIDENCEGATHER(model, pts)

comment: Global Pattern Extraction

Acc← Array()
for each p ∈ pts

do
{
parameters← HoughTransf(model, p)
Acc[parameters]← Acc[parameters] + 1

Best← indexOfMax(Acc)
comment: Local Feature Extraction

Traj ← Array()
for each r ∈ Frames

do
{
Traj[r]← SearchLocally(r,Best)

comment: Recursion

if Traj ≡ pts
then return (Traj)

else
{
Traj = RecrEvidenceGather(model, T raj)
return (Traj)

B. Extraction of Dynamic Features

The gait biometric vector for each walking person is
made by taking the hip, knee and ankle angular measure-
ments of the right and left legs defined as θrh, θlh, θrk
θlk, θra and θla. The symbols: h, k, a, r and l refer to
hip, knee, ankle, right and left respectively. As reported in
the medical literature [6] that the spatial displacements
of the trunk possess some of the discriminative traits
reflecting the subject’s individuality, the gait vector is
constructed such that it includes both the horizontal and
vertical spatial motion taken from the hip trajectories. The
displacement measurements are normalised to the subject
height to account for scale-invariant matching. The angle
and displacement values are taken during a single full
gait cycle. As preferably, gait features can be taken as the
average over different gait cycles, we consider to take only
one gait cycle in this paper due to the database limitation.

To derive the most distinctive gait features that cap-
ture the relationship for the angular motion between the
different legs as well as to improve the identification
rates, further gait parameters are produced via fusing
together the gait angles for the hip, knee and ankle. The
gait feature vector is constructed by the angle between
the thighs called θH as the sum of the two hip angles.
The vector includes additional measures generated by
combining the right and left angles of the knee and the



ankle. Composition of features is performed via using
simple rules including addition, multiplication and sub-
traction which are denoted as SUM , PRO and DIF
generating the following angles: θsk, θpk, θdk, θsa, θpa
and θda. As the size of the gait vector varies from person
to another depending on the duration of the gait cycle
ranging between 24 and 31 frames. To ensure consistent
representation of the gait feature for all people in the
database, the angular vectors are all re-sampled to length
of 32 elements by applying cubic spline interpolation.

For a better analysis of the locomotion and derive the
characteristic dynamic traits, gait biometric data should be
represented using the basic building blocks because of the
complex nature of the gait pattern [2]. One such simplifica-
tion method is employ the Fourier Transform (FT) which
transforms complex data into summations of simple sine
waves that can simplifying the analysis of gait motion. The
FT offers a very compact gait representation as most of
the distinctive features is expected to be contained in a few
frequencies. For each of the normalised gait raw feature
vectors (θrh, θlh, θrk, θH , θlk, θsk, θpk, θdk) described in
this section, we compute the Discrete Fourier Transform
(DFT) for the N/2 frequencies of interest in N points.

The gait biometric signature of a walking subject is
composed from the magnitude and phase of the Fourier
components for the angular measurements. The phase data
embeds certain degree of discriminatory potency when
describing the gait kinematics. This is because the phase
information describes when the gait dynamics start to
occur. In order to compare or match phase vectors for
different persons, all analyses must be synchronized to
commence from the same temporal point of the gait cycle.
We consider this point as the heel strike of the left leg.
Since the magnitude components have been reported to
hold poor discriminatory capability even though it enjoys
the benefits of translation invariance [24], the product of
magnitude to phase is added within the gait vector. Hence,
the gait signature is constructed as the concatenation of
magnitude and phases features in addition to the element-
wise product of phase to magnitude features as illustrated
in Equation (7).

f = (Magnitudes Phases Magnitudes ×· Phases)
(7)

where ×· denotes the element-wise product of magnitude
to phase vectors, which weighs phase by magnitude to
retain proportionate discriminativeness potency. The total
number of features contained within the gait vector using
Fourier analysis reaches 675 elements.

C. Feature Selection and Classification Metrics

Feature selection is considered within this research to
derive discriminative features and remove the redundant
and irrelevant gait components which may affect the
identification rate. It is infeasible to apply an exhaustive
search procedure for all possible combinations of feature
subsets to derive the optimal feature subset because of
the high dimensionality of the feature vector. Instead, the
Adaptive Sequential Forward Floating Selection (ASFFS)

search algorithm [25] is employed to reduce the number
of features.

