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The stability of essential spectra of a closed, densely defined linear operator A
on L -spaces, 1 � p � �, when A is subjected to a perturbation by a boundedp
strictly singular operator was discussed in a previous paper by K. Latrach and A.

Ž .Jeribi 1998, J. Math. Anal. Appl. 225, 461�485 . In the present paper we prove the
invariance of the Gustafson�Weidmann, Wolf, Schechter, and Browder essential

Ž .spectra of A under relatively strictly singular not necessarily bounded perturba-
tions on these spaces. Further, a precise characterization of the Schechter essential

Ž .spectrum is given. We show that these results are also valid on C � where � is a
compact Hausdorff space. The results are applied to the one-dimensional transport
equations with anisotropic scattering and abstract boundary conditions. � 2000

Academic Press

1. INTRODUCTION AND PRELIMINARIES

Ž .Let X and Y be two Banach spaces and let CC X, Y be the set of all
closed densely defined linear operators from X into Y. We denote by
Ž .LL X, Y the space of all bounded linear operators from X into Y, and
Ž .KK X, Y designates the subspace of all compact operators from X into Y.

Ž . Ž . Ž .If A � CC X, Y , we write N A � X and R A � Y for the null space
Ž . Ž .and range of A. We set � � dim N A , � � codim R A . Let A �

Ž . Ž Ž ..CC X, Y with a closed range. Then A is a � -operator A � � X, Y if� �
Ž . Ž Ž .. Ž .� A � �, and A is a � -operator A � � X, Y if � A � �.� �
Ž . Ž . Ž .� X, Y � � X, Y 	 � X, Y is the class of Fredholm operators� �

Ž . Ž . Ž .while � X, Y denotes the set � X, Y 
 � X, Y . For A �� � �
Ž . Ž . Ž . Ž .� X, Y , the index of A is defined by i A � � A � � A . If X � Y,

Ž . Ž . Ž . Ž . Ž . Ž .then LL X, Y , KK X, Y , CC X, Y , � X, Y , � X, Y , and � X, Y are� �
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Ž . Ž . Ž . Ž . Ž .replaced, respectively, by LL X , KK X , CC X , � X , � X , and� �

Ž . Ž . Ž .� X . Let A � LL X . The spectrum of A will be denoted by � A . The
Ž . Ž .resolvent set of A, � A , is the complement of � A in the complex

plane. A complex number 	 is in � , � , � , or � if 	 � A is in�A �A � A A
Ž . Ž . Ž . Ž .� X , � X , � X , or � X , respectively. In the next proposition� � �

Žwe recall some well known properties of those sets see, for example,
� �.8, 9, 32 .

Ž .PROPOSITION 1.1. i � , � , and � are open,�A �A A

Ž . Ž .ii i 	 � A is constant on any component of � ,A

Ž . Ž . Ž .iii � 	 � A and � 	 � A are constant on any component of �A
except on a discrete set of points at which they ha�e larger �alues.

It is well known that if A is a bounded self-adjoint operator on a Hilbert
Ž .space, the essential spectrum � A of A is the set of all points of thee

spectrum of A that are not isolated eigenvalues of finite algebraic multi-
Ž � �.plicity see, for example, 29, 39 . Irrespective of whether A is bounded or

not on a Banach space X, there are several definitions of the essential
Žspectrum. At least six of them have been mentioned in the literature cf.

� �. Ž . Ž .13, 15, 20, 30, 32, 39 . More precisely, let A � CC X . A point 	 � � A
Ž . Ž Ž .. Žis in the essential spectrum � A resp. � A if 	 � � resp.e1 e2 �A

. Ž . Ž .	 � � . � A and � A are called Gustafson�Weidmann essential�A e1 e2
Ž .spectra. The point 	 is in the Kato essential spectrum, � A , if 	 � � .e3 � A

Ž . � Ž . 4The Wolf essential spectrum, � A , is 	 � � A , 	 � � ; the Schechtere4 A
Ž . 0 0 � Ž . 4essential spectrum, � A , is �  � where � � 	 � � , i 	 � A � 0 ;e5 A A A

Ž . � 0and the Browder essential spectrum, � A , is �  	 � � , such that alle6 A
Ž .4scalars near 	 are in � A . Note that, in general, we have

� A 	 � A � � A � � A � � A � � A .Ž . Ž . Ž . Ž . Ž . Ž .e1 e2 e3 e4 e5 e6

But if X is a Hilbert space and A is self-adjoint, then all these sets
coincide.

Ž .An operator S � LL X, Y is said to be strictly singular if for every
infinite dimensional subspace M of X, the restriction of S to M is not a

Ž .homeomorphism. Let SS X, Y denote the set of strictly singular operators
Ž . Ž .from X into Y. Note that SS X, Y is a closed subspace of LL X, Y . In

Ž � �.general, strictly singular operators are not compact cf. 9, 10 and, if
Ž . Ž . Ž .X � Y, SS X is a closed two-sided ideal of LL X containing KK X . If X

Ž . Ž .is a Hilbert space, then KK X � SS X . For basic properties of strictly
� �singular operators we refer to 10, 19 .

Essential spectra of closed, densely defined linear operators on L -spacesp
� �were investigated in 23 . In particular, their invariance under strictly

singular perturbations was discussed. The purpose of this work is to
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continue this analysis. Indeed, we are interested in the behaviour of the
essential spectra of these operators under perturbations belonging to a

Ž .large class of operators not necessarily bounded containing, in particular,
the ideal of strictly singular operators. To be more precise, let X be a

Ž . Ž . Ž .Banach space and let A � CC X . For x � DD A the domain of A , the
� � � � � � � �A-norm 
 is defined by x � x � Ax . It follows from theA A

Ž .closedness of A that DD A endowed with the A-norm is a Banach space,
Ž .denoted by X . Clearly, A � LL X , X . If S is a linear operator withA A

Ž . Ž .DD A � DD S , then S is said to be A-defined. The restriction of S to
ˆ ˆŽ . Ž .DD A will be denoted by S. Moreover, if S � LL X , X , we say that S isA

Ž .A-bounded. One checks easily that if S is closed or closable , then S is
Ž � �.A-defined apply the closed graph theorem 7, 10, 20 .

� � Ž .DEFINITION 1.1 19 . Let A � CC X and let S be an A-defined linear
Žoperator on X. S is called A-strictly singular or relatively strictly singular

ˆ. Ž . Ž .with respect to A if S � SS X , X . We denote by A SS X the set of allA
A-strictly singular operators on X.

