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Abstract In this paper, by using the notion of the Bochner measurability, we establish
some properties concerning some classes of C0-semigroups in Banach spaces. After, we
will apply them in the framework of the transport theory in order to obtain compactness
properties giving a good comprehension of the time asymptotic behavior of the solutions for
the associated Cauchy problems. Moreover, by using the concept of the Hausdorff measure
of noncompactness, we obtain some results incoming within the framework of the Fredholm
theory. Also, a fine description of the Schechter essential spectrum of a closed densely defined
operators is given.
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1 Introduction and notations

Let X be a complex Banach space and L(X) the algebra of bounded linear operators on X .
Consider the following abstract Cauchy problem on X{ du

dt
= Au,

u(0) = u0 ∈ X
(1.1)

It is well known that if A satisfies the conditions of the Hille–Yosida theorem (see [8],
page 363), then the problem (1.1) admits a unique solution given by u(t) = V (t)u0, (t ≥ 0)
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where (V (t), t ≥ 0) is the c0-semigroup generated by A. The significant framework which
will interest us here is when the operator A can be written under the form A = T + B where
T generates a c0-semigroup (U (t); t ≥ 0) and B ∈ L(X). This attraction comes owing to the
fact that several phenomena of applied sciences are modeled by such a type of problems, like
that of the Boltzmann equation and its derivatives. In this case, the perturbation theorem (see
[15], page 14) asserts that A generates a c0-semigroup given by the Dyson-Phillips expansion

V (t) =
∞∑
j=0

U j (t),

where

U0(t) = U (t), U j (t) =
t∫

0

U (s)KU j−1(t − s)ds ( j ≥ 1)

Let T be a closed linear densely defined operator on X . By σ(T ) and ρ(T ) we denote
respectively the spectrum and the resolvent set of T while the resolvent of T , (λ− T )−1 will
be designated by R(λ, T ).

In the case where T is a advection transport operator and K the collision operator (local
with respect to the positions) which models the physical scattering and the production of
the particles (fission), it is proved that in this situation the time asymptotic behavior of the
solutions of the problem (1.1) is connected directly to the compactness results which take
account of course of the parameters of the equation and the geometry of the phase space.
The approaches most used in this direction are due respectively, to Mokhtar-Kharroubi [16]
and Jörgens-Vidav [9,19]. The first approach consists to express the solution as an inverse
Laplace transform of the resolvent of the transport operator A = T + K like that was made
for particular models [14]. It is based on two arguments:

(i) ∃ m ∈ N such that [(λ− T )−1 K ]m is compact for Reλ > η

(ii) |I mλ| lim−→ +∞||[(λ− T )−1 K ]m || = 0 uniformly on the set {λ ∈ C/Reλ ≥ ω > η}.
where η is the type of the semigroup (etT ; t ≥ 0). Thus if (ı) and (ı ı) are satisfied, it is
possible to derive the time asymptotic behavior of the solutions (for t sufficiently large) for
regular initial data. The second approach, said of semigroup is based on the compactness of a
remainder term of the Dyson–Phillips expansion Rn(t). It has the advantage of not imposing
any condition on the initial data. In the case of the vacuum boundary conditions, this technique
was systematically used by several authors. Let us quote, for example, Jorgens [9], Vidav
[19], Voigt [20,21], Greiner [7], Takac [18]. The compactness of such remainder asserts that
the part of the spectrum of the operator V (t) outside the spectral disc {α ∈ C/|α| ≤ eωt }
consist at most of eigenvalues of finite algebraic multiplicities. In particular, for every v >
ω, σ(T + K )

⋂{λ ∈ C : Reλ > v} consists, at most, of a finite number of eigenvalues
{λ1, ......., λn}. If Pi and Di denotes ,respectively, the spectral projection and the nilpotent
operator associated to the value λi , 1 ≤ i ≤ n, then

V (t) = (I − P)V (t)+
n∑

i=1

eλi t eDi t Pi

with ‖(I − P)V (t)‖ = o(e(λ
′−ε)t ) (t −→ +∞), where P = ∑n

i=1 Pi , λ′ = min{Reλi , 1 ≤
i ≤ n} and ε > 0.
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Knowing that the boundary conditions in the transport phenomena can be of very complex
nature what returns their mathematical formulation very controversy, even in the case where
these conditions are given by a bounded boundary operator acting on suitably selected spaces
of traces, a major problem appears, it consists to see if the associated advection transport
operator generates or not a c0-semigroup, even in the positive case, in general, it is almost
impossible to establish its explicit formula to substitute it in the calculus. We notice that the
study of transport equations with abstract boundary conditions has the advantage to cover
those used in the kinetic theory of gases (vacuum boundary, specular reflections, diffuse
reflections, periodic and mixed type boundary conditions).