The feature subset selection method is purely based on
an evaluation procedure that examines the discriminative-
ness of each feature or set of features in order to construct
the best subset of features for the recognition process.
We describe a validation-based evaluation criterion to
choose the subset of features that would minimise the
classification errors and ensure good inter-class separa-
bility between the different classes. As opposed to the
voting paradigm used by the KNN, the evaluation criterion
employs coefficients w that signify the importance of most
nearest neighbours of the same class. The probability score
for a candidate sc to belong to a cluster c is expressed in
the following Equation (8):

f(sc) =

∑Nc−1
i=1 ziwi∑Nc−1
i=1 wi

(8)

where Nc is the number of instances within cluster c, and
the coefficient wi for the ith nearest instance is inversely
related to proximity as given:

wi = (Nc − i)2 (9)

The value of zi is defined as:

zi =

{
1 if nearest(sc, i) ∈ c
0 otherwise (10)

Such that the nearest(sc, i) function gives the ith nearest
instance to the instnance sc. The Euclidean distance metric
is used to deduce the nearest neighbours from the same
class. The significance for a subset of features is based
on the validation-based metric which is computed using
the leave-one-out cross-validation rule. The gait biometric
signature is made as the subset of features S among the
feature space F attaining the maximum value which is the
average sum of f computed across the N instances x as
expressed the following equation:

Signature = argmax
S∈F

(∑N
x=1 fS(x)

N

)
(11)

IV. RESULTS

A. Markerless Extraction

For the evaluation of the automated model-based ap-
proach proposed for the extraction of the joints’ positions
for a walking person through the use of Elliptic Fourier
Descriptors, the algorithm is tested on a dataset containing
160 video sequences for 20 different subjects with 8
sequences for every person. The videos are taken from the
Southampton indoor gait dataset. The extraction results of
the ankle, knee and hip joints are considered satisfactory
for indoor video sequences with the observation that esti-
mation of the ankle is more accurate than the hip and knee
because of the visibility nature of the ankle. The method
is further evaluated on outdoor data as well as a woman
wearing Indian clothes which is self-occluding her gait
dynamics. The joints positions are extracted successfully
as shown in Figure (1) which reveals the potency of the



proposed method to cope well for the case of occlusion.

(a) Subject : 009a020s00R. (Indoor Data)

(b) Subject : 012a031s00R. (Data with Self-Occlusion)

(c) Subject : 012a031s00R. (Outdoor Data)

Figure 1. Joints Extraction for Indoor and Outdoor Data.

The performance of the model-based approach proposed
for extracting the joints’ trajectories of a walking person is
evaluated on videos set at different resolutions. A set of 10
videos which are manually labelled at the joints position,
are taken from the Southampton gait database and used for
the evaluation process. Figure (2) depicts the performance
error of the method for the automated estimation of
the joints at various resolutions. The Euclidean distances
between the extracted joints and manually labelled po-
sitions (i.e., ground truth data) are used to compute the
performance error which is approximated as the average of
the distances normalised to the person’s height. The mean
error for the positions of the extracted joints using the
automated approach compared against data of 10 people
manually labelled is 3.2% normalised to the height of
the subject. The resolution of the image sequences are
reduced gradually from an original resolution of 720×576
pixels with the aspect ratio being kept constant. The
extraction method is able to derive most of the joints with
satisfactory accuracy at a resolution of 144×180 achieving
a performance error of 7.7%. However, the algorithm
performs poorly when the video size is reduced to 77×90.

Further experiments are carried out using the same
video sequences to assess the method potentials for ad-

(a)

(b)

Figure 2. Performance Analysis for The Joint Extraction.

dressing occlusion. For the case of full occlusion, the
performance error is estimated by dropping proportion-
ally a certain number of frames from every 30 frames
i.e. original frame rate. This is equivalent to decreasing
the frame rates. Figure (2) shows the performance error
computed by reducing the frame rates of the video resized
at a resolution of 360x288. The method performance is
observed to be not much affected when dropping 50% of
the frames as the extraction predicts the joints trajectories
for the dropped frames using the temporal and spatial
models represented by the Elliptic Fourier Descriptors.
This clearly affirms that one of the merits of automated



model-based approaches for their capability of handling
occlusion and recovering the missing data.

