
Conflict-free collaborative decision-making over
Mind-Mapping

Hafed Zarzour*
Department of Computer Science

Mohamed Cherif Messaadia University
41000, Souk-Ahras, Algeria
hafed.zarzour@gmail.com

Tarek Abid
Department of Computer Science

Mohamed Cherif Messaadia University
41000, Souk-Ahras, Algeria

abidtarek@yahoo.fr

Mokhtar Sellami
LABGED, Department of Computer

Science
Badji Mokhtar University
23000, Annaba, Algeria.

m.sellami@dgrsdt.dz

Abstract—As the integration of disaster management,
distributed computing, and collaborative technologies,
collaborative disaster management systems can overcome the
challenges, such as data replication and updating, real-time
information dissemination, distributed resources sharing, and
collaborative decision-making. Collaborative decision-making
systems over Mind-Mapping are modeled by a set of sites
connected by a communication network with each site hosting a
replica of shared data. When a site executes a modification, it
generates a corresponding operation that is performed
immediately on its local copy, and then is propagated to all sites
in order to be executed remotely. However, if the consistency is
not properly guaranteed it can lead to divergences, practically, in
the case of concurrent decisions over the shared Mind-Mapping.
This paper aims to provide a solution to the problem of
consistency in collaborative decision-making over Mind-
Mapping. This solution allows distributed users to work together
to reach a common goal without central servers and coordination
among them is achieved in a Peer-to-Peer manner. A prototype
developed about nuclear disaster scenario demonstrates the
effectiveness of our approach.

Keywords— disaster management; collaborative editing;
collaborative decision-making; distributed system; mind-mapping;
consistency.

I. INTRODUCTION

 Over the last few years, there has been a continuous
evolution in the practice of disaster management. In disaster
management system it is generally understood that situations
may be complicated and a challenge to manage effectively, but
that a set of conflicts will eventually be resolvable [1, 2]. As
the integration of disaster management domain, distributed
computing, and collaborative technologies, collaborative
disaster management systems [3] can overcome the challenges,
such as data replication and updating, real-time information
dissemination [4], distributed resources sharing, distributed
data editing [5] and Collaborative decision-taking [6].
Therefore, collaborative decision-taking systems provide a new
means of organizing and sharing data. Collaborative decision-
making systems, in which modern communication technologies
allow distributed users from around the world to work on the
same data in order to construct identical decision about a
common subject by different viewpoints and skills.

Collaborative decision-making systems are fundamental to all
organizational processes, and have been the subject of research
in management and in decision and computer sciences for
years [7, 8].

Mind-Mappings [9, 10] are special kinds of document
representations which have not been utilized for collaborative
decision-making on distributed networks before, to the best of
our knowledge. The basic mechanism of collaborative
decision-making system over Mind-Mapping is modeled by a
set of sites connected by a communication network with each
site hosting a replica of shared data. When a site executes a
modification, it generates a corresponding operation that is
performed immediately on its local copy, and then is
propagated to all sites in order to be executed remotely.

The major benefits of such systems include reducing task
completion time, reducing errors, getting different viewpoints
and skills, and obtaining an accurate decision. Moreover, these
systems offer flexibility and convenience where it is easy for
users to contribute from anywhere and anytime in the world
with effective and efficient work processes that help in
developing different decisions via structured formalism [11]. A
collaborative decision-making system can stand as a
collaborative editing system where decisions are characterized
by a sequence of operations.

Recently, a Commutative Replicated Data Type (CRDT)
[12, 13] is invented as a convergence philosophy that ensures
consistency maintenance of replica in a collaborative editing
system without any difficulty over distributed networks. This
method supposes that all concurrent operations commute [14].
During collaborative decision-making the consistency is very
important and requires many rules. However, if the consistency
is not properly guaranteed it can lead to divergences,
practically, in the case of concurrent decisions over the shared
Mind-Mapping, Thus, the shared Mind-Mapping which
replicated in all sites diverges and the same sequence of
operations generates inconsistent results. For instance, an
inconsistent system used in order to avoid natural or human
disasters by taking collaborative decision will produce
dangerous consequences. .