Our study in this paper is organized as follows:
In the first section, we start by the use of the S. Bochner result’s relating to the concentration

of the Lebesgue measure, we will establish compactness results concerning some classes of
regularized c0-semigroups in the case of Banach spaces. They will be illustrated better in the
case of the transport theory. In Sect. 2, the approaches discussed are based essentially on the
concept of Haussdorff measure of noncompactness. First, we give some general results in
Fredholm theory including the case of Riesz operators. After, they will be applied to establish
a fine characterization of Schechter essential spectrum of closed densely defined operators
in Banach spaces what makes it possible to generalize well known results in the literature.

1.1 Bochner measurability and compactness results in Banach spaces

In the remainder of this paper, if X and Y are two Banach spaces, then the Banach space of
all bounded linear operators from X to Y will be denoted by L(X, Y ).

We start this section by the following fundamental theorem.

Theorem 1.1 Let X be a complex Banach space and let T an infinitesimal generator of a
c0-semigroup (U (t); t ≥ 0) on X and K ∈ L(X) such that R(λ, T )K (resp. K R(λ, T )) is
compact for λ ∈ ρ(T ). Assume that the mapping t ∈]0,+∞[−→ U (t)K ∈ L(X) (resp.
t ∈]0,+∞[−→ KU (t) ∈ L(X)) is Bochner measurable, then for every t ∈]0,+∞[, U (t)K
is compact on X (resp. KU (t) is compact on X) and hence t ∈]0,+∞[−→ U (t)K ∈ L(X)
(resp. t ∈]0,+∞[−→ KU (t) ∈ L(X)) is uniformly continuous.

Proof We denote byω the type of the semigroup (U (t), t ≥ 0), the expression of the resolvent
of the generator as a Laplace transform of the semigroup gives that

R(λ, T ) =
+∞∫
0

e−λtU (t)dt (Reλ > ω). (1.2)

By composing by K at the right of each one of the two terms in (1.2), it follows that

R(λ, T )K =
+∞∫
0

e−λtU (t)K dt (Reλ > ω). (1.3)

From our hypothesis,
∫ +∞

0 e−λtU (t)K dt is compact, this gives that the operator

U (t0)
∫ +∞

0 e−λtU (t)K dt = eλt0
∫ +∞

t0
e−λtU (t)K dt (t0 ≥ 0) is compact on X and con-

sequently
∫ +∞

t0
e−λtU (t)K dt (t0 ≥ 0) is compact (since eλt0 is a scalar) , this implies that∫ t0

0 e−λtU (t)K dt = ∫ +∞
0 e−λtU (t)K dt − ∫ +∞

t0
e−λtU (t)K dt is compact, which allows us
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to conclude the compactness of the operator
∫ t2

t1
e−λtU (t)K dt (0 < t1 < t2) on X . Now

the use of ([22], Theorem 2, page 134) shows that for almost every t ∈]0,+∞[, we obtain
that 1

2ε

∫ t+ε
t−ε e−λtU (t)K dt −→ e−λtU (t)K (in L(X)), hence, we get the compactness of the

operator U (t)K almost every where t ∈]0,+∞[ and by the same arguments, we study the
case of the operator KU (t). On the other hand, Let S be the set of the Lebesgue points, in
other words the set of points t ∈]0,+∞[ for which U (t)K (resp. KU (t)) is not compact on
X , S is empty, indeed, let t0 ∈ S, then there exists t < t0 such that U (t)K (resp. KU (t)) is
compact, this implies that U (t0)K = U (t0 − t)U (t)K (resp. KU (t0) = KU (t0 − t)U (t)) is
compact and contradicts the fact that t0 ∈ S. Finally, the uniform continuity of U (t)K (resp.
KU (t)) follows directly from Lemma 2.1 in [11].

Theorem 1.2 Under the hypotheses of Theorem 1.1, we have Rn(t) is compact for every
n ≥ 1 and t ≥ 0.

Proof If t = 0, then R1(0) = 0L(X) is trivially compact.
Now, let t > 0 and n = 1, then R1(t) = ∫ t

0 U (s)KU (t − s)ds. Theorem 1.1 asserts that
U (t)K is compact for every s ∈]0, t] and the use of ([15], Theorem 2.2, page 12) completes
the proof for the case R1(t). Now, the compactness of Rn(t), n > 1 follows from the formula
Rn(t) = ∫ t

0 U (s)K Rn−1(t − s)ds and ([15], Theorem 2.2, page 12).
Before stating of a crucial result which asserts the compactness of the remainder term

Rn(t)(t ≥ 0) in the general framework of Banach lattices and positive semigroups, we will
give some recalls.

Definition 1.1 A Banach lattice is said to have order continuous norm if any increasing net
which has a supremum is convergent.

It is easy to observe that L p(μ), (1 ≤ p < ∞) spaces have order continuous norm.
In the case of positivity, to establish some compactness results, we will use a comparison

results, we only need a particular case of them.

