
Towards a Generic Reconfigurable Framework for Self-
adaptation of Distributed component-based Application 

Ouanes AISSAOUI1, Fadila ATIL1, Abdelkrim AMIRAT2 

1 Department of Computer Science, Badji Mokhtar University, Annaba, Algeria 
aissaoui.ouenes@gmail.com, atil_fadila@yahoo.fr 

2 Department of Computer Science, Mohamed Cherif Messaadia University 
Souk-Ahras, Algeria 

abdelkrim.amirat@yahoo.com 

Abstract. Software is moving towards evolutionary architectures that are able 
to easily accommodate changes and integrate new functionality. This is impor-
tant in a wide range of applications, from plugin-based end user applications to 
critical applications with high availability requirements. This work presents a 
component based framework that allows introducing adaptability to the distri-
buted component-based applications. The framework itself is reconfigurable 
and it based on the classical autonomic control loop Mape-k (Monitoring, 
Analysis, Planning, and Execution). The paper introduces a prototype frame-
work implementation and its empirical evaluation that shows encouraging re-
sults. 

Keywords: Dynamic adaptation, Distributed systems, component-based applica-
tion, Autonomic computing 

1 Introduction 

With the development of the networks and the increasingly significant delocalization 
of the enterprises, the implementation of distributed applications was essentially being 
a solution allowing the cooperation of the various constituent actors of the enterprise. 
For the purpose of reducing the construction costs of distributed applications increa-
singly sophisticated development tools were designed. 

Nowadays, more and more of distributed applications run round the clock, seven 
days out of seven. The shutdown of this type of application to improve it, or quite 
simply to perform updating operations costs a significant sums of money. A solution 
to this problem is to provide mechanisms allowing the evolution or the modification 
of an application during its running without stopping it [1]. So, we speak about the 
dynamic reconfiguration of distributed applications which can be defined as the whole 
of the changes brought to a distributed application at runtime. 

In the critical systems the adaptation must take place at runtime and the application 
should not be entirely stopped. Unfortunately, such adaptation is not trivial; there are 



several conditions and constraints to be satisfied, and this leads to many problems to 
overcome. 

The problems treated in this paper accost the domain of research around the dy-
namic adaptation of the computing systems and in particular, the distributed compo-
nent-based systems. Generally, the existing approaches provide solutions for (1) re-
configuration in non-distributed systems [5] or (2) reconfiguration in distributed sys-
tems but not distributed reconfiguration [10] [11] which is composed of multiple dis-
tributed processes. 

Our objective is to facilitate the addition of the dynamic adaptation capabilities to 
existing component-based applications by providing a solution of management of the 
distributed and coordinated dynamic adaptation. For that, we propose a component-
based framework to add flexible monitoring and adaptation management concerns to 
a running component-based application. In the proposed framework, we separate the 
concerns involved in the classical autonomic control loop MAPE (Monitoring, Analy-
sis, Planning, and Execution) [3] and implement those concerns as separate compo-
nents. As we treat in our context the distributed applications, we integrated in our 
framework a mechanism to manage the distributed coordinated adaptations. These 
components are attached to each managed sub-system. 

The remainder of the paper is organized as follows. Section 2 presents an overview 
of our solution for the distributed and dynamic reconfiguration. Section 3 details step 
by step the design of our framework following the autonomic computing MAPE-K 
phases. In Section 4, we give implementation details for a prototype of our frame-
work. Finally, Section 5 concludes the paper. 

2 Overview of our solution for the distributed and dynamic 
reconfiguration 

We consider an application as a self-adaptable if it's composed of an adaptation sys-
tem on the one hand and of a set of functional components on the other hand.  The 
adaptation system is responsible for the management of the application context (col-
lection of data, analyzes…) and of its adaptation, whereas the components represent 
logic trade of the application (functional code). Such separation is also suggested in 
many works such as [10], [13], [15]. In our context the adaptation system is 
represented by the framework which we present in this paper. Figure 1 shows an 
overview of our solution. For reasons of clearness, only two sites are represented. 

As we treat the distributed applications, we find at each site a sub-system (a set of 
application components) plus one instance of our framework which manages the sub-
system. The negotiation of adaptation strategy and the execution coordination of an 
adaptation operation are done via special components integrated in the framework. 
This organization makes the architecture of our solution decentralized what avoids the 
problems of the centralized approaches [14]. 