In this paper, we propose a novel approach called CMM.
CMM (Collaborative Mind-Mapping) is a new CRDT designed

2014 Fourth International Conference on Advanced Computing & Communication Technologies

978-1-4799-4910-6/14 $31.00 © 2014 IEEE

DOI 10.1109/ACCT.2014.34

509

Virtual Labtop
Typewriter
http://ieeexplore.ieee.org/document/6783506/

Virtual Labtop
Typewriter
DOI: 10.1109/ACCT.2014.34

for Mind-Mapping data type to ensure eventual consistency in
collaborative decision-making systems. The main idea of
CMM is to define a set of operations on a specified structure
for an optimistic Mind-Mapping in a way that all concurrent
operations generate the identical result when the system is idle.
CMM method is designed not only for collaborative decision-
making but further for supporting concurrent editing operations
at large scale. A prototype of CMM is designed and
implemented as an extension to FreeMind[15] to support
scalable conflict-free collaborative decision-making.

The rest of this paper is organized as follows: Section 2
reviews the backgrounds and the most recent related work.
Section 3 details the proposed solution CMM. Section 4
contains the experimental results aver a real scenario. Finally,
section 5 concludes the paper and describes some future
research directions.

II. BACKGROUNDS AND RELATED WORK

A. Mind-Mapping
Mind-Mapping concept was originally invented by Tony

Buzan [14] and is nowadays became an interesting research
area by the use of large number of organizations in different
domains including document editing, brainstorming, project
planning, note taking and decision making.

A Mind-Mapping is a graphical representation used to
represent ideas, concepts, words, tasks or other notions linked
to and arranged radially around a main key concept. It is used
to generate, visualize, structure and classify ideas, and as an aid
in study, organization, problem solving, decision making, and
writing [9].

In general, a Mind-Mapping is a diagram that includes a set
of ideas and always has a central item which corresponds to the
central idea the mind mapping is about. From the central item
child-items cover sub-topics. The major benefits of Mind-
Mapping utilization include: (1) Mechanism adapted to our
biology [16], (2) Ideas link from around central idea [17], (3)
open and flexible system [18], (4) Support for increasing
productivity [19].

Several studies were published about creating and
evaluating Mind-Mappings, for instance, in the fields of
philosophy, aeronautic, and education but not yet in
collaborative decision-making systems that integrate
concurrent operations within virtual community.

Figure 1 shows an example of Mind-Mapping about a
concept of social networking and a relationship between its
uses and types.

Nowadays, many tools exist to support the Mind-Mappings
creation. The most popular of them are MindManager [20] and
FreeMind [15]. To create Mind-Mappings, tools support the
following actions: inserting of concepts or attributes to a node,
linking a node with another, and removing a node from the
graph.

Fig. 1. A Mind-Mapping example of social networking

B. Consistency maintenance
For the context of consistency maintenance in distributed

systems, several algorithms have been proposed based on
Operation Transformation (OT) approach [21] such as GOTO
[22], GOT [23], SOCT2 [24], SOCT4 [25], MOT2 [26].
Because of the use of victor clocks, such are algorithms are
known for their inability to scale as well as the fact that their
correctness is hard for verification [12]. This is mainly because
remote operations are inefficient as well as history buffers are
likely to grow for larger memberships. SOCT2 [24] is typically
peer to peer collaborative environment that ensures the CCI
[23] model. However, SOCT2 is designed only for text
document structure. Further, there are no transformation
functions for Mind-Mapping data are available.