Proposition 1.1 (see [3]) Let (	,
,μ) be a positive measure space and X = L p(	,
,μ)

with p ∈ [1,+∞[. Let A and B in L(X) such that 0 ≤ B ≤ A.

(i) If p = 1 and A is weakly compact, then B is weakly compact.
(ii) (ı ı) If 1 < p < +∞ and A is compact, then B is compact on X.

Theorem 1.3 Let X = L p(μ)(1 ≤ p < ∞) and let (U (t); t ≥ 0) a positive c0-semigroup
generated by T and B ≥ 0 (in the lattice sence). Assume that the map t ∈]0,+∞[−→
Un(t) ∈ L(X) is Bochner measurable. If [(λ−T )−1 B]n(λ−T )−1 is compact (1 < p < +∞)

(resp. weakly compact on L1(μ)), then Rn+1(t) is compact for t ∈ [0,+∞[ on L p(μ)(1 <
p < +∞) (resp. weakly compact on L1(μ)).

Proof Let 1 < p < +∞. We have

+∞∫
0

e−λtUn(t)dt = [(λ− T )−1 B]n(λ− T )−1.
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Let s > 0. Then

[(λ− T )−1 B]n(λ− T )−1 ≥
s+ε∫

s−ε
e−λtUn(t)dt

By the use of Proposition 1.1, we obtain the compactness of the operator
∫ s+ε

s−ε e−λtUn(t)dt
on L p(μ)(1 < p < ∞). On the other hand ([22], Theorem 2, p. 134) shows that

1

2ε

s+ε∫
s−ε

e−λtUn(t)dt −→ e−λsUn(s) in L(X)(ε −→ 0).

Thus, Un(s) is compact for almost every where s ∈]0,+∞[. Moreover, we have
Un+1(t) = ∫ t

0 U (s)KUn(t − s)ds, then Un+1(t) is compact for t ≥ 0 ([15], Theorem
2.2, page 12). Now, the compactness of Rn+1(t) follows directly from ([15], Theorem 2.6,
page 16). If p = 1, by the same arguments above, we obtain the weak compactness of Un(s)
for almost every where s ∈]0,+∞[ which implies the weak compactness of Un+1(s) for
s ≥ 0 ([15], Theorem 2.3, page 12). Finally, the weak compactness of Rn+1(t) follows from
([15], Remark 2.1, page 16).

1.2 Generation results and compactness in transport theory

We are interested by generation results of c0-semigroups and compactness of the following
integro-differential operator on L p(D × V ; dxdμ).

AHψ(x, v) = −v.∇xψ(x, v)− σ(v)ψ(x, v)+
∫
V

κ(x, v, v′)ψ(x, v′)dμ(v′)

= THψ + Kψ,

where (x, v) ∈ D × V . D is a smooth open subset of R
n , μ(.) is a positive Radon measure

on R
n such that μ({0}) = 0 and V (admissible velocity space) denotes the support of μ.

This operator models the transport of particles (neutrons, photons, molecules of gas, ...) in the
domain D. The functionψ(x, v) is the number (or probability) density of gas particles having
the position x and the velocity v. The functions σ(.) and κ(., ., .) are called, respectively, the
collision frequency and the scattering kernel.

Here, the boundary conditions which represent the interaction between the particles and
ambient medium are given by a boundary bounded operator H satisfying

ψ− = H(ψ+)

where ψ− (resp. ψ+) is the restriction of ψ to − (resp. +) with − (resp. +) is the
incoming (resp. outcoming) part of the boundary phase space (for more details, see ([12])).

1.3 Notations and preliminaries

Let (x, v) ∈ D × V . We set t±(x, v) the positive real

t±(x, v) = sup{s > 0; x ± sv ∈ D,∀ 0 < s < t},
We denote by ± the set

± = {(x, v) ∈ ∂D × V ;±v.nx ≥ 0},
where nx is the outer unit normal vector at x ∈ ∂D.
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Let 1 ≤ p < ∞, we introduce the functional spaces

Wp = {ψ ∈ X p such that v.∇xψ ∈ X p},
where

X p := L p(D × V ; dxdμ(v)),

The spaces of traces are L±
p := L p(±; |v.nx |dγ (x)dμ(v)). Here dγ (.) being the

Lebesgue measure on ∂D.
Recall that for every ψ ∈ Wp , we can define the traces ψ± on ±, unfortunately, theses

traces do not belong to L±
p . The traces lie only in L±

p,loc, or precisely in a certain weighted
L p space (see [6], for details).