 

Fig. 1. Overview of our solution for the dynamic and distributed adaptation 

3 Design of the proposed Framework 

For the definition of our framework, we consider a set of constraints which are: (i) 
independence of the existing component models, (ii) flexibility and extensibility of 
the framework, (iii) adaptability of the framework, and (iv) taking into account of the 
distributed nature of the software to make it adaptable. 

Our framework is based on the classical autonomic control loop Mape-k (Monitor-
ing, Analysis, Planning, and Execution) [3]. This loop is used in many works treating 
the dynamic adaptation [8] [11], [12]. The difference between these current research 
activities is in the implementation way of the Mape-k loop.  

So, in our framework we separate the concerns involved in a classical autonomic 
control loop and implement those concerns as separate components. The monitoring, 
analysis and adaptations are carried out by this control loop. We have merged the two 
phases of analysis and planning and we have integrated them in the same component. 
A significant part of the coordination, negotiation and the checking (checking of the 
application structure and the behavior of its components) were externalized of the 
control loop. The Figure 2 shows an overview of our framework. 

The coordinator coordinates the execution of the adaptation operations; the nego-
tiator negotiates an adaptation strategy with its similar at the other sites. The checking 
component carries out the checking of the application structure as well as the check-
ing of the behavior of its components following the running of an adaptation opera-
tion. This checking operation is carried out on the architecture description of the ap-
plication. For that, the component <<translator>> (presented hereafter) forwards the 
changes carried out on the application to its architecture description each time that an 
adaptation operation is done. This is for assuring a causal connection between the 
architecture description of the application and the system in running.  

 



 
 
 
 
 
 
 

 

  

Fig. 2. Overview of the proposed framework 

Knowledge Manager. It's a component used by the various components of the 
framework. It allows (1) to safeguard information on the knowledge base and (2) to 
provide information contained in the knowledge base to the other components accord-
ing to their need. 

Monitor. It's the first component in the chain which constitutes the control loop. 
It's composed of sub-component of the type <<CaptureContext>> and a set of sub-
components of the type <<Sensor>>.The first supervises the application environment 
(e.g. memory, CPU, bandwidth…) whereas, the second supervises the various func-
tional components of application (i.e., sub-system of the application managed by the 
framework) for that, it has a cardinality 1-*. These components (<<CaptureContext>> 
and <<Sensor>>) are responsible to (1) gather periodically the information of the 
controlled elements and (2) to pass them to the next object of the chain (the context 
manager). 

ContextManager. It’s the second object in the execution chain. It's a composite 
component in charge of the management of the running context. For that, it's com-
posed of two components <<AcquisitionManager>> and <<Interpreter>> with a car-
dinality 1-1 for both. The first (1) gathers the information collected by the monitor 
and saves it in the knowledge base via the component <<KnowledgeManager>>, and 
(2) delegates the execution to the component <<Interpreter>>. This last, interprets 
data provided by the acquisition-manager. The received data are separately interpreted 
for each type of measurement in order to provide a significant contextual data. For 
example, a decreasing bandwidth event can be alone non representative. On the other 
hand, if it's repeated in time, it can indicate that the user moves away from an access 
point and thus being significant. So, the interpreter stores the values measured by 
event type. As the decision maker <<DecisionMaker>> is registered with events near 
the context manager, the detection of a suitable context change triggers the notifica-
tion of the decision maker. In this case, the interpreter delegates the execution to the 
next component of the chain (DecisionMaker). 

DecisionMaker. It’s the third object in the execution chain of the control loop.  It’s 
responsible of making an adaptation decision and provides in exit the adaptation strat-

 



egy to be applied. For that, it subscribes with events near one or more context manag-
ers. The decision maker (1) starts the interpretation of the adaptation policy (script) 
which is of type ECA "Event, Condition, Action".  It is possible that several rules (i.e. 
several adaptation operations) so, several strategies are applicable at the same time. In 
this case, the decision maker must order these strategies according to their priorities, 
then (2) it initiates a negotiation operation of this strategy via the component <<Nego-
tiator>> according to the given sequence. This negotiation is necessary since we 
speak here about the distributed adaptations. At the end of the negotiation, the deci-
sion of the negotiator is the notification of the participants of the negotiation failure or 
of its success with the strategy selected. Thereafter, the <<DecisionMaker>> (3) dele-
gates the execution to the next object (Executor) in the chain.  

