
p2pCoSU: a P2P Sparql/update for collaborative
authoring of triple-stores

Hafed Zarzour*
Department of Computer Science

Mohamed Cherif Messaadia University
41000, Souk-Ahras, Algeria
hafed.zarzour@gmail.com

Mokhtar Sellami
LABGED, Department of Computer Science

Badji Mokhtar University
23000, Annaba, Algeria.

m.sellami@dgrsdt.dz

Abstract— An important topic within Computer Supported
Collaborative Work is collaborative editing or authoring system,
which has been an interesting research area by the release of
Web 2.0 products including Social Networks, Wikipedia, CMS,
Google Docs, Blogs and many, many more. SPARQL/UPDATE is
emerging as a reaction to this challenge. However, the current
standard allows only a single authoring of triple-stores and does
not provide transparent mechanism to support collaborative
authoring. Furthermore, maintaining consistency between
distributed triple-stores executing concurrent operations is a
difficult problem. To solve this problem, this paper proposes a
novel p2pCoSU solution that supports collaborative authoring
for P2P semantic triple-stores and ensures causality, consistency
and intention preservation criteria. We evaluate and compare the
performance of the proposed p2pCoSU and related approaches
by simulation; the results show that our solution is efficient and
scalable.

Keywords—Collaborative Editing; Similarity; Distributed
System;Triple-Stores; P2P Networks; SPARQL UPDATE.

I. INTRODUCTION
An important topic within Computer Supported

Collaborative Work (CSCW) is collaborative editing or
authoring system, which has been an interesting research area
by the release of Web 2.0 products including Social Networks,
Wikipedia, CMS, Google Docs, Blogs and many, many more.
Collaborative editing system can be defined as a system that
allows different participants, geographically distributed, to
work together on shared data and modify it by generating
concurrent operations.

In Peer-to-Peer (P2P) collaborative editing system, shared
data that participants are working on is replicated so that each
participant works on local replica that exists on each peer. A
participant at each peer works on the shared data by performing
an operation to the local replica, which will change the data
state. To allow all peers to get the latest state of the data, any
operation generated at one peer has to be propagated to all
other peers. A local operation is an operation generated by the
local peer, whereas a remote operation is an operation
generated by another peer and received as a result of the
operation broadcast. Local or remote operations are executed in
such a way that all copies are identical and the participant's
intentions are preserved. At each peer, participant has to

execute the local or remote operations in such a way that the
data replicas are consistent and the achievement of the
participant's intentions are guaranteed. Optimistic replication is
largely used as a solution to provide data availability for these
systems [1]. Such system is said to be correct if it ensures CCI
model [2] that means Causality, Consistency, and Intention
preservation.

Semantic Web technologies allow describing and
exchanging knowledge via the web with the use of standard
specifications such as Resource Description Framework (RDF)
and SPARQL/UDDATE. Both standards provide excellent way
to create and deploy an infrastructure for the Web 2.0. Where
RDF represents resources with triples (subject, predicate,
object), SPARQL/UPDATE [3] represents the current World
Wide Web Consortium (W3C) proposed recommendation for
an RDF update language. SPARQL/UPDATE reuses a syntax
of the SPARQL query language for RDF and defines updating
operations of RDF data to update triples from of the target
graph. Updating operations are provided as inserting new
triples into an RDF graph and deleting known triples from a
graph. However, the current standard of SPARQL/UPDATE
does not take into account neither the collaborative editing
aspect, nor the P2P networks aspect.

A first solution to support a collaborative editing for
existing SPARQL/UPDATE is to propose a mechanism that
allows all concurrent operations to commute. The main
challenge for this solution is to show practically that the insert
and delete operations of the same triple can commute.

Commutative Replicated Data Type (CRDT) [4] is a
convergence philosophy invented as a new generation of
technique that ensures consistency maintenance of replica in a
collaborative editing system without any difficulty over P2P
networks. This method supposes that all concurrent operations
commute.

In this paper, we propose a new model for building P2P
SPARQL/UPDATE that allows collaborative editing and
ensures causality, consistency and intention preservation
criteria for semantic data type defined as new CRDT. The
model is particularly appropriate for scalable collaborative
editing of distributed triple stores. With our approach, existing
SPARQL/UPDATE becomes collaborative, flexible, more

128978-1-4799-1153-0/13/$26.00 ©2013 IEEE

Virtual Labtop
Typewriter
IEEE 11th International Symposium on Programming and Systems, ISPS’13

Virtual Labtop
Typewriter
DOI: 10.1109/ISPS.2013.6581478

Virtual Labtop
Typewriter
http://ieeexplore.ieee.org/document/6581478/

efficient, and can be deployed on large-scale computer
networks, especially for P2P networks.

The remainder of this paper is organized as follows. Section
2 reviews the backgrounds and the most recent related works
for P2P semantic collaborative editing systems. Section 3
details the proposed solution p2pCoSU. Section 4 contains the
experimental evaluation, while Section 5 concludes this work.