Ž . Ž .Let L � L �, �,  , 1 � p � �, where �, �,  is a measure space.p p
Ž . Ž . Ž .In Section 2 we prove that if X � L  , then � X and � X arep �

Ž .invariant under perturbations in A SS X . This permits us to show that if
Ž . Ž . Ž . Ž .A � CC X , then � A � � A � S for all S � A SS X and i � 1, 4,ei ei

Ž . Ž .and 5. Also, if the complement of � A is connected and neither � Ae5
Ž . Ž . Ž .nor � A � S is empty then � A � � A � S . The preceding resulte6 e6

Ž . � �concerning � 
 together with Theorem 5.4 in 32, p. 180 leads to a newe5
Žrefinement of the definition of the Schechter essential spectrum Theorem

. Ž .2.2 . Our results hold also true on C � , where � is a compact Hausdorff
space.

Ž . Ž .The question of whether or not � X and � X are invariant under� �

Ž . � 4 Ž �bounded strictly singular perturbations on L -spaces, for p � 1 
 2, � ,p
� �is not considered in 23 and its solution still seems to be unknown. In the

last part of Section 2 we give a positive answer to this question. This
Ž . Ž . Ž .enables us to discuss the invariance of � 
 and � 
 Proposition 2.1 .e2 e3

Further, a practical criterion for the stability of essential spectra of
Ž .perturbed linear operators is provided Proposition 2.2 . Using arguments

� � Ž .due to Pelczynski 27 we observe that these results extend to C � where
� is a compact Hausdorff space.

In Section 3 we will apply the results obtained in Proposition 2.2 to
Ž . Ž .describe the essential spectra � 
 and � 
 of the following integro-e2 e3

differential operator
�� 1

A � x , � � �� � � � � x , � � � x , � , � � � x , � � d� �Ž . Ž . Ž . Ž . Ž .HH � x �1

� T � � K�H
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� � � �x � �a, a for a parameter 0 � a � � and � � �1, 1 . It describes the
one-speed neutron transport in a plane parallel domain with a width of 2 a
mean free paths or transfer of unpolarized light in a plane-parallel

Ž .atmosphere of optical thickness 2 a. The function � x, � represents the
number density of gas particles having the position x and the direction

Žcosine of propagation � . The variable � may be thought of as the cosine
. Ž .of the angle between the velocity of particles and the x-direction. � 


Ž .and � 
, 
 , 
 are nonnegative measurable functions called, respectively,
the collision frequency and the scattering kernel. The boundary conditions
are modeled by

� � H� ,� � � �� �

Ž . Ž .where � resp. � is the incoming resp. outgoing part of the phase� �
Ž . Ž .space boundary, � resp. � is the restriction of � to � resp. � ,� � � � � �� �

and H is a bounded linear operator from a suitable function space on ��
to a similar one on � . There is a wealth of literature treating the�

Ž �transport equation with different boundary conditions see, e.g., 2, 4, 11,
�. Ž18, 25, 34 . The known boundary conditions vacuum boundary conditions,

specular reflections, periodic, diffuse reflections, generalized and mixed
Ž � �..type boundary conditions see the references listed in 21 are specific

examples of our general framework. Our analysis is based essentially on
Ž . Ž .Propositions 2.2, 3.2, and the knowledge of � T and � T where Te2 0 e3 0 0

Ž .i.e., H � 0 denotes the streaming operator with vacuum boundary condi-
Ž � �.tions see, for example, 4, 18, 25 . We give sizable classes of boundary and

Ž . Ž .collision operators for which � 
 and � 
 of the operators T and Ae2 e3 0 H
� �coincide. Our results add to those obtained in 23 and extend them to

non-homogeneous regular collision operators.

2. MAIN RESULTS

Ž . Ž . Ž .Let �, �,  be a measure space. By L  � L �, �,  , 1 � p � �,p p
we denote the Banach space of equivalence classes of measurable func-

Ž . Žtions on �, �,  whose pth power is integrable respectively, which are
.essentially bounded if p � � . Throughout this section � designates a

Ž .compact Hausdorff space while C � denotes the Banach space of all
continuous scalar-valued functions on � with the supremum norm.

� �We now generalize the following result given before in 23 to A-strictly
singular operators.

Ž . Ž .THEOREM 2.1. Let X be one of the spaces L  , 1 � p � �, or C �p
Ž . Ž .and assume that A � CC X . If S � A SS X , then

� A � � A � S , i � 1, 4, 5.Ž . Ž .ei ei
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Ž . � Ž .�Moreo�er, if C� A the complement of � A is connected and neithere5 e5
Ž . Ž .� A nor � A � S is empty, then

� A � � A � S .Ž . Ž .e6 e6

� � Ž .In 23 , it is shown Theorem 3.2 that

� A � � A � S . 2.1Ž . Ž . Ž .�e5
Ž Ž ..S�SS L p

Ž .The next result shows that this result is not optimal and 2.1 may be
expressed in terms of A-strictly singular perturbations. More precisely, we
have:

Ž .THEOREM 2.2. Assume that X is one of the spaces L  , 1 � p � �, orp
Ž . Ž .C � . If A � CC X , then

� A � � A � S .Ž . Ž .�e5
Ž Ž ..S�A SS L p

To prove Theorems 2.1 and 2.2 we will need the following lemma. It
Ž . Ž . � �extends the items i and iv in 23, Proposition 3.5 to A-strictly singular

perturbations.

Ž . Ž .LEMMA 2.1. Let X be one of the spaces L  , 1 � p � �, or C � andp
Ž . Ž .assume that A � CC X . If S � A SS X , then

Ž . Ž . Ž .i if A � � X , then A � S � � X ;� �

Ž . Ž . Ž . Ž . Ž .ii if A � � X , then A � S � � X and i A � S � i A .

Remark 2.1. The first item is an easy consequence of Kato’s perturba-
� �tion theorem 19 and is valid on all Banach spaces.

Ž .Proof of Lemma 2.1. As already observed, DD A endowed with the
� �norm 
 is a Banach space denoted by X , and A and S as operatorsA A

ˆ ˆŽ . Ž .from X to X denoted by A and S, respectively are in LL X , X .A A
Furthermore, we have

� ˆ ˆ ˆ� A � � A , � A � � A , R A � R A ,Ž . Ž . Ž .Ž . Ž . Ž .
� ˆ ˆ 2.2� A � S � � A � S , Ž .Ž .Ž .� ˆ ˆ ˆ ˆ� A � S � � A � S and R A � S � R A � S .Ž . Ž .Ž . Ž .