Define

W̃p = {ψ ∈ Wp;ψ± ∈ L±
p }

In this case H ∈ L(L+
p , L−

p )(1 ≤ p < ∞) and the associated advection operator TH is
given as follows:

{
TH : D(TH ) ⊆ X p −→ X p,

ϕ −→ THϕ = −v.∇xϕ(x, v)− σ(v)ϕ(x, v).

with domain

D(TH ) = {ψ ∈ W̃p such that ψ− = H(ψ+)}
where the collision frequency σ(.) ∈ L∞(V ). Let λ ∈ C, consider the boundary value
problem

{
λψ(x, v)+ v.∇xψ(x, v)+ σ(v)ψ(x, v) = ϕ(x, v),
ψ− = H(ψ+).

(1.4)

where ϕ ∈ X p and the unknown ψ must belong to D(TH ). Let

λ� := μ− ess inf
v∈V

σ(v)

For Reλ+ λ� > 0, the Eq. (1.4) can be solved formally by

ψ(x, v) = ψ(x − t−(x, v)v, v)e−(λ+σ(v))t−(x,v) +
t−(x,v)∫

0

e−(λ+σ(v))sϕ(x − sv, v)ds (1.5)

Moreover, if (x, v) ∈ +, the Eq. (1.4) becomes

ψ+(x, v) = ψ−e−(λ+σ(v))τ (x,v) +
τ(x,v)∫

0

e−(λ+σ(v))sϕ(x − sv, v)ds (1.6)

where τ(x, v) = t+(x, v)+ t−(x, v). On the other hand, for every (x, v) ∈ 	× V , we have
(x − t−(x, v)v, v) ∈ − (for more details on the time numbers t+, t− and τ , see [20]).
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For the abstract formulation of (1.5) and (1.6), we define the following operators depending
on the parameter λ.

Mλ : L−
p −→ L+

p , u −→ Mλu := ue−(λ+σ(v))τ (x,v);
Bλ : L−

p −→ X p, u −→ Bλu := ue−(λ+σ(v))t−(x,v);{
Gλ : X p −→ L+

p ,

ϕ −→ ∫ τ(x,v)
0 e−(λ+σ(v))sϕ(x − sv, v)ds;

and ⎧⎪⎪⎨
⎪⎪⎩

Cλ : X p −→ X p,

ϕ −→
τ(x,v)∫

0

e−(λ+σ(v))sϕ(x − sv, v)ds.

Straightforward calculations using Hölder’s inequality show that all these operators are
bounded on their respective spaces. More precisely, we have for Reλ > −λ�,

‖Mλ‖ ≤ 1, ‖Bλ‖ ≤ (p(Reλ+ λ�))
− 1

p ,

‖Gλ‖ ≤ (q(Reλ+ λ�))
− 1

q , ‖Cλ‖ ≤ 1

Reλ+ λ�
(

1

p
+ 1

q
= 1).

For a boundary operator H ∈L(L+
p , L−

p ), we denote by�H the set {λ ∈ R/rσ (MλH)<1}.
The following generation theorem for c0-semigroups shows how comparison results for

the positive boundary operators can induce a generation results for c0-semigroups.

Theorem 1.4 Let H1, H2 ∈ L(L+
p , L−

p ) with 0 ≤ H2 ≤ H1. Assume that [ω,+∞[⊆ �H1

and TH1 generates a c0-semigroup (UH1(t); t ≥ 0) of type ω. Then TH2 generates a c0-
semigroup with the same type ω.

The application of the preceding theorem is illustrated better in the case of slab geometry
with integral boundary conditions. Indeed, let D =]−a, a[, V = [−1, 1] and X1 = L1(D ×
V, dxdξ). Without loss of generality, we take σ = 0, the free advection transport operator
is given by

THψ(x, ξ) = −ξ ∂ψ
∂x
(x, ξ); x ∈] − a, a[, ξ ∈ [−1, 1].

The boundary conditions here are given as follows:

ξψ(−a, ξ) = γ−
0∫

−1

|ξ ′|ψ(−a, ξ ′)dξ ′, ξ ∈ [0, 1] (1.7)

|ξ |ψ(−a, ξ) = γ+
1∫

0

ξ ′ψ(−a, ξ ′)dξ ′, cmξ ∈ [−1, 0] (1.8)

Here, ∂D = {−a, a} and the outer unit normal vector is nx = (±1, 0). Then

D− := {−a} × [0, 1]
⋃

{a} × [−1, 0]
D+ := {−a} × [−1, 0]

⋃
{a} × [0, 1]
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We also define

Z+(h) =
{
(−1, 0) for h = −a,
(0, 1) for h = a

and

Z−(h) =
{
(0, 1) for h = −a,
(−1, 0) for h = a

With theses notations, these boundary conditions can be modeled by the following oper-
ator:

Hψ(h, ξ) = α(h)

|ξ |
∫

Z+(h)

|ξ ′|ψ(h, ξ ′)dξ ′, ψ ∈ L1(D+, |ξ |dξ)

If (h, ξ) ∈ D−, we have α(h) = γ± for h = ±a.

Proposition 1.2 For all γ+, γ−, we have TH generates a c0-semigroup on X1 = L1(D ×
V, dxdξ).