B. Classification Results & Features Analysis

In order to assess the potency of the model-based
approach for people identification by the way they walk,
a dataset of 160 sequences is taken from the Southampton
indoor gait database. The dataset consists of 20 different
people walking from left to right with 8 sequences for
every subject. The database serves as a gallery and is
employed primarily for training the classifier and subset
feature selection. The KNN classifier is applied at the
recognition process due to its low complexity and thus
fast computation besides the ease of comparison to other
exiting approaches. The KNN rule uses the Euclidean
distance metric to estimate the distance between a given
sample and the enrolled subjects within the defined feature
space in order to find the k closest neighbours based
on the computed Euclidean distances. From the k closest
samples, the class of the test sample is determined based
on the class of the closest neighbours with the largest
occurrence frequency. A high recognition rate of 95.75%
is attained for the value of k = 5. This is obtained using
features corresponding purely to the dynamics of the gait
pattern. To further evaluate the classification performance
of the proposed approach for gait identification using
dynamic-related traits, a different database which was
employed during the training stage is taken from the
Southampton gait database and matched against the gallery
dataset. The dataset contains 60 videos for 20 people with
3 sequences for every subject. The first gait dataset (I)
which is used for the training stage and subset selection
of gait features, is regarded as the gallery such that every
subject in the gallery has its known class identifier. The
second dataset (II) is the probe where every sample does
not has class label. For k = 5, matching the probe against
the gallery achieved a correct classification rate of 86.67%
of the 60 videos. The results achieved using this evaluation
are encouraging as the probe set has not been used for the
derivation gait signature from dynamic features.

In order to conduct an exploratory study for the dynamic
gait features and determine what dynamic features are
crucial for people recognition, the different components
of the gait signature are analysed separately to explore
their contribution and discriminatory significance for gait
identification. To report accurate and unbiased results, we
derived a number of 493 subsets using the validation-
based criteria presented in the earlier section for feature
analysis. The feature subsets which are of length ranging
between 22 and 54 achieve a correct classification rate
of 92.15% or over using the KNN rule. The distributions
and recognition rates of the features relating to the dif-
ferent components of gait are illustrated in Table (1). The
distribution values offer an indication whether such type
of feature is important but it does not provide a measure
of its discriminatory capability. Instead, the discriminative
significance of kinematic-based features is estimated using
the correct classification rate.

Figure 3. The Cumulative Match Score Curve for the Classificatioh
Results

Features Distribution Recognition Rate
Angular Data 77% 85%
Displacement data 23% 38.8%
Hip Angle 27% 45%
Knee Angle 29% 52%
Ankle Angle 21% 52.5%
X disp 16% 26%
Y disp 7% 25%

Table I
GAIT RECOGNITION RESULTS USING DYNAMIC CUES

Based on the results described in Table (1), it can be
concluded that the angular measurements embed most of
the discriminative traits with an average proportion of
77% of the gait biometric signature, whilst only a few
features are contained within the displacement motion.
The angular data derived from the knee , ankle and hip
angles contribute with the proportions of 27%, 29% and
21% respectively. The knee and ankle angular features
are observed to be the most distinctive features with an
attained classification rates of 52% and 52.5% respectively.
However, the potency of the ankle depends mostly on
the quality of the extraction process. For example, the
extraction of the ankle for subjects walking on the grass is
proven to be a difficult task. Further, the discriminatory po-
tency of the angular data versus the displacement features
as shown in Table (1) such that the combined angular fea-
tures attained a classification rate of 85% meanwhile only
38.75% is achieved using the displacement information.
These analytical results are consistent with the medical
experiments reported in [6] where Murray observed that
the ankle rotation, pelvic tipping and spatial displacements
of the body trunk bear the subject individuality due to their
consistency at different trials. In [26], Wagg confirmed
the importance of the angular information for gait iden-
tification with a reported classification rate of 77% using
dynamic gait features.



V. CONCLUSIONS

In these research studies, the reported results confirm
further the early psychological theories claiming that the
discriminative features for motion perception and people
recognition are embedded in gait kinematics. We propose a
model-based method whereby spatial model templates for
the human motion are described in a parameterized form
using the Elliptic Fourier Descriptors accounting for the
different variations of scale and rotation. We have shown
that the gait angular measurements derived from the joint
motions mainly the ankle, knee and hip angles, posses
most of the discriminatory potency for gait recognition. As
for future work, we aim to investigate the scalability issue
of gait recognition and how it performs via increasing the
number of subjects in the dataset.
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