ˆ ˆŽ . Ž . Ž Ž .. Ž .i Clearly, A � � X , X use 2.2 and S � SS X , X . Hence,� A A
ˆ ˆ� � Ž . Ž .by 19, Theorem 2 , we have A � S � � X , X . Next, the use of 2.2� A

gives the result.
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ˆŽ . Ž . Ž . Ž .ii Since A � � X , it follows from 2.2 that A � � X , X 	A
Ž . � � Ž .LL X , X . Hence, by 32, Theorem 2.1, p. 110 , there exist B � LL X, XA A

Ž .and K � KK X such that

ÂB � I � K , on X . 2.3Ž .
This leads to

ˆ ˆ ˆA � S B � I � K � SB � I � U, on X . 2.4Ž .Ž .
ˆ ˆŽ . Ž . Ž .Obviously, 2.3 implies that AB � � X and i AB � 0. This together

ˆ� � Ž Ž . Ž ..with 32, Theorem 2.6, p. 170 because A � LL X , X 	 � X , X andA A
� � Ž .the Atkinson theorem 32, Theorem 1.3, p. 163 shows that B � � X, XA

and

ˆi A � �i B . 2.5Ž . Ž .Ž .
Ž .On the other hand, since SS X is a closed two-sided ideal containing

Ž . Ž .KK X we conclude that U � SS X .

Ž . Ž . � Ž .�If X � L  , then 2.4 and 23, Lemma 2.2, 24, Theorem 1 b implyp

ˆ ˆ ˆ ˆŽ . Ž . ŽŽ .that A � S B � � X and i A � SB � 0.
Ž . � �Assume now that X � C � , it follows from 27, Theorem 1 that U is

� �weakly compact and therefore, by 7, Corollary 5, p. 494 , its square is
ˆ ˆ� � Ž . Ž .compact. Thus, the use of 23, Lemma 2.2 gives A � S B � � X and

ˆ ˆŽŽ . .i A � S B � 0.
ˆ ˆŽ .Accordingly, in both cases, A � S B is a Fredholm operator with index
Ž . Ž . �equal to 0. Next, since B � � X, X see above , applying 32, TheoremA

ˆ ˆ� Ž .2.5, p. 169 we conclude that A � S � � X , X . Then, it follows from theA
� �Atkinson theorem 32, Theorem 1.3, p. 163 that

ˆ ˆi A � S � �i B . 2.6Ž . Ž .Ž .
Ž . Ž . Ž . Ž . Ž .Finally, Eqs. 2.5 , 2.6 , and 2.2 show that i A � S � i A and the

proof is complete. Q.E.D.

� �Proof of Theorem 2.1. It is verbatim the proof of Theorem 3.1 in 23 . It
suffices only to replace in the text Proposition 3.5 by Lemma 2.1. Q.E.D.

Before proceeding with the proof of Theorem 2.2, we recall the follow-
ing:

� �DEFINITION 2.1 22 . Let X and Y be two Banach spaces and let
Ž . Ž .F � LL X, Y . F is called a Fredholm perturbation if U � F � � X, Y

Ž . Ž .whenever U � � X, Y . F is called an upper resp. lower Fredholm
Ž . Ž Ž ..perturbation if F � U � � X, Y resp. � X, Y whenever U �� �

Ž . Ž Ž ..� X, Y resp. � X, Y .� �
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The sets of Fredholm, upper semi-Fredholm, and lower semi-Fredholm
Ž . Ž . Ž .perturbations are denoted by FF X, Y , FF X, Y , and FF X, Y , respec-� �
Ž . Ž . Ž . Ž .tively. If X � Y we write FF X , FF X , and FF X for FF X, X ,� �

Ž . Ž .FF X, X , and FF X, X .� �
Let N be a closed subspace of a Banach space X. We denote by � theN

Ž .quotient map X � X�N. The codimension of N, codim N , is defined to
Ž .be the dimension of the vector space X�N. An operator T � LL X is said

to be strictly cosingular if there exists no closed subspace N of X with
Ž . Ž .codim N � � such that � T : X � X�N is surjective. Let C SS X de-N

note the set of strictly cosingular operators on X. This class of operators
� �was introduced by Pelczynski 27 . It forms a closed two-sided ideal of

Ž . Ž � �.LL X cf. 33 .
bŽ . b Ž . b Ž .Remark 2.2. Let � X, Y , � X, Y , and � X, Y denote the sets� �

Ž . Ž . Ž . Ž . Ž . Ž .� X, Y 	 LL X, Y , � X, Y 	 LL X, Y , and � X, Y 	 LL X, Y , re-� �
Ž . Ž .spectively. If in Definition 2.1 we replace � X, Y , � X, Y , and�

Ž . bŽ . b Ž . b Ž .� X, Y by � X, Y , � X, Y , and � X, Y we obtain the sets� � �
bŽ . b Ž . b Ž .FF X, Y , FF X, Y , and FF X, Y . These classes of operators were� �

� � bŽ .introduced and investigated in 9 . In particular, it is shown that FF X, Y
Ž . bŽ .is a closed subset of LL X, Y and FF X is a closed two-sided ideal of

Ž .LL X . In general, we have

KK X , Y � SS X , Y � FF b X , Y � FF b X , Y , 2.7aŽ . Ž . Ž . Ž . Ž .�

KK X , Y � C SS X , Y � FF b X , Y � FF b X , Y . 2.7bŽ . Ž . Ž . Ž . Ž .�

Ž . b Ž . � �The inclusion SS X, Y � FF X, Y is due to Kato 19 , whereas the�
Ž . b Ž . � �inclusion C SS X, Y � FF X, Y was proved by Vladimirskii 33 .�

� Ž .�The following identity was established in 22, Lemma 2.3 ii .

� �LEMMA 2.2 22 . Let X be an arbitrary Banach space. Then

FF X � FF b X .Ž . Ž .

Ž .An immediate consequence of this result is that FF X is a closed two
Ž .sided ideal of LL X .

Ž .Proof of Theorem 2.2. Set PP � � � A � S . Obviously theS � A SS Ž X .
Ž . Ž . Ž .inclusion SS X � A SS X implies that PP � � A . To complete thee5

Ž .proof it suffices to show that � A � PP. To do so, consider 	 � PP. Thene5 0
Ž . Ž . Ž .there exists S � A SS X such that 	 � � A � S . Denote by Y resp. Z0

Ž . � � � � � � Žthe space DD A endowed with the norm x � x � Ax resp.A
� � � � �Ž . �. Ž .�1x � x � A � S x . Let � � X and let � � 	 � A � S �. ItA�S
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follows from the estimate

� � � � � � � � � �� � � � A � S � � � � � � 	 �Ž .A�S 0

�1 �1ˆ ˆ ˆ ˆ� � � �� 	 � A � S � � � � 	 	 � A � S �ž / ž /0 0 0

�1ˆ ˆ� � � � � �� 1 � 1 � 	 	 � A � S � ,Ž . ž /0 0ž /
ˆ ˆ �1 ˆŽ . Ž . Ž .that 	 � A � S � LL X, Z . Moreover, since S � SS Y, X , we can0