Proof See ([2], Theorem 10.48, page 359).

1.4 Compactness results in transport theory

In the remainder of this paper, if X is a given Banach space, the ideal of compact operators
on X will be denoted by K(X).

The collision operator K given as a perturbation of the advection transport operator TH

is defined on X p by

K : X p −→ X p

ψ −→
∫
V

κ(x, v, v′)ψ(x, v′)dμ(v′),

Note that the operator K is local in x so it can be viewed as a mapping

K (.) : x ∈ D −→ K (x) ∈ L(L p(V )).

We assume that K (.) is strongly measurable.

x ∈ D −→ K (x)ϕ ∈ L p(V ) is measurable for any ϕ ∈ L p(V )

and bounded

ess sup
x∈D

‖K (x)‖L(L p(V )) < ∞.

123



Some spectral properties in Banach spaces and application to transport theory

It follows that K defines a bounded operator on the space L p(D × V ) according to the
formula

ϕ ∈ L p(D × V )

(L p(D × V )  L p(D; L p(V ))) and

‖K (x)‖L(L p(D×V )) ≤ ess sup
x∈D

‖K (x)‖L(L p(V ))

The final assumption on K is

K (x) ∈ K(L p(V )) almost every where,

Now, we give the concept of regular collision operators introduced by M. Mokhtar-
Kharroubi [15].

Definition 1.2 A collision operator

K (.) : x ∈ D −→ K (x) ∈ L(L p(V )).

is said to be regular if K (x) ∈ K(L p(V )) almost everywhere on D and

K (.) : x ∈ D −→ L(L p(V ))

is Bochner measurable.

In the sequel, we denote by Kr (L p(D × V )) the set of all regular operators on L p(D ×
V ; dxdμ). The interest of this class lies in the following lemma

Lemma 1.1 A regular collision operator K can be approximated, in the uniform topology,
by a sequence {Kn} of collision operators with kernels of the form∑

i∈I

fi (x)gi (ξ)hi (ξ
′),

where fi ∈ L∞(D), gi ∈ L p(V ) and hi ∈ Lq(V )(
1
p + 1

q = 1) (I is finite).

From now, we will assume that the measure μ satisfies

(H ′) μ{v ∈ R
n, v.e = 0} = 0, e ∈ Sn−1.

where Sn−1 denotes the unit sphere on R
n .

Our first result in this section is given by the following theorem

Theorem 1.5 Let (1 < p < +∞). Assume that (H ′) is satisfied, let D be a convex
bounded subset of R

n and H ∈ L(L+
p , L−

p )(H ≥ 0) such that TH generates a c0-semigroup
(UH (t); t ≥ 0) and K ∈ Kr (L p(D×V ))(K ≥ 0). If the map t ∈]0,+∞[−→ Un(t) ∈ L(X)
is Bochner measurable, then Rn+1(t) is compact on X p for all t ∈ [0,+∞[.
Proof If 1 < p < +∞, we have (λ − TH )

−1 K is compact on X p (see [13], Theorem 3.1)
and the result follows immediately from Theorem 1.3.

In what follows, we will establish some compactness results for the third remainder of
the Dyson–Phillips expansion in the abstract framework (H ≥ 0). To do it, we need some
notations which we will introduce here

Let [U(λ)]H = I − MλH . Along this section, we assume that [U(λ)]−1
H exists for {λ ∈

C/Reλ > −λ�}
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We denote by (U0(t); t ≥ 0) the c0-neutronique semigroup generated by the advection
transport operator associated to (H = 0). Recall that its explicit formula is given by

U0(t)ψ(x, v) =
{

e−tσ(v)ψ(x − tv, v) if t < s(x, v); ,
0 otherwise

where s(x, v) = inf{s > 0; x − sv /∈ D}.
Let H ∈ L(L+

p , L−
p ). Assume that the inverse Laplace transform of the family

BλH [U(λ)]−1
H Gλ exists and will be denoted by �−1

H (t)(t ≥ 0), we have

Proposition 1.3 Let H ∈ L(L+
p , L−

p ), then TH generates a c0-semigroup (UH (t); t ≥ 0) if

and only if �−1
H (t)(t ≥ 0) satisfies the following conditions:

(i) �−1
H (0) = 0L(X p);

(ii) �−1
H (t1 + t2) = �−1

H (t1)�−1
H (t2)+ �−1

H (t1)U0(t2)+ U0(t1)�−1
H (t2), t1, t2 ∈ [0,+∞[;

(iii) For all ϕ ∈ X p, we have t
lim−→ 0+�−1

H (t)ϕ = 0.

Proof The result follows immediately from the properties satisfied by c0-semigroups
(observe that in this case, (�−1

H (t))t≥0 is nothing else but the family of bounded operators
(UH (t)− U0(t))t≥0).