 

Fig. 3. Sequence diagram of negotiation between two adaptation managers 

The diagram showed in figure 3 describes the sequence of messages for the negoti-
ation of a strategy between an initiator and participants. For reasons of clearness, only 
one participant is represented. 

The initiating decision maker chooses an adaptation strategy. Then, it asks its ne-
gotiator to negotiate the strategy which it chose. This negotiator proposes simulta-
neously to each participant the strategy that the decision maker chose. The negotiator 
of each participant receives the strategy and interprets its policy to reason on its appli-
cability. It can then accepts, refuse or propose a modification of the strategy. Then, it 
answers the initiating negotiator. When this last receives all the answers, it thinks on 
the acceptances and/or the applicability of the modifications asked. When all the par-
ticipants accept the strategy, the negotiation succeeds. Otherwise, it detects and solves 
the conflicts and it can then in its turn propose a modification of the strategy. The 
negotiation process is stopped if one negotiator refuses a strategy or if a stop condi-
tion is checked. This condition is in connection to the authorized maximum time of 
negotiation or with the maximum number of negotiations cycles. If the negotiation 



succeeds, the initiating negotiator returns to the initiating decision maker the strategy 
resulting from the negotiation and sends to the negotiator of each participant the final 
strategy. At the reception of this strategy, the negotiator of the participant asks to this 
last (3) to adopt the strategy resulting from the negotiation and delegates the execu-
tion to the next object in the control loop <<Executor>>. 

Executor. We adopted the transaction-based system technique [16] to make our 
adaptation operations transactional i.e. having the properties ACID (Atomicity, Con-
sistency, Isolation, Durability) of transactions. So, we consider an adaptation opera-
tion as a set of primitive operations of adaptation.  

The purpose of this decomposition is to facilitate the detection of errors during the 
running of these operations and much more their recovery what allows to preserve the 
consistency of the application to be adapted. An adaptation operation is validated 
(commit) only if all its primitive operations are carried out without faults. If an error 
is detected before finishing the execution of the adaptation operation, the effect of all 
primitive operations is cancelled for preserving the application consistency. Figure 4 
shows our abandon model of an adaptation operation. 

 

Fig. 4. Abandon model of an adaptation operation 

According to our model the effect of the reconfiguration operation is cancelled by the 
running of the reverse action of each primitive operation done. We define the concept 
of opposite operation which is used to undo the effects of a reconfiguration operation 
and which is useful to ensure its atomicity. All the reconfiguration operations are not 
necessarily invertible. The operations of modification of the component properties are 
generally their own reverse. In addition, the opposite (or reciprocal) operation of a 
primitive operation is not necessarily a primitive operation but can be a composite 
operation. 

Given a configuration A, by application of the composite operation ���� ° �� on A, 

we obtain normally ���� ° �� ��	 
 �  according to the following diagram where  
��
  

indicates the reconfiguration by the operation op: 

� 
��
  � �  

����

���  � 

For example, the reverse of the operation removeComp which allows removing a 
component is the operation addComp which allows adding a component.  



In certain component model, certain operations are not invertible, like in the Frac-
tal model where the operation new for which the opposite operation would correspond 
to an operation of destruction of component does not exist. For the particular case of 
the non reversible operations, the cancellation of reconfiguration requires a specific 
treatment in the event of abandonment of the transaction. Compensation operations 
can then be associated to these operations; moreover no guarantee on atomicity can 
then be given because the state of the system resulting from the abandonment cannot 
be completely identical to the state before the running of the reconfiguration. 

Algorithm 1 

1: Begin 

2:  For all opj ∈ startegy do 

3:    RunOp(opj) ; 

4:  TranslateChanges(); // translate changes to the architectural description 

5: if not IsConsistentApplication () then 

6:       SendMessageToCoordinator (‘’Adaptation failure’’); 

7:       For all executed primitive operation opj do   RecoveryManager.undo(opj) ; 

8:       end_for 

9: end_if  

10:  else  

11:       SendMessageToCoordinator (‘’ApplyNextOperation’’); 

12:       response←coordinator.decisionCoordinator() ; 

13:       if response != ″ ApplyNextAction ″  then  

14:  SendMessageToCoordinator(‘’Adaptation failure’’) ; 

15:       For all executed primitive operation opj do RecoveryManager.undo(opj); 

16:       end for  

17:                        BREAK; // to exit the more external loop (for) 

18:                   end_if 

19:  end_else 

20:  end_for 

21:  if all operations in strategy are executed // if the adaptation is succeeds 

22:  LogExecutedOps(); 

23:  end_if 

24:  End. 