ˆ ˆ �1 ˆ� � Ž . Ž .apply 19, Lemma 461 which ensures that 	 � A � S S � SS Y, Z .0
Let II denote the imbedding operator which maps every � � Y onto the

Ž . Ž . � 4same element � in Z. Since R II � Z and N II � 0 , the estimate

� � � � � � � � � �II� � � � � � A� � S�ZZ ZZ X X X

� � � �� 1 � S � , �� � YŽ .LL ŽY , X . Y

bŽ . Ž .shows that II � � Y, Z and i II � 0. Next, making use of the inclusion
Ž . Ž . � �SS Y, X � FF Y, X 10, Theorem 2.1, p. 117 we conclude that

�1
bˆ ˆ ˆII � 	 � A � S S � � Y , Z andŽ .ž /0

�1ˆ ˆ ˆi II � 	 � A � S S � 0.ž /0ž /
Ž . Ž .On the other hand, since 	 � � A � S , it follows from 2.2 that0

ˆ ˆ b ˆ ˆ	 � A � S � � Z, X and i 	 � A � S � 0.Ž .ž / ž /0 0

Hence, by the Atkinson theorem, we have

�1
bˆ ˆ ˆ ˆ ˆ ˆ	 � A � 	 � A � S II � 	 � A � S S � � Y , XŽ .Ž . ž / ž /0 0 0ž /

ˆand i 	 � A � 0.Ž .0

Ž .This together with 2.2 amounts to

	 � A � � X and i 	 � A � 0.Ž . Ž . Ž .0 0

� � Ž .Now applying 32, Theorem 5.4, p. 180 we conclude that � A � PP. Thise5
completes the proof. Q.E.D.

� �As it was already mentioned, the results obtained in 23 dealing with
Ž . Ž . � 4 Ž .� 
 and � 
 are open for p � 1 
 2, � . In the remainder of thise2 e3

Ž . Ž .section we will show that � 
 and � 
 are also invariant under strictlye2 e3
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Ž . � 4 Ž .singular perturbations on L  -spaces for p � 1 
 2, � . These resultsp
Ž .will be extended to the space C � .

Ž . � 4 Ž .PROPOSITION 2.1. Let X be one of the spaces L  , p � 1 
 2, � , orp
Ž . Ž . Ž .C � and assume that A � CC X . If S � SS X , then

� A � � A � S , i � 2, 3.Ž . Ž .ei ei

Ž . Ž �Remark 2.3. a For p � 1, 2 , Proposition 2.1 was already estab-
� Ž .�lished in 23, Theorem 3.1 b . The proof relies on the properties of

� �superprojective Banach spaces 38 . Our proof here uses the identity
Ž Ž .. Ž Ž .. Ž � . � �.SS L  � C SS L  valid for p � 1, � , see 24, 36 and works forp p

� 4 Ž . Ž �p � 1 
 2, � as well as for p � 1, 2 .

Ž . Ž . Ž .b Since SS X � A SS X , it follows from Theorem 2.1 that the
Ž . Ž . Ž . Ž .result of Proposition 2.1 holds also true for � 
 , � 
 , � 
 , and � 
e1 e4 e5 e6

Ž � �.see also 23, Theorem 3.1 .

The next result gives a convenient criterion for the invariance of
essential spectra of perturbed linear operators.

Ž . � 4 Ž .PROPOSITION 2.2. Let X be one of the spaces L  , p � 1 
 2, � , orp
Ž . Ž . Ž . Ž .C � and let A, B � CC X . If , for some 	 � � A 	 � B , we ha�e

Ž .�1 Ž .�1 Ž .	 � A � 	 � B � SS X , then

� A � � B , i � 1, 2, 3, 4, and 5.Ž . Ž .ei ei

Ž . � .Remark 2.4. For X � L  with p � 1, � , the conclusion of Propo-p
Ž . Ž . Ž .sition 2.2 concerning � 
 , � 
 , and � 
 was already established ine1 e4 e5

� �23 .

The following lemma is essential in proving Propositions 2.1 and 2.2.

Ž . � 4 Ž .LEMMA 2.3. Let X be one of the spaces L  , p � 1 
 2, � , orp
Ž . Ž .C � . If S � SS X , then we ha�e:

Ž . Ž . Ž .i If A � � X , then A � S � � X .� �

Ž . Ž . Ž .ii If A � � X , then A � S � � X .� �

Ž . Ž . � �Remark 2.5. The assertions i and ii were established in 23 for
Ž . Ž �X � L  with p � 1, 2 . The proofs use the fact that the dual of thesep

� �spaces is subprojective 38 . Lemma 2.3 completes the results of Proposi-
� �tion 3.5 in 23 .

Let X be a Banach space. We say that X is weakly compactly generat-
Ž .ing w.c.g if the linear span of some weakly compact subset is dense in X.

� �For the properties of w.c.g spaces we refer to 5 . In particular, all
Ž . Ž .separable and all reflexive Banach spaces are w.c.g as L �, d if �, 1

is �-finite.
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� �In 37 Weis proved that if X is a w.c.g Banach space, then

FF X � SS X and FF X � C SS X . 2.8Ž . Ž . Ž . Ž . Ž .� �

� .Let p � 1, � . By the Milman�Weis theorem we have

SS L  � C SS L  � FF b L Ž . Ž . Ž .Ž . Ž . Ž .p p p

Ž � �. Ž .cf. 24; 36, 37, p. 430 . Now putting together 2.8 and Lemma 2.2 we get

FF L  � SS L  � FF L  � C SS L  � FF L  .Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž . Ž .p p � p p � p

2.9Ž .

Ž . Ž . Ž .Proof of Lemma 2.3. i Let S � SS X . If X � L  , the assertionp
Ž .follows from 2.9 and Definition 2.1.

Ž . � �Assume now that X � C � . Then, it follows from 27, Theorem 1 that
� Ž .�S is weakly compact. Next, using 27, Proposition 3 b we conclude that S�

Ž .the dual operator of S is strictly singular too. Now, taking into account
� � � �20, Theorem 5.13, p. 234 , it suffices to apply 19, Theorem 2 to A� � S�.

Ž . Ž . Ž . Ž Ž .ii This follows from i and Lemma 2.1 i because SS X �
Ž ..A SS X . Q.E.D.

Ž .The proof of Proposition 2.1 resp. Proposition 2.2 may be modeled
Ž . � �very closely after that of Theorem 3.1 resp. Theorem 3.3 in 23 . It

suffices solely to replace in the text Proposition 3.5 by Lemma 2.3.