For H ∈ L(L+
p , L−

p )(H ≥ 0), we denote by U H
(2,i)(t))(1≤i≤8) the family of the following

bounded operators.

U H
(2,1)(t) =

t∫
0

�−1
H (s)K

⎡
⎣ t−s∫

0

�−1
H (h)K�−1

H (t − s − h)dh

⎤
⎦ ds;

U H
(2,2)(t) =

t∫
0

�−1
H (s)K

⎡
⎣ t−s∫

0

U0(h)KU0(t − s − h)dh

⎤
⎦ ds;

U H
(2,3)(t) =

t∫
0

�−1
H (s)K

⎡
⎣ t−s∫

0

�−1
H (h)KU0(t − s − h)dh

⎤
⎦ ds;

U H
(2,4)(t) =

t∫
0

U0(s)K

⎡
⎣ t−s∫

0

�−1
H (h)K�−1

H (t − s − h)dh

⎤
⎦ ds;

U H
(2,5)(t) =

t∫
0

U0(s)K

⎡
⎣ t−s∫

0

U0(h)K�−1
H (t − s − h)dh

⎤
⎦ ds;

U H
(2,6)(t) =

t∫
0

U0(s)K

⎡
⎣ t−s∫

0

U0(h)KU0(t − s − h)dh

⎤
⎦ ds;

U H
2,7(t) =

t∫
0

U0(s)K

⎡
⎣ t−s∫

0

�−1
H KU0(t − s − h)dh

⎤
⎦ ds;

U H
(2,8)(t) =

t∫
0

U0(s)K

⎡
⎣ t−s∫

0

U0(h)KU0(t − s − h)dh

⎤
⎦ ds.
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Let us give now the result which asserts the compactness of the third remainder of the
Dyson–Phillips expansion. For this, we assume that the measure μ satisfies that for every
bounded set D ⊂ R

n

(H ′′)
∫
D

e−i x .ωdμ(x) −→ 0 as |ω| −→ ∞.

Proposition 1.4 Let D be a bounded convex open set in R
n and let H ∈ L(L+

p , L−
p )(H ≥ 0)

such that TH generates a c0-semigroup (UH (t); t ≥ 0) on X p (1 < p < ∞). Assume that the
collision operator K is regular and positif. If each one of the maps t ∈]0,+∞[−→ U H

(2,i)(t) ∈
L(X)(1 ≤ i ≤ 7) is Bochner measurable then RH

3 (t) is compact for all t ∈ [0,+∞[.
Proof First of all, we have U H

2 (t) = ∑8
i=1 U H

(2,i)(t). Our assumption on each map

t ∈]0,+∞[−→ U H
(2,i)(t) ∈ L(X)(1 ≤ i ≤ 7) shows that t ∈]0,+∞[−→ ∑7

i=1 U H
(2,i)(t)

is Bochner measurable. On the other hand, t ∈]0,+∞[−→ R0
2(t) ∈ L(X) is uniformly

continuous (see [15], Theorem 4.7) which implies the uniform continuity of the map
t ∈]0,+∞[−→ U H

(2,8)(t) ∈ L(X) (see [15], Theorem 2.7 ) and consequently its Bochner

measurability. Moreover, the mapping t ∈]0,+∞[−→ U H
2 (t) ∈ L(X) is Bochner measur-

able (as the sum of finite number of Bochner measurable maps), the use of Theorem 1.5 gives
the desired result.

2 Haussdorff measure of noncompactness and Fredholm theory

Let X be a Banach space and let C(X) the set of all closed densely defined operators on
X . If A ∈ C(X), we write N (A) ⊆ X and R(A) ⊆ X for the null space and range of A.
We set α(A) := dimN (A), β(A) := codim R(A). Let A ∈ C(X) with a closed range.
Then A is a �+-operator (A ∈ �+(X)) if α(A) < ∞, and A is a �−-operator (A ∈
�−(X)) if β(A) < ∞, �(X) = �+(X)

⋂
�−(X) is the class of Fredholm operators

while �±(X) = �+(X)
⋃
�−(X). For A ∈ �(X), the index of A is defined by i(A) =

α(A)−β(A). Let A ∈ C(X). A complex number λ is in�+A,�−A,�∓A, or�A if λ− A is
in �+(X),�−(X),�∓(X) or �(X), respectively. In the sequel, �0(X) will denote the set
of Fredholm operators with indices 0 (for more details, we refer to [4,5]).

Let A ∈ C(X). A point λ ∈ σ(A) is in the Wolf essential spectrum, σe(A) if λ /∈ �A;
the Schechter (or Weyl) essential spectrum σw(A), is C\ϕ0

A where ϕ0
A := {λ ∈ C, λ − A ∈

�0(X)}.
We introduce here the notion of Haussdorff measure of noncompactness, a positive func-

tion which measure the degree of noncompactness of sets.
Let X be a complex Banach space and let P(X) the set of all sets of X , we denote by

B(x, r) and B(x, r) the open and closed ball of centers x and radius r > 0. By means
of the concept of Haussdorff measure of noncompactness, we will establish some results
in Fredholm theory which represents one of the tools for the resolution of the equations
u − T u = f (Fredholm alternative).