Recently, CRDT [12] approach is developed as a new
consistency maintenance that is scalable and ensures coherence
of replicas without synchronizing. The approach provides a
simple mechanism for complex concurrency by defining
specific types appropriated to each data type that are
commutative for any performed set of operations in order to
guarantee identical results. CRDT algorithms initially designed
for P2P asynchronous collaboration are suitable for real-time
collaboration [27]. CRDT has been successfully applied to
different data representations types in scalable collaborative
editing for linear data type (text document) [28], tree document
structure data type [12],semi-structured data type [29] and set
data type [11] but not yet on Mind-Mapping data type having a
specific structure.

III. PROPOSITION

In this section, we present our model, which aims to
provide a solution to the problem of consistency in
collaborative decision-making over Mind-Mapping within a
virtual organization. It allows distributed users to work together
to reach a common goal without a central servers and
coordination among them is achieved in a P2P manner. The
collaborative decisions of users are interpreted by a sequence
of editing operations executed on a shared Mind-Mapping card.
In order to achieve an eventual consistency after each

510

concurrent decision, we define a new CRDT for Mind-
Mapping data type where all concurrent decision commute
without any requirement of merge algorithms or integration
function, so the copies of all shared data converge
systematically without central and complex control. Our
System is based on an optimistic replication [30] and
composed by a set of interconnected sites. The Mind-Mapping
edited by users are replicated on each site having the same role
and hosting the shared data. A site hosts a copy of Mind-
Mapping, called a local replica and, can edit his copy by
generating a set of updating operations. The updating is firstly
performed on a local replica, and then it is eventually
broadcasted to all other remote replicas. When a modification
is received by a site, the modification is applied immediately.
When the system is idle, all replicas converge and the obtained
Mind-Mapping is identical in all sites of the network. In our
context, no assumptions are made concerning the broadcast
time of updating operations.

A. Data Structure
The Mind-Mapping is presented in a hierarchical structure

that permits easy navigation from higher root level data
abstractions to lower level details. In our context, a Mind-
Mapping is created around a single problem and simulates a
hierarchical tree structure, with a root value and sub-trees of
children, represented as a set of linked nodes, where each node
is a data consisting of idea and concept. In other words, a
concept is assigned to each node of the considered tree.

 From an organizational point of view, a root of tree
corresponds to a central concept and is linked via lines to other
ideas which in turn are linked with other associated concepts.
By convention, the Mind-Mapping is read in clockwise
direction which was done in accordance with the right-to-left
reading direction. Each node can be accessed by a unique
identifier which serves as a key. The key permits to indicate the
position of the current node in the Mind-Mapping in relation to
the main idea or central concept (see Figure 2 and 3).

Therefore, a node in the map is formally described by a pair
(id, lbl), where id is the unique identifier of the current node
position in which there is the label denoted by lbl. The value of
any id associated with any node implicitly defines the path
leading to it from the root of the card.

In this study we use the open source software FreeMind
[15]. FreeMind is a free Mind-Mapping application written in
Java and is licensed under the GNU General Public License. It
provides extensive export capabilities.

Figure 2 shows an example of graphical description on a
nuclear disaster using FreeMind, while the Figure 3 shows the
representation of the same Mind-Mapping describing the
nuclear disaster by showing only unique identifiers that
characterize each node in our data structure.

Fig. 2. An example of nuclear disaster reprsentation using Mind-Mapping

Fig. 3. Identifiers nodes sample

B. Mind-Mapping Updating
On collaborative editing systems users can modify the data

by performing editing operations, such as insert and delete. To
allow collaborative decision-making over shared Mind-
Mapping, we define two basic operations:

• InsNode (p, n, t): creates and adds a node whose
attribute value is t at the nth child of the node p of the
Mind-Mapping. So, if we need to insert a node at the
second position from the root, it’s just we perform the
operation: insNode ([0], 2, 'Mind').

• DelNode (p, n): removes the nth child of the node p
from the Mind-Mapping. So, if we need to delete a node
with position 2 from the root, it’s just we perform the
operation: delNode ([0], 2).