Ž .Notes and Remarks. 1 It should be observed that the equalities in
Ž . Ž .2.9 are also valid for the space C � where � is a compact Hausdorff

Ž . Žspace. Indeed, since C � has the Dunford�Pettis property a Banach
space X is said to have the Dunford�Pettis property if for every Banach
space Y every weakly compact operator T : X � Y takes weakly compact

Ž � �..sets in X into relatively norm compact sets of Y cf. 6 , it follows from
� � Ž Ž .. Ž Ž .. Ž .27, Theorems 1 and 2 that SS C � � C SS C � . But C � is w.c.g;

Ž Ž .. Ž Ž .. Ž Ž .. Ž Ž ..then SS C � � FF C � and C SS C � � FF C � . Next, applying� �
� Ž .� � Ž .�23, Theorem 1 a together with 22, Lemma 2.3 ii we get

FF C � � SS C � � FF C � � C SS C � � FF C � .Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž . Ž .� �

2.10Ž .

Ž . Ž .2 The proof of the first part of Lemma 2.3 for X � C � is now an
Ž .immediate consequence of 2.10 and Definition 2.1.

Ž . Ž . Ž .3 The identities 2.9 and 2.10 are not specific to the spaces
Ž .considered above. There are some Banach spaces X for which LL X has

� �only one proper nonzero closed two-sided ideal. Indeed, Calkin 3 proved
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Ž .that if X is a separable Hilbert space, then KK X is the unique proper
Ž .nonzero closed two-sided ideal of LL X . Afterwards, Gohberg, Markus,

� �and Feldman 9 obtained the same result for X � l , 1 � p � �, andp
� �X � c . In 16 Herman established this result for a large class of Banach0

spaces, namely Banach spaces which have perfectly homogeneous block
Ž . Žbases and satisfy � for the definition and more information about these

� �. Žspaces we refer to 16 . Evidently the spaces l , 1 � p � �, and c belongp 0
.to this class. Obviously, if X has perfectly homogeneous block bases
Ž . Ž .which satisfy � , then using 2.7 and Lemma 2.2 we conclude that

KK X � SS X � FF X � C SS X � FF X � FF X .Ž . Ž . Ž . Ž . Ž . Ž .� �

A Banach space X is said to be an h-space if each closed infinite
dimensional subspace of X contains a complemented subspace isomorphic
to X. Any Banach space isomorphic to an h-space is an h-space; c, c , and0
Ž . � �l 1 � p � � are h-spaces. In 38, Theorem 6.2 , Whitley proved that if Xp

Ž . Ž .is an h-space, then SS X is the greatest proper ideal of LL X . This
Ž .together with 2.7 and Lemma 2.2 implies that

KK X � FF X � FF X � SS X andŽ . Ž . Ž . Ž .�

KK X � FF X � FF X � SS X .Ž . Ž . Ž . Ž .�

� �Hence the results of this section and those obtained in 23, Sect. 3 are
valid when dealing with strictly singular and A-strictly singular perturba-
tions in these classes of spaces.

3. APPLICATION TO TRANSPORT EQUATION

The purpose of this section is to apply Proposition 2.2 to describe the
essential spectra of the following integro-differential operator

��
A � x , � � �� x , � � � � � x , �Ž . Ž . Ž . Ž .H � x

1
� � x , � , � � � x , � � d� �,Ž . Ž .H

�1

� � Ž .where x � �a, a and � � �1, 1 . The operator A describes the one-H
Ž �speed neutron transport or transfer of unpolarized light cf. 4, 11, 18, 21,

�.25, 34 . Let us first make precise the functional setting of the problem.
Let

Y � L D ; dxd� ,Ž .p p
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� � � � Ž . � .where D � � a, a � � 1, 1 , a � 0 , and p � 1, � . Define the follow-
ing sets representing the incoming and the outgoing boundary of the phase
space D:

i i i � �� 4 � 4D � D 
 D � �a � 0, 1 � a � � 1, 0 ,1 2

0 0 0 � �� 4 � 4D � D 
 D � �a � � 1, 0 � a � 0, 1 .1 2

Moreover, we introduce the boundary spaces

i i � � i � � i � �Y � L D , � d� � L D , � d� � L D , � d�Ž . Ž . Ž .p p p 1 p 2

� Y i � Y i ,1, p 2, p

endowed with the norm

1
pp pi i i i i i� � � � � �� , Y � � , Y � � , YŽ .p 1 1, p 2 2, p

1
p1 0p p� � � � � � � �� � �a, � � d� � � a, � � d� .Ž . Ž .H H

0 �1

0 0 � � 0 � � 0 � �Y � L D , � d� � L D , � d� � L D , � d�Ž . Ž . Ž .p p p 1 p 2

� Y 0 � Y 0 ,1, p 2, p

endowed with the norm

1
pp p0 0 0 0 0 0� � � � � �� , Y � � , Y � � , YŽ .p 1 1, p 2 2, p

1
p0 1p p� � � � � � � �� � �a, � � d� � � a, � � d� ;Ž . Ž .H H

�1 0

where � means the natural identification of these spaces.
Let us introduce the boundary operator H,

� 0 0 i iH : Y � Y � Y � Y1, p 2, p 1, p 2, p� H Hu u11 121 1H �� u už / ž /ž /H H2 221 22

0 0 Ž 0 i .with H : Y � Y , H � LL Y ; Y , j, k � 1, 2, defined such that,j, k k , p j, p j, k k , p j, p
on natural identification, the boundary conditions can be written as
� i � H� 0. We define, now, the streaming operator T with domainH
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including the boundary conditions,

�T : D T � Y � YŽ .H H p p

��
� � T � x , � � �� x , � � � � � x , �Ž . Ž . Ž . Ž .H � x�

��
i i 0 0

i 0D T � � � Y , � � Y , � � � � Y , � � � � Y ;Ž .H p p � D p � D p½ � x
i 0� and � � H� 4

Ž . �Ž . 0 Ž 0 0.� i Ž i i .�where 0 � � 
 � L �1, 1 , � � � , � , and � � � , � with1 2 1 2
� 0, � 0, � i, and � i given by1 2 1 2

� i� � � � �a, � , � � 0, 1 ;Ž . Ž . Ž .1

i� � � � a, � , � � �1, 0 ;Ž . Ž . Ž .2�
0� � � � �a, � , � � �1, 0 ;Ž . Ž . Ž .1

0�� � � � a, � , � � 0, 1 .Ž . Ž . Ž .2

Remark 3.1. The derivative of � in the definition of T is meant in aH
Ž .distributional sense. Note that if � � D T , then it is absolutely continu-H

ous with respect to x. Hence the restrictions of � to Di and D0 are
Ž .meaningful. Note also that D T is dense in Y because it containsH p

��Ž . Ž .�C �a, a � 1, 1 .0

Let � � Y and consider the resolvent equation for Tp H

	 � T � � � , 3.1Ž . Ž .H

where 	 is a complex number and the unknown � must be sought in
Ž .D T . Let 	* denote the real defined byH

	* � lim inf � � .Ž .
� �� �0

Ž .Thus, for Re 	 � �	*, the solution of 3.1 is formally given by
Ž Ž .. � �� 	�� � a�x�

� ��
� �a, � eŽ .