Definition 2.1 The Haussdorff measure of noncompactness χ(	) of 	 ∈ P(X) is defined
as the infimum of the numbers ε > 0 such that 	 has a finite ε-net in X .

Recall that a set S ⊂ X is called an ε-net of 	 if 	 ⊂ S + εB(0, 1) = {s + εb : s ∈
S, b ∈ B(0, 1)}

If T ∈ L(X), χ(T ) is defined as being the number χ(T (B(0, 1))), for more details on
the notion of Haussdorff measure of noncompactness and its properties, we can refer to [1].
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2.1 Preparatory results

According to the properties satisfied by the function χ , we can establish the following for
bounded operators on X .

1) If T ∈ L(X), then χ is a seminorm on L(X), moreover, χ(T ) ≤ ||T ||;
2) If S ∈ L(X), we have χ(ST ) ≤ χ(S)χ(T ) (monotonicity);
3) If K ∈ K(X), then χ(T + K ) = χ(T );
4) If T ∗ denotes the dual of the operator T in L(X∗), then

1

2
χ(T ∗) ≤ χ(T ) ≤ 2χ(T ∗).

Our first result in this direction is given by the following theorem:

Theorem 2.1 Let X be a Banach space, A ∈ L(X), we assume that there exist two complex
polynomials P and Q such that P(λ0) �= 0, Q divides P − P(λ0) and χ(P(A)) < |P(λ0)|,
then Q(A) ∈ �(X). Moreover if χ(P(t A)) < |P(λ0)| ∀t ∈ [0, 1] and Q(0) �= 0, then Q(A)
is of index 0.

Proof Without loss of generality, we can take P(λ0) = 1.
a) Let us start by showing that α(Q(A)) < ∞. To do it, it suffices to establish that the

set N (Q(A))
⋂

B(0, 1) is compact. More precisely, we will show that if M is a compact
set in X then B = {x ∈ B(0, 1) : Q(A)(x) ∈ M} is or empty or it forms a compact set
in X . Indeed, let us assume that B is not empty. According to the hypothesis Q divides
P − 1, there exists H a complex polynomial such that P = H Q + 1. Consider z ∈ M and
x ∈ B(0, 1) with Q(A)(x) = z, then, we get, H(A)Q(A)(x) + x = H(A)(z) + x , which
imply x = P(A)x − H(A)(z). Since the range of a compact set by a bounded linear operator
is compact, it follows that:

Ã = {−H(A)(z) : z ∈ M}.
is a compact as well. Obviously, B ⊆ P(A)B + Ã. Then by using the monotonicity property,
it comes

χ(B) ≤ χ(P(A)B + Ã) ≤ χ(P(A)B) ≤ χ(P(A))χ(B)

By assumption we have χ(P(A)) < 1, thus χ(B) = 0 which shows that B is a compact
set in X . To establish the result concerning the set N (Q(A))

⋂
B(0, 1), it suffices to take

M = {0}.
To complete the proof, first we will establish the closedness of the range R(Q(A)) in X .

Since N (Q(A)) is a finite dimensional space, then there exists a closed subspace Y of X such
that X = N (Q(A))

⊕
Y . Now we will establish an inequality of the form r ||Q(A)(x)|| ≥

||x || for all x ∈ Y with r > 0. Let assume that the converse is satisfied, then for all n ∈ N,
there exists xn ∈ Y of norm 1 satisfying ||Q(A)(xn)|| ≤ 1

n , it follows that Q(A)(xn) −→
0(n −→ +∞). Afterwards, by taking M = {Q(A)(xn) : n ∈ N}⋃{0} and according to the
first part, it follows that the sequence {xn}n admits a subsequence {xnk}n which converges to
x0 ∈ Y . In addition, it is easy to see that ||x0|| = 1 and Q(A)(x0) = 0. This is a contradiction,
therefore there exists r > 0 such that r ||Q(A)(x)|| ≥ ||x || which establish the closeness of
the range R(Q(A)).
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b) Since χ(P(A)) < 1, then n
lim−→ +∞χ[(P(A))n] = 0 which implies that there

exists k ∈ N such that χ[(P(A))k] < 1
2 . Using the property (4), one has χ[((P(A))k)∗] =

χ(Pk(A∗)) ≤ 2χ(P(A))k < 1 where ((P(A))k)∗ stands for the dual of the operator (P(A))k .
It is clear that if Q divides P −1, then Q divides also Pk −1 and consequently by proceeding
as in the proof of the first part of the proof of the theorem for the polynomials Pk ,Q and
the operator A∗ , we get α((Q(A))∗) = α(Q(A∗)) = β(Q(A)) < ∞ and consequently
Q(A) ∈ �−(X)

⋂
�+(X) = �(X).