The updating operation of a given attribute can be
considered or made equivalent as a delete of the existing value
to be updated followed by an insert of the new value of the
node. Indeed, this sequence of update changes the value of the
attribute t of the node identified by the position n and the father
p of the map. So, if we need to modify the value of a node
with position 1 from the root, it’s just a sequence serial of
operations are executed: delNode ([0], 1) followed by insNode
([0], 1 , 'new value').

C. Algorithms
To maintain eventual consistency between distributed

replicas, all concurrent operations must commute, i.e., whether
the operations execution order on different sites, the final result
must be the same when the system is idle. Commutativity of
operations is one of the mains of the method CRDT. In our
case, it is important to point out that we define the
notions of commutativity as binary relations on operations
in the sense of our formal definition, rather than simply
for invocations as is usually done. There are four possible
combinations of concurrent operations pairs which are
respectively: (1) (insNode(p1,n1,t1), insNode(p2,n2,t2)), (2)
(insNode(p1,n1,t1) ,delNode(p2,n2,t2)), (3) (delNode(p1,n1) ,
insNode(p2,n2,t2)) ,and (4) (delNode(p1,n1), delNode(p2,n2)).

We now detail the behavior of functions ensuring the
operations commutativity. To do this, we use the following
conventions: functionName (OD, OL) , where functionName is
the name of the function with two concurrent operations, OD is
an unexecuted remote operation, and OL is a local operation
that has already been executed. By definition, both OD and OL
operations are commutative if and only if OD >> OL = OL>>
OD where the symbol >> denotes the precedence relation
which means that when OD is executed before or after OL, this
leads at any time to the same result. In what follows, we
present the set of algorithms that ensures the commutativity of

511

all operations pairs. The execution of two successive insert
operations which permit to add both new nodes, it may lead to
a conflict situation and generate divergent results. To overcome
this problem, the procedure insCommute() outlined in Figure 4
which is defined mainly to guarantee the commutativity
between given insert operations. The procedure takes an
operation insNode(p1,n1,t1) as insNode(p2,n2,t2) as an input
argument. its behavior can be summarized as follows: if both
elements to be insert share the same parent and will be inserted
at the same position, we check if it is the same attribute. If this
is the case, nothing is done (execution of the operation
DoNothing ()), otherwise it uses the lex() function for t1 and t2,
which returns the lexicographical order of the attribute
according to which the attribute is inserted at position n1+1 or
n1.

insCommute(insNode(p1,n1,t1), insNode(p2,n2,t2)){
if (p1=p2){
 if(n1=n2){
 if(t1=t2) {doNothing()}
 else if (lex(t1)> lex(t2)){insNode(p1,n1+1,t1)}
 else {insNode(p1,n1,t1)}
 }else if(n1>n2) {insNode(p1,n1+1,t1)}
 else{
 if(n1<n2) {insNode(p1,n1,t1)}
 }
}else {
 insNode(p1,n1,t1)
 }

Fig. 4. Consistency function for insert operations

Deleting and inserting nodes are also considered as
concurrent operations that can lead to a conflict situation. The
algorithms outlined in Figures 5 and 6 provide a solution to this
problem regardless to the execution order in sites.

insDelCommute(insNode(p1,n1,t1), delNode(p2,n2)){
if (p1=p2){
 if(n1=n2){
 doNothing()
 }else if(n1>n2) {insNode(p1,n1-1,t1)}
 else{
 if(n1<n2) {insNode(p1,n1,t1)}
 }
}else {
 insNode(p1,n1,t1)
 }

Fig. 5. Consistency function for insert and delete operations

delInsCommute(delNode(p1,n1),insNode(p2,n2,t2)){
if (p1=p2){
 if(n1=n2){

 doNothing()
 }else if(n1>n2) {delNode(p1,n1+1)}
 else{
 if(n1<n2) {delNode(p1,n1,t1)}
 }
}else {
 delNode(p1,n1)
 }

Fig. 6. Consistency function for insert and delete operations

delDelCommute(delNode(p1,n1),delNode(p2,n2)){
if (p1=p2){
 if(n1=n2){

 doNothing()
 }else if(n1>n2) {delNode(p1,n1-1)}
 else{
 if(n1<n2) {delNode(p1,n1)}
 }
}else {
 delNode(p1,n1)
 }

Fig. 7. Consistency function for delete operations

If both elements share the same parent and position, then
one of the insert or delete operations are cancelled by
performing null operation DoNothing().