The <<Executor>> is the component responsible for the execution of the adapta-
tion strategy suggested by the component <<DecisionMaker>> and of its control. For 
that, it (1)  triggers the execution of each reconfiguration action in the strategy accord-
ing to the order of their appearances. 

We consider the adaptation of distributed application as a global adaptation 
process composed of distributed local adaptation processes. For that, a coordination 
component of the execution of an adaptation is necessary. 

Following the running of each primitive adaptation operation, the <<Executor>> 
(2) calls the translation function of the component <<Translator>> for transferring 
the changes performed in the application in running to its architectural representation. 
After, it (3) carries out the checking of the consistency of the application structure and 
the checking of the validity of the behavior of its components via the component 
<<Checking>>. If a constraint is violated, the <<Executor>> asks to the recovery 
component <<RecoveryManager>> to carry out the rollback for preserving the con-



sistency of the application. In this case there, the component <<RecoveryManager>> 
undoes the effect of all the primitive adaptation operations which are already executed 
through the execution of their reverse operations as explained in the previous section. 
Moreover, this initiating executor notifies the coordinator of the failure of execution 
of the primitive adaptation operation in question. This last, deals with the notification 
of the other participants of this failure (the participants are the coordinators of the 
adaptation execution which are deployed at the other sites) so that they can undo the 
effect of the primitive operations already carried out at their level in order to preserve 
the global consistency of the application. 

In the opposite case, i.e. if the <<Checking>> does not detect any error following 
the running of a primitive operation of adaptation, the <<Executor>> sends a message 
″ApplyNextAction″ to the coordinator. This last awaits the reception of all the partici-
pants’ messages. If one of them replies negatively (i.e. adaptation failure), the coordi-
nator announces the failure of the execution of the adaptation operation. Otherwise, it 
indicates to the participants to carry out the next primitive adaptation operation and 
the process is still repeated. After the running and the validation of all the primitive 
operations of all adaptation operations in the strategy, the <<Executor>> (4) logs 
these executed operations in the journal of the application for a future use. The end of 
the execution of this operation determines the end of the control loop cycle. The run-
ning of the <<Executor>> is summarized by algorithm 1. 

4 Implementation and validation 

In this section, we give details and technical choices made to implement an instance 
of our framework. We present also the result of the evaluation of this framework. 

4.1 Background 

For the implementation of the elements of our framework which we have presented in 
the section 3, we have used the component model ScriptCOM [9] which is an adapta-
ble model extension of the model COM (Component Object Model) [2]. It’s a com-
ponent model which we have proposed in an earlier work. We have used this model 
because it allows the development of a scripting component as it’s based on the use of 
the scripting languages. These languages allow the incremental programming, i.e. the 
possibility of running and developing simultaneously the scripts which represents in 
this context the components implementation. This adaptation is possible via a set of 
three controllers which are: the Interface controller, script controller and property 
controller. Moreover, this model benefited from contributions and advantages of the 
COM model since it’s an extension of the latter. We have chosen this component 
model in order to make our framework itself adaptable.  

4.2 Framework implementation  

The framework is implemented via the component model ScriptCOM as a set of non 
functional components that can be added, removed or modified at runtime. We have 
designed a set of predefined components that implement each one of the elements 



which we have described in Section 3. This is just one of possible implementations 
and particularly, this has been designed to provide self-adaptable capabilities to the 
framework. 

4.3 Validation plan 

In order to validate our proposal, we have used the industrial model EJB [4] for the 
development of an application example which is an http server. We have chosen this 
model to prove that our framework is generic because it’s implemented via the com-
ponent model ScriptCOM and the adapted application is developed via another com-
ponent model (EJB). We have chosen this application (HTTP Server) since it's used in 
the evaluation of many works [5-7].  Therefore, it represents a reference for us.  This 
application of the type server does not interact directly with a user. However, the need 
for performances implies that it must be able to adapt to the characteristics of its host 
and the type of load which it undergoes. In this example, the significant context for 
the adaptation will be thus that of the material and software resources rather than the 
characteristics of the end-user. In order to improve the performances, we have inte-
grated a mechanism to put in cache the content of files which it reads. 