Now if Q(0) �= 0, we establish that Q(t A) is a Fredholm operator for every t ∈ [0, 1],
the stability of the index by small perturbations and the compactness of [0, 1] imply that
i(Q(t A)) = i(Q(0A)) = i(Q(A)) = 0.

Corollary 2.1 Let X be a Banach space and A ∈ L(X). If χ(Am) < 1 for some m > 0 then
T = I − A is a Fredholm operator with index 0.

Proof I − A ∈ �0(X) follows immediately from Theorem 2.1 by taking Q(z) = 1 − z and
P(z) = zn and λ0 = 1.

2.2 Riesz operators and essential spectrum

Let us start this section by giving the definition of Riesz operators.

Definition 2.2 Let X be Banach space and let R ∈ L(X), we say that R is a Riesz operator
if ∀λ ∈ C

∗, λI − A ∈ �(X).
The class of Riesz operators R(X) has been introduced by Ruston [17] who defined such

operators by considering as axioms some of the spectral properties of compact operators.
Successively it has been studied and investigated by several authors (see, for example [10]).
In this section, by using the concept of Haussdorff measure of noncompactness, we will show
that powers of these operators have sufficiently small measure. Indeed, we have

Proposition 2.1 Let X be a Banach space and let R ∈ R(X), then for all 1 ≥ ε > 0, there
exists n(ε) ≥ 1 such that χ(Rn(ε)) < ε.

Proof Recall that R ∈ R(X) satisfies the Riesz–Schauder theory, this shows that the
set of points λ ∈ σ(R) which satisfy the inequality |λ| > ε

2 consists of finite number
{λ1, λ2, ....., λmε }. Let Pi be projections of X on the subspaces N (λi I − R) in the decom-
position of X under the form X = N (λi I − R)

⊕
H(λi )(1 ≤ i ≤ mε). We denote by V the

operator R − ∑mε

i=1 R ◦ Pi . It is easy to see that
∑mε

i=1 R ◦ Pi is a finite rank operator thus

compact, moreover, we have rσ (V ) = n
lim−→ +∞||V n || 1

n ≤ ε
2 , which shows the existence

of an integer nε such that ||V nε || < ε. On the other hand, we can write Rnε = V nε + Fnε
where Fnε is a compact operator, which implies that χ(Rnε ) = χ(V nε ) < ε.

Remark 2.1 As an immediate consequence of this result, we obtain the classical property of
Riesz operators saying that if X is a Banach space and A ∈ R(X), then i(λI−A) = 0 ∀λ ∈ C

∗
or alternatively equivalent to σe{0}.

Let X be a Banach space and A a closed densely defined operator on X . Recall that the
Schechter essential spectrum of A can also be defined as follows:

σω(A) =
⋂

K∈K(X)
σ (A + K )
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Let us note by F(X) the greatest closed two-sided ideal included in R(X). This ideal
is also known under the name of Fredholm perturbations (see [4]) and satisfies K(X) ⊆
F(X) ⊆ R(X). In [13], the authors gave a characterization of Weyl essential spectrum by
using some classes in F(X).

Our objective here is to establish a rather general functional framework which enable us
to unify many well known results in this direction.

Let A be a closed densely defined operator on X and let us define the following set:

MA(X) = {M ∈ L(X) : ∀λ ∈ ρ(A + M), ∃ m(λ) > 0 : χ[(λ− A − M)−1 M]m(λ) < 1}
Let us give now the following characterization of σω(A) which extend that established in

[13].

Theorem 2.2 Let A be a closed densely defined operator on X, then we have:

σω(A) =
⋂

M∈MA(X)

σ (A + M) (2.1)

Proof Since χ(K ) = 0 < 1 for every compact operator K on X , we have K(X) ⊆ MA(X)
and consequently

⋂
M∈MA(X) σ (A + M) ⊆ σω(A). Let us now show the opposite inclusion.

Consider λ ∈ σω(A) and assume that λ /∈ ⋂
M∈MA(X) σ (A + M), this implies the existence

of an operator M0 ∈ MA(X) such that λ ∈ ρ(A + M0). On the other hand, we can write

λ− A = (λ− A − M0)[I + (λ− A − M0)
−1 M0]

Following Corollary 2.1, we have (I + (λ− A − M0)
−1 M0) ∈ �(X) and i(I + (λ− A −

M0)
−1 M0) = 0. Afterwards, we haveλ−A = (λ−A−M0)[I +(λ−A−M0)

−1 M0] ∈ �(X)
and i(λ− A) = 0 (see [5], Theorem IV. 2. 7, page 103) which implies that λ /∈ σω(A). This
is a contradiction, hence σω(A) ⊆ ⋂

M∈MA(X) σ (A + M), which achieves the proof.
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