Ž Ž .. � �� 	�� � x�x �
x1 � �� � �� e � x�, � dx�, � � 0, 1Ž .H� �� �a�� x , � �Ž . Ž Ž .. � �� 	�� � a�x

� ��
� a, � eŽ .

Ž Ž .. � �� 	�� � x�x �
a1 � �� � �� e � x�, � dx�, � � � 1, 0Ž .H� � �� x

3.2Ž .
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Ž . Ž .whereas � a, � and � �a, � are given by
Ž Ž .. � �� 	�� � a�x

Ž Ž ..	�� � a1 � ���2 a� a, � � � �a, � e � e � x , � dx ,� �Ž . Ž . Ž .� H� �� �a

3.3Ž .
Ž Ž .. � �� 	�� � a�x

Ž Ž ..	�� � a1 � ���2 a� �a, � � � a, � e � e � x , � dx .� �Ž . Ž . Ž .� H� �� �a

3.4Ž .
Ž . Ž . Ž .To allow the abstract formulation of Eqs. 3.2 , 3.3 , and 3.4 , let us

define the following operators depending on the parameter 	:

� i 0 � �M : Y � Y , M u � M u , M u withŽ .	 p p 	 	 	

	�� �Ž .Ž .�M u �a, � � u �a, � exp �2 a , 0 � � � 1;Ž . Ž .Ž .	� ž /� ��

	�� �Ž .Ž .�M u a, � � u a, � exp �2 a , �1 � � � 0;Ž . Ž .Ž .	� ž /� ��

� i � �B : Y �Y , B u � � � B u�� � B u withŽ . Ž .	 p p 	 Ž�1, 0. 	 Ž0 , 1. 	

� �	�� � a�xŽ .Ž .�B u �a, � �u �a, � exp � , 0 � � � 1;Ž . Ž .Ž .	� ž /� ��

� �	�� � a�xŽ .Ž .�B u a, � �u a, � exp � , �1 � � � 0;Ž . Ž .Ž .	� ž /� ��

� 0 � �G : Y � Y , G � � G � , G � withŽ .	 p p 	 	 	

� �a1 	�� � a�xŽ .Ž .�G � � exp � � x , � dx , 0 � � � 1;Ž .H	� ž /� � � �� ��a

� �a1 	�� � a�xŽ .Ž .�G � � exp � � x , � dx , �1 � � � 0;Ž .H	� ž /� � � �� ��a

and

� � �C : Y � Y , C � � � � C � � � � C � withŽ . Ž .	 p p 	 Ž�1, 0. 	 Ž0 , 1. 	

� �a1 	�� � x�x�Ž .Ž .�C � � exp � � x�, � dx�, 0 � � � 1;Ž .H	� ž /� � � �� ��a

� �a1 	�� � x�x�Ž .Ž .�C � � exp � � x�, � dx�, �1 � � � 0,Ž .H	� ž /� � � �� �x



RELATIVELY STRICTLY SINGULAR PERTURBATIONS 781

Ž . Ž .where � 
 and � 
 denote, respectively, the characteristic func-Ž�1, 0. Ž0, 1.
Ž . Ž .tions of the intervals �1, 0 and 0, 1 .

Let 	 denote the real defined by0

� ���	* if H � 1� 1	 �0 � � � ��	* � log H if H � 1.Ž .� 2 a

Simple calculations using Holder’s inequality show that these operators are¨
bounded on their respective spaces. In fact, for Re 	 � �	*, the norms of
the operators M , B , G , and C are bounded above, respectively, by	 	 	 	

�2 aŽRe 	�	*. � Ž .��1� p Ž .�1e , p Re 	 � 	* , Re 	 � 	* where q denotes the
� �conjugate of p. For the details we refer to 21 .

Using these operators and the fact that � must satisfy the boundary
Ž . Ž . 0conditions, Eqs. 3.3 and 3.4 are written in the space Y in the operatorp

form

� 0 � M H� 0 � G � .	 	

The solution of this equation reduces to the invertibility of the operator
Ž . ŽUU 	 � I � M H which is the case if Re 	 � 	 , see the norm estimate	 0

.of M . This gives	

�10� � UU 	 G � . 3.5� 4Ž . Ž .	

Ž .On the other hand, 3.2 can be rewritten as

� � B H� 0 � C � .	 	

Ž .Substituting 3.5 into the above equation we get

�1
� � B H UU 	 G � � C � .� 4Ž .	 	 	

Thus

�1�1
	 � T � B H UU 	 G � C .� 4Ž . Ž .H 	 	 	

On the other hand, observe that the operator C is nothing else but	

Ž .�1	 � T where T designates the streaming operator with vacuum0 0
� Ž .4boundary conditions, i.e., H � 0. Obviously, if the operator I � UU 	 is

Ž . Ž . Ž .boundedly invertible for example, if Re 	 � 	 , then 	 � � T 	 � T0 H 0
and

�1 �1
	 � T � 	 � T � RR , 3.6Ž . Ž . Ž .H 0 	

� Ž .4�1where RR � B H UU 	 G .	 	 	
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� �The essential spectra of T were analyzed in detail in 23, Remark 4.1 .0
In particular, we have

� 4� T � 	 � � such that Re 	 � �	* for i � 1, . . . , 6. 3.7Ž . Ž .ei 0

We are now ready to prove:

PROPOSITION 3.1. If the boundary operator H is strictly singular, then

� 4� T � 	 � � such that Re 	 � �	* , i � 1, 2, 3, 4, and 5.Ž .ei H

Ž .Remark 3.2. The result of this proposition is new only for � T ande2 H
Ž . � 4 Ž .� T with p � 1 
 2, � . The other cases were already established ine3 H

� �23, Theorem 4.1 .

� �Proof of Proposition 3.1. Applying 19, Lemma 461 , one sees that RR is	

Ž . Ž .strictly singular. Now the result follows from 3.6 , 3.7 , and Proposition
2.2. Q.E.D.