The objective of the validation in this paper is to test the adaptation mechanism in-
fluence on the application response time and the adaptation time.  We have obtained 
encouraging results, where the influence on the response time is stable and that over-
head time is about 15%. The adaptation time average is approximately 2 seconds. Of 
course, this figure is large compared to the response time of one request which is 
approximately 30ms. Notice, that this test is done via machines equipped with In-
tel(R) Core(TM) 2 Duo CPU T5670 @ 1.80GHz 1.79GHz and 1 GB of RAM. 

5 Conclusion 

We have presented a generic reconfigurable component-based framework for support-
ing the dynamic adaptation of distributed component-based applications. Our frame-
work is based on the classical autonomic control loop Mape-k (Monitoring, Analysis, 
Planning, and Execution). It implements each phase of the autonomic control loop as 
a separate component, and allows multiple implementations on each phase, giving 
enough runtime flexibility to support evolving non functional requirements on the 
application.  To the difference of the others frameworks, our framework is conceived 
to support the distributed adaptations. Moreover, it’s independent of the component 
models and designed to minimize the cost and the time of the addition of capacities of 
self-adaptation to a large variety of system. A prototype of this framework has been 
implemented using an adaptable component model ScriptCOM. Moreover, an empiri-
cal evaluation of this prototype is done and it shows encouraging results. 

Our future work focuses on improving the response time by the improvement of 
the negotiation and coordination algorithms.  



References 

1. Taylor, R.N., Medvidovic, N., et al. Software Architecture: Foundations, Theory, and 
Practice. 736 pgs., John Wiley & Sons (2008) 

2. Microsoft Corp., Component Object Model, http://www.microsoft.com/COM 
3. IBM. An architectural blueprint for autonomic computing. Autonomic computing white-

paper, 4th edition (2006) 
4. Matena, V., Hapner, M.: Enterprise Java Beans Specification v1.1 - Final Release. Sun 

Microsystems, Mai (1999) 
5. David, P.C.: Développement de composants Fractal adaptatifs: Un langage dédié à l'aspect 

d'adaptation. PhD thesis, université de Nantes, France (2005) 
6. Léger, M. : Fiabilité des Reconfigurations Dynamiques dans les Architectures à Compo-

sant. PhD thesis, Ecole Nationale Supérieure des Mines de Paris (2009) 
7. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using Temporal Logic for Dynamic Reconfi-

gurations of Components. In: FACS, 7th Int. Ws. on Formal Aspects of Component Soft-
ware, Portugal (2010) 

8. Ruz, C., Baude, F., Sauvan, B.: Flexible adaptation loop for component-based soa applica-
tions. In: ICAS 2011, the Seventh International Conference on Autonomic and Autonom-
ous Systems, pp. 29–36. , May (2011) 

9. Aissaoui, O., Atil, F.: ScriptCOM an Extension of COM for the Dynamic Adaptation. In: 
Proc. of 2nd IEEE International Conference on Information Technology and e-Services, pp. 
646-651, Tunisia  (2012) 

10. Garlan, D. Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow : Architecture-
based self-adaptation with reusable infrastructure. In : IEEE Computer, 37(10) :46-54, 
(2004)  

11. Maurel, Y., Diaconescu, A., Lalanda, P.:  Ceylon: A service-oriented framework for build-
ing autonomic managers. In: Engineering of Autonomic and Autonomous Systems 
(EASe), Seventh IEEE International Conference and Workshops, pp. 3 –11, (2010) 

12. Gauvrit, G., Daubert, E., Andr, F.: Safdis: A framework to bring self-adaptability to ser-
vice-based distributed applications. In: SEAA’10, Proceedings of the 36th EUROMICRO 
Conference on, Software Engineering and Advanced Applications. IEEE Computer Socie-
ty, pp. 211–218, (2010)  

13. Baresi, L., Guinea, S. : A3: Self-Adaptation Capabilities through Groups and Coordina-
tion. In : ISEC ’11, Kerala, India, (2011) 

14. Tan, C., Mills, K.: Performance characterization of decentralized algorithms for replica se-
lection in distributed object systems. In: WOSP, pages 257-262. ACM, (2005) 

15. Zouari, M., Segarra, M.T., André, F.: A Framework for Distributed Management of Dy-
namic Self-adaptation in Heterogeneous Environments. In: IEEE International Conference 
on Computer and Information Technology: 265-272, (2010)   

16. Gray, J., Reuter, A. : Transaction Processing : Concepts and Techniques. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, (1992) 