If both operations have the same path and the position of n1
is strictly lower than n2, then the result of the integration is due
to the execution of the invoked operation that corresponds to
the node identified by p1 and n1-1 or n+1 according to the type
of the operation. Otherwise, it performs the operation as it is
outside modification.

Therefore, it is important to note that the algorithms
presented in Figures 5 and 6 lead to the identical result as they
are developed on the idea of commutative operations between
the couple (insNod () delNode), where the order of execution
of operations is not required to maintain consistency of the
Mind-Mapping.

To avoid inconsistency, the last case couples two delete
operations that are running successively. The algorithm
outlined in Figure 7 illustrates how to take into account the
competitive aspect based on the principle of commutativity
between two removal operations; the first one is local whilst
the second is remote.

IV. EXPERIMENTATION

 Successful disaster preparedness occurs through
strong collaboration, detailed and well-understood plans of
action, and written agreements in place before a disaster

512

occurs. We validated and evaluated the performance of our
optimistic solution through a real experimentation about

nuclear disasters. A nuclear disaster is an event that has led to
significant consequences to people, the environment or the
facility with tremendous amounts of nuclear radiation. The
most famous examples are Chernobyl and Fukushima disasters
which occurred respectively in 1986 in Ukraine and in 2011 in
Japan. In fact, a prototype of CMM is designed and
implemented as an extension to FreeMind. With CMM model,
existing FreeMind becomes collaborative, flexible, more
efficient, and can be deployed on distributed environment.

The scenario proceeds as follows:

Two experts collaborate in the diagnostic of the nuclear
disaster causes as well as the set of actions to provide solutions

to the identified issues. Each expert has its own Mind-
Mapping, Site 1 for the first expert and Site 2 for the second.

The initial Mind-Mapping is shared by both experts at the
beginning of the collaborative session. The first expert inserts
the node whose label is "Electrical fault" at position 1 of the
branch "Errors" executing the operation O1 = insNode ([0.2.3],
1, 'Electrical fault'). The second expert generates two
consecutive operations O2 = delNode([0.2], 2) to remove the
second node of "Causes" and the operation O3 =
insNode([0.1], 1, ' Cooling ') to insert the node “Cooling ”at the
first position in the " Actions" branch, as shown in Figure 8.

In order to obtain consistent Mind-Mapping at both sites,
each expert broadcasts their local and concurrent operations
mutually. At Site 1, O2 is performed over O1 to give O2\ =
delNode([0.2],2). In the same way, O3 is performed with

Fig. 8. Consistency and convergence of Mind-Mapping replicas after integrating of conccurrent operations

513

preservation of O2\ to produce O3\= insNode([0.1], 1 ' Cooling
'). As for O1, it is executed on site 2 over O3 to provide O1\=
insNode([0.2.2], 1, ' Electrical fault'). It is noted that the new
obtained Mind-Mappings from both experts converge to the
same version after integrating the algorithms of our solution.
Thus, the final results are identical regardless the operation
execution order at sites.

V. DISCUSSION

CMM is a CRDT for Mind-Mapping that supports
collaborative decision-making and ensures eventual
consistency. The proof that MMC ensures convergence is
straightforward. Since nodes identifiers are unique, and
operations are performed according to consistency program
fragments presented above, the different sites can executes
any sequences of delete and insert operations in any order and
obtain an identical result.