Next we consider the transport operator A � T � K where K is aH H
bounded operator given by

K : Y � Y� p p� 3.8Ž .1
� � � x , � , � � � x , � � d� �Ž . Ž .H�

�1

Ž . � � � � � �with � 
, 
 , 
 a measurable function from �a, a � �1, 1 � �1, 1
to ��.

Observe that the operator K acts only on the velocity � �, so x may be
� �viewed merely as a parameter in �a, a . Hence, we may consider K as a

Ž . � � Ž . Ž Ž� � ..function K 
 : x � �a, a � K x � Z where Z � LL L �1, 1 , d� .p
In the following we will make the assumptions:

�the function K 
 is strongly measurable 3.9Ž . Ž .
there exists a compact subset CC � Z such that� � �K x � C a.e. on �a, a 3.10Ž . Ž .� � � � �and K x � KK L �1, 1 , d� a.e. on �a, a , 3.11Ž . Ž .Ž .Ž .p

Ž � � ..where KK L �1, 1 , d� denotes the set of all compact operators onp
Ž� � .L �1, 1 , d� .p

Remark 3.3. Let X and Y be two Banach spaces and let B denoteX
Ž .the unit ball of X. A subset NN � LL X, Y is collectively compact if and

� 4only if the set NNB � Nx : N � NN and x � B has compact closure.X X
� �Having this in mind, using Theorem 2.5 in 1 one sees easily that the
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Ž . Ž . � Ž . � �4conditions 3.10 and 3.11 imply that the set K x : x � �a, a is
collectively compact.

It seems that the concept of collective compactness has been already
used in transport theory by Belleni-Morante and his students.

Ž .Obviously, the hypothesis 3.10 implies that

� � �K 
 � L � a, a , Z . 3.12Ž . Ž .Ž .

Ž .Ž . Ž Ž . Ž ..Ž .Let � � Y . It is easy to see that K� x, � � K x � x, � � andp
Ž .then, by 3.12 , we have

1 1p p p
�� � � � � �K� x , � d� � K 
 � x , � d�Ž . Ž . Ž . Ž .H L Ž��a , a� , Z .H

�1 �1

and therefore

a a1 1p p p
�� � � � � �K� x , � d� � K 
 � x , � d� dx .Ž . Ž . Ž . Ž .H H L Ž��a , a� , Z .H H

�a �1 �a �1

This leads to the estimate

� � � � �K � K 
 . 3.13Ž . Ž .LL ŽY . L Ž��a , a� , Z .p

In view of these observations, we will make use of the following extensive
� �class of collision operators introduced in 25, 26 and referred to as regular

operators.

� � Ž .DEFINITION 3.1 26 . A collision operator K , in the form 3.8 , is said to
Ž . Ž . Ž .be regular if it satisfies the assumptions 3.9 , 3.10 , and 3.11 above.

� .PROPOSITION 3.2. Let p � 1, � and assume that K is a regular operator
Ž .on Y . Let 	 be such that the operator UU 	 is boundedly in�ertible. Thenp

Ž . Ž .�1 Ž . Ž .i 	 � T K is compact resp. weakly compact on Y , p � 1, �H p
Ž .resp. Y .1

Ž . Ž .�1 Ž .ii K 	 � T is compact on Y for p � 1, � .H p

� �Remark 3.4. This proposition extends Theorems 2.1 and 2.2 in 21
to non-homogeneous regular collisions operators. Note also that, for

Ž .�1 �p � 1, the operator K 	 � T in general is not weakly compact 25,H
�Remark 4.2 .

To prove this proposition the following lemma is required. It is inspired
� �and adapted from 26, Lemma 2.3 .

LEMMA 3.1. Assume that the collision operator K is regular on Y . Then Kp
Ž .can be approximated, in the uniform topology, by a sequence K ofn n
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Ž . Ž . Ž . Ž .operators with kernels of the form � x, � , � � � Ý � x � � � � �n j� J j j j
Ž . �Ž� � . Ž . Ž� � . Ž .where � 
 � L �a, a , dx , � 
 � L �1, 1 , d� and � 
 �j j p j

Ž� � . Ž .L �1, 1 , d� q denotes the conjugate of p and J is finite .q

Ž .Proof. Let � � 0. By the assumption 3.10 there exists J , . . . , J such1 n
� 4 Ž . Ž .that J � C and C � � B J , � where B J , � is the open ball, ini i 1� i� n i i

Ž Ž� � ..KK L �1, 1 , d� , centered at J with radius � .p i
Ž . Ž . Ž .Let A � B J , � , A � B J , �  A , . . . , A � B J , �  A .1 1 2 2 1 n n n�1

Clearly, A 	 A � � if i 	 j and C � � A .i j 1� i� n i
Let 1 � i � n and denote by I the seti

�1 � �I � K A � x � � a, a , K x � A .� 4Ž . Ž .i i i

� � nHence we have I 	 I � � if i 	 j and � a, a � � I .i j i�1 i
� �Consider now the following step function from � a, a into Z defined

by
n

S x � � x J ,Ž . Ž .Ý I ii
i�1

Ž . Ž .where � 
 denotes the characteristic function of I . Obviously, S 
I ii
Ž . Ž . Ž . Ž .satisfies the conditions 3.9 , 3.10 , and 3.11 . Then using 3.12 we get

�Ž� � .K � S � L � a, a , Z . Moreover, an easy calculation leads to

� � �K � S � � .L Ž��a , a� , Z .

Ž .Now, using 3.13 we obtain

� � � � �K � S � K � S � � .LL ŽY . L Ž��a , a� , Z .p

ŽHence, we infer that the operator K may be approximated for the
. Ž . n Ž .uniform topology by operators of the form V x � Ý � x J wherei�1 i i

Ž . �Ž� � . Ž Ž� � ..� 
 � L �a, a , dx and J � KK L �1, 1 , d� . On the other hand,j i p
Ž� � . Žeach compact operator J on L �1, 1 , d� is a limit in the normi p

. Ž� � .topology of a sequence of finite rank operators because L �1, 1 , d�p
Ž .1 � p � � admits a Schauder basis. This ends the proof. Q.E.D.

Ž .Proof of Proposition 3.1. Let 	 be such that the operator UU 	 is
Ž . Ž . Žboundedly invertible for example, Re 	 � 	 . In view of 3.6 , 	 �0

.�1T K is given byH

�1�1
	 � T K � B H UU 	 G K � C K .� 4Ž . Ž .H 	 	 	

Ž .�1 Ž .To prove the compactness of 	 � T K on Y 1 � p � � , it suffices toH p
�show that the operators G K and C K are compact on Y . But, using 26,	 	 p

�Lemma 2.1 , one sees that, for K regular, C K is compact on Y . Thus, it	 p
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suffices to establish the compactness of the operators G�K and G�K .	 	

Analogously, for p � 1, the proof is reduced to the weak compactness of
G�K and G�K on Y .	 	 1

Ž .According to Lemma 3.1 and by linearity , it suffices to give a proof for
Ž .a collision operator K with a kernel of the form � x, � , � � �

Ž . Ž . Ž . Ž . �Ž� � . Ž . Ž� � .� x � � � � � where � 
 � L �a, a , dx , � 
 � L �1, 1 , d� andp
Ž . Ž� � .� 
 � L �1, 1 , d� where q denotes the conjugate of p.q
Let � � Y ,p

� �� a � x � � 	 � � � a � xŽ . Ž . Ž .Ž .1�G K� � � exp �Ž .Ž . H H	 ž /� � � �� ��1 �a�
�� � � � x , � � dx d� �, 0 � � � 1;Ž . Ž .� � J U;	

where U and J denote the bounded operators	

� � �U : Y � L �a, a , dxŽ .p p� 1
� � U� x � � � � x , � d�Ž . Ž . Ž . Ž .H�

�1

� 0� �J : L �a, a , dx � YŽ .	 p 2, p� � �a � x � � 	 � � � a � xŽ . Ž . Ž .Ž .
� � exp � � x dx .Ž .H� ž /� � � �� ��a

Ž .We first consider the case p � 1, � . It is then sufficient to check that J	

� �is compact. This will follow from 17, Theorem 11.6, p. 275 if we show
p

q q
� �a � x � � 	 � � � a � xŽ . Ž . Ž .Ž .1

� �exp � dx � d� � ��H H ½ 5� � � �� ��1 �a

Ž .J is then a Hille�Tamarkin operator . To do so, let us first observe that	

we have
q

� �a � x � � 	 � � � a � xŽ . Ž . Ž .Ž .
exp � dxH ½ 5� � � �� ��a

� � q � �a� � Re 	 � � � a � xŽ . Ž .Ž .q� �� � exp �q dx� H ½ 5� � � �� ��a

� � q� �Ž .q� �� � � q�1� �q Re 	 � 	* �Ž .



LATRACH AND DEHICI786

which leads to
p

q q
� �a � x � � 	 � � � a � xŽ . Ž . Ž .Ž .

exp � dxH ½ 5� � � �� ��a

� � p � � p� � �Ž .�
� .p p �1q q� �q Re 	 � 	* �Ž .

Integrating in � from 0 to 1 we obtain
p

q q
� �a � x � � 	 � � � a � xŽ . Ž . Ž .Ž .1

� �exp � dx � d�H H ½ 5� � � �� �0 �a

� � p� �Ž .1 p� �� � d�pH �
q0 q Re 	 � 	*Ž .

� � p� �Ž .p� �� � � �.p�
qq Re 	 � 	*Ž .

Consider now the case p � 1,

1
� � � �J � � d�H 	

0

� �a Re 	 � � � a � xŽ .Ž .1
� � � � � �� � � � exp � � x dxŽ . Ž .�H H ½ 5� ��0 �a

a1
� � � � � �� � � � d� � x dxŽ . Ž .�H H

0 �a

� � � � � �� � � � .� L L1 1

This amounts to

� � � � � �J � � � .� L	 1

ŽThis inequality shows that J depends continuously in the uniform topol-	

. Ž . Ž .ogy on � 
 � L �1, 1 . But the set of bounded functions which vanish in1
Ž .a neighborhood of � � 0 is dense in L �1, 1 , so J is a limit, in the1 	

uniform topology, of integral operators with bounded kernels. Hence J is	

Ž �a weakly compact operator see 7, Definition 1.4, p. 482, and Corollary 11,
�.p. 294 .

A similar reasoning allows us to reach the same result for the operator
G�K . This completes the proof of the first assertion.	
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Ž . Ž .�1ii To prove the compactness of K 	 � T , it suffices to observeH
Ž .�1 �Ž . �that K 	 � T � 	 � T *K * *. Accordingly, using the same strat-H H

� �egy as in the proof of 21, Theorem 2.2 and arguing as above we infer the
Ž 
 . �compactness of 	 � T K *. Next, applying the Schauder theorem 7,H
�Theorem 2, p. 485 we get the desired result. Q.E.D.

Now we turn to the investigation of the invariance of the essential
spectra of transport operators.

� .THEOREM 3.1. Let p � 1, � and assume that the collision operator K is
regular. Then

� A � � T , for i � 1, . . . , 5.Ž . Ž .ei H ei H

Moreo�er, if H is a strictly singular boundary operator, then

� 4� A � 	 � � such that Re 	 � �	* , for i � 1, . . . , 5.Ž .ei H

Ž . Ž .Remark 3.5. Note that the statement concerning � 
 , � 
 , ande1 e4
Ž . � �� 
 was already considered in 23 for homogeneous regular collisione5

Ž Ž .operators i.e., the scattering kernel � 
, 
 , 
 is independent of the space
. �variable x . The proofs use the compactness results obtained in 21,

� Ž . Ž .Theorems 2.1 and 2.2 . On the other hand, � 
 and � 
 were discussede2 e3
Ž � �only for p � 1, 2 . Theorem 3.1 may be regarded as an extension of 23,
�Theorem 4.2 to inhomogeneous regular collision operators, while the

Ž . Ž . � 4 Ž .items concerning � 
 and � 
 for p � 1 
 2, � are new.e2 e3

Ž . �Ž .�1 �Proof of Theorem 3.1. Let 	 � � T be such that r 	 � T K �H � H
Ž .1. Then 	 � � T � K andH

n�1 �1 �1 �1
	 � A � 	 � T � 	 � T K 	 � T .Ž . Ž . Ž . Ž .ÝH H H H

n�1

3.14Ž .

Ž . Ž .�1Next, since K is regular, we know by Proposition 3.2 i that 	 � A �H
Ž .�1 Ž .	 � T is compact resp. weakly compact on Y with 1 � p � �H p
Ž . Ž . Ž .resp. Y . Therefore, it follows from the inclusion KK Y � SS Y for1 p p

Ž .p � 1, � and the fact that the set of weakly compact operators and that
Ž � �.of strictly singular ones coincide on L spaces cf. 28, Theorem 1 that1

Ž .�1 Ž .�1 Ž .	 � A � 	 � T � SS Y . Hence, Proposition 2.2 gives the firstH H p
Ž . Ž Ž ..assertion. Analogously, writing 3.14 in the form use 3.6

n�1 �1 �1 �1
	 � A � 	 � T � RR � 	 � T K 	 � TŽ . Ž . Ž . Ž .ÝH 0 	 H H

n�1

and arguing as above we obtain the second item. Q.E.D.
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