Unlike previous approaches, CMM does not require either
causal relation from the underlying network or tombstones,
eliminating the burden of garbage collection. However,
experiments are currently limited to two users with some
operations. Therefore, we need to make more complex
experiments to establish the scalability and efficiency of the
method in presence of huge data.

VI. CONCLUSION

The demands of collaborative technologies are central to
effective disaster management for relief organizations.
Therefore, disaster management systems have changed
direction and now recent studies are trying to integrate
collaborative aspect in order to switch to a new generation of
framework that is called collaborative disaster management,
especially for collaborative decision-making. In fact, the
proposed approach aims to provide a solution to the problem of
consistency in collaborative decision-making over Mind-
Mapping within a virtual organization. It allows distributed
users to work together to reach a common goal without a
central servers and coordination among them is achieved in a
P2P manner. A prototype is implemented about nuclear
disaster scenario as an extension to FreeMind that supports
concurrent operations. The experimental results have
demonstrated the effectiveness of our approach. In this regard,
this study is the first to present a new CRDT for a Conflict-free
collaborative decision-making over Mind-Mapping. For future
work, we plan to deploy our model on a cloud computing
infrastructure and to replay the experiment on a large
community and other scenarios.

REFERENCES

[1] M. Careem, C. De Silva, R. De Silva, L. Raschid, and S.
Weerawarana, “Sahana: Overview of a disaster management system”,
International Conference on Information and Automation, IEEE
Computer Society, pp. 361-366, 2006.

[2] L. Zheng, C. Shen, L. Tang, T. Li, S. Luis, and S.C. Chen, “Applying
data mining techniques to address disaster information management
challenges on mobile devices”, 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, pp. 283-
291, 2011.

[3] N. Khamis, A.M. Misfian, and R. Md Noor, “Towards sustainable
software criteria: Rescue operation and disaster management system

model”, 10th IEEE International Conference on Networking, Sensing
and Control, IEEE Computer Society, pp. 398-403, 2013.

[4] A. Utani, T. Mizumoto, and T. Okumura, “How geeks responded to a
catastrophic disaster of a high-tech country: rapid development of
counter-disaster systems for the great east Japan earthquake of March
2011”, Special Workshop on Internet and Disasters. ACM, pp. 9, 2011.

[5] C. Sun, and D. Chen, “Consistency maintenance in real-time
collaborative graphics editing systems”, ACM Transactions on
Computer-Human Interaction, vol. 9, no 1, pp. 1-41, 2002.

[6] N. Karacapilidis, and D. Papadias, ”Computer supported argumentation
and collaborative decision making: the HERMES system”. Information
systems, vol. 26(4), pp. 259-277, 2001.

[7] S. Kim, A Godble, R. Huang, et al, “Toward an integrated human-
centered knowledge-based collaborative decision making system”, IEEE
International Conference on Information Reuse and Integration, IEEE
Computer Society, pp. 394-401, 2004.

[8] C. Chen, and A. Chen, “An expert decision-making strategy based on
collaborative cloud system”, IEEE International Conference on
Automation Science and Engineering, IEEE Computer Society, pp. 777-
781, 2012.

[9] T. Buzan, Use Both Sides of Your Brain: New Mind-Mapping
Techniques, Third Edition. Plume, 1991

[10] P.C. Shih, D.H Nguyen, S.H Hirano, D.F. Redmiles, and G.R. Hayes,
“GroupMind: supporting idea generation through a collaborative mind-
mapping tool”, International conference on Supporting group work,
ACM, pp. 139-148, 2009.

[11] H. Zarzour, and M Sellami, "srCE: a collaborative editing of scalable
semantic stores on P2P networks", International Journal of Computer
Applications in Technology, vol. 48, no.1, pp. 1-13, 2013.

[12] N. M. Preguic J. M. Marques, M. Shapiro, and M. Letia, “A
commutative replicated data type for cooperative editing”, International
Conference On Distributed Computing Systems, ICDCS, IEEE
Computer Society, pp.395-403, 2009.

[13] H. Zarzour, and M Sellami, "B-Set: A synchronization method for
distributed semantic stores", International Conference on Complex
Systems, ICCS'12, IEEE Computer Society, November 5-6, 2012.

[14] H. Zarzour, and M Sellami, "p2pCoSU: A P2P Sparql/update for
collaborative authoring of triple-stores", 11th International Symposium
on Programming and Systems, ISPS’13, IEEE Computer Society, pp p.
128-136, 2013.

[15] FreeMind, http://freemind.sourceforge.net, 2013.
[16] B. Toni, Making the Most of your Mind, Pan Books, 1977.
[17] Z. Yan-lei, X. Shuang-jiu, T. Xu-bo, and D. Lei, “Mind Mapping Based

Human Memory Management System”, International Conference on
Computational Intelligence and Software Engineering, IEEE Computer
Society, pp. 1-4, 2010.

[18] I. Mahmud, and V. Veneziano, “Mind-mapping: An effective technique
to facilitate requirements engineering in agile software development”,
14th International Conference on Computer and Information
Technology, IEEE, pp. 157-162, 2011.

[19] T-T. Kionga, J-M. Yunosb, B. Mohammad, W. Othmand, Y-M.
Heonga, M-M. Mohamada, “The Development and Evaluation of the
Qualities of Buzan Mind Mapping Module”, Procedia - Social and
Behavioral Sciences, Vol.59(17), pp. 188–196, 2012.

[20] MindManager, http://www.mindjet.com, 2013.
[21] C.A. Ellis, and S.J. Gibbs, “Concurrency control in groupware systems”,

ACM International Conference on Management of Data, ACM, pp.
399-407, 1989.

[22] C. Sun, and C.S. llis, “Operational transformation in real-time group
editors: issues, algorithms, and achievements”, ACM Conference on
Computer Supported Cooperative Work, ACM, pp. 59-68, 1998.

[23] Sun, C., Jia, X., Zhang, Y., Yang, Y., and Chen, D. (1998) `Achieving
Convergence, Causality Preservation, and Intention Preservation in
Real-Time Cooperative Editing Systems', ACM Transactions on
Computer-Human Interaction, Vol. 5(1), pp. 63-108.

[24] M. Suleiman, M. Cart, and J. Ferri, “Concurrent operations in a
distributed and mobile collaborative environment”, International

514

Conference on Data Engineering, IEEE Computer Society, pp. 36-45,
1998.

[25] N. Vidot, M. Cart, J. Ferri, and M. Suleiman, “Copies convergence in a
distributed real-time collaborative environment”', ACM Conference on
Computer Supported Cooperative Work, pp. 171-180, 1998.

[26] M. Cart, and J. Ferri, “Asynchronous reconciliation based on operational
transformation for p2p collaborative environments”, International
Conference on Collaborative Computing: Networking, Applications and
Worksharing, CollaborateCom, IEEE Computer Society, pp 127-138,
2007.

[27] M. Ahmed-Nacer, C.L. Ignat, G. Oster, H.G. Roh, and P. Urso,
`Evaluating CRDTs for real-time document editing', ACM Symposium
on Document Engineering, pp 103-112, 2011.

[28] S. Weiss, P. Urso, and P. Molli, “Logoot-Undo: Distributed
Collaborative Editing System on P2P Networks', IEEE Transactions on
Parallel and Distributed Systems, Vol. 21(8), pp.1162-1174, 2011.

[29] S. Martin, P. Urso, and S. Weiss, “Scalable XML collaborative editing
with undo”, International Conference on Cooperative Information
System, CoopIS, 2011,

[30] Y. Saito, and M. Shapiro, “Optimistic replication”, ACM Computing
Surveys, ACM, vol.37(1), pp:42–81, 2005.

515