II. BACKGROUNDS AND RELATED WORK
A domain of replication in semantic P2P system has been

addressed by several researchers. This section reviews the
existing work in this domain, discusses their limitations and
drawbacks. MIDAS-RDF [5] is a distributed P2P RDF/S store
which supports a publish/subscribe model [6] that enables
remote peers to selectively subscribe to RDF content index
structure. RDFGrowth [7] is based on semantic data sharing
where only one peer can modify the shared knowledge while
others can read them [8]. However, collaborative editing notion
is different from sharing of semantic data.

Edutella [9] presents P2P platform for semantic data based
on metadata. Its mechanism focuses on querying RDF
metadata stored in distributed RDF stores. A replication service
is proposed as complements local storage by replicating in
additional peers to achieve metadata persistence / availability
and workload balancing while maintaining metadata integrity
and consistency. However, they do not mention how to
replicate and synchronize metadata.

RDFSync [10] is an algorithm for synchronizing a semantic
data. Semantic data is defined as RDF graphs where each RDF
graph is decomposed unequivocally into minimal subsets of
triples and canonically represented by ordered lists of the
identifiers. To ensure the synchronization, the difference is
performed between the source and the target of the ordered list.
However, it is not explicitly specified what happens in the case
of concurrent updates on copies.

In context of data consistency approaches in distributed
systems, several solutions are developed based on Operation
transformation (OT)[11, 12] for supporting a range of
collaboration functionalities in advanced collaborative
distributed systems. However, Oster et al. [13] prove that all
previously proposed transformations violate the commutative
functions. In addition, there are no transformation functions for
semantic data are available particularly for
SPARQL/UPADATE.

Recently, Common replicated data type (CRDT) [14, 15-
16, 17], has been developed as a new class of methods to
ensure convergence without any synchronization requirement.
This approach states that all concurrent operations commute,
allowing copies to execute operations in different orders with
the guarantee that the copies will be identical at the end of
collaborative session. CRDT provides a simple solution which
can be interesting for data replication and consistency in P2P
networks. Currently there is a collection of algorithms that
develop CRDTs for different data structure such as: Lgoot [18],
TreeDoc [14] and XML–CRDT [19]. In the literature, several
CRDTs have been designed to support collaborative editing of
semantic data.

SWOOKI [20] is P2P semantic wiki that couples two
domains: a semantic wikis domain and P2P wikis domain
where users can add a semantic annotation in wiki pages. The
users of SWOOKI collaborate for writing semantic annotations
by editing wiki pages. This system is structured on distributed
nodes where each node corresponds to a hosting server that
contains replicated pages of semantic wiki. The semantic data
are stored in RDF repositories. To edit the triple data, add and
remove operations are used for inserting and deleting a RDF
triple respectively. The insert operation is interpreted by the
fact to increment the counter element that is associated to each
triple. When the occurrence of a given triple is equal to zero, it
will be permanently removed from a semantic replica.
However, when a delete operation is invoked, this solution can
fail in ensuring the consistency condition between peers. This
gives a counter example for triples-stores and implies an
inconsistent situation.

C-Set [21] is a data structure defined as CRDT for sets that
can be integrated within a semantic store in order to provide
P2P synchronization of autonomous semantic store. The main
idea of C-set is to assign a counter to each triple of set for
tracking how many times a triple t has been added or removed.
To this end, four operations are defined on this set. The delete
operation del() can performed locally and sends remote delete
operation rdel() that is executed remotely. The ins() is an insert
operation executed locally. It sends remote insert operation
rins() that is executed remotely. However, they do not mention
how to ensure the causality and preserve the intention of
operations. Although c-set has been designed to ensure
consistency, it violates the operations intentions especially
when it comes to mutually execute remote delete operations on
the same triples that locally have already been removed several
times then reinserted.

In [22] authors define many CRDTs having a set structure,
Grow Only Set (G-Set), Last Writer Wins Set (LWW-element-
Set) and Observed Remove Set (OR-Set). In a G-Set, there is
only an insertion operation where each element can be inserted
and not deleted from the set. The reconciliation Principe is
based on simple set union, since union is commutative. In a
LWW-element-Set, A timestamp is attached to each element. If
an element is not already exists, a local operation updates its
timestamp and adds it to the set and cannot be scalable. In an
Observed Remove Set (OR-Set) each element is associated to a
set of unique tag. A local add creates a tag for the element and
a local remove deletes all the tag of the element. However, Set
ignores the intention of remove operations, LWW-element-Set
is not enable to scale since it uses the tombstone mechanism
and OR-Set requires transparent mechanism of unique tag
generation between different sites.

In summary, P2P Semantic system studies are based on
data querying and sharing. No solutions have been proposed
for collaborative editing semantic triples-stores integrating
SPARQL/UPDATE potentialities. Consequently, they do not
ensure the CCI consistency and take into account concurrent
editing of distributed triple-stores on P2P networks.

129

III. P2PCOSU PROPOSITION
p2pCoSU is a P2P network of semantic store nodes that

allows several users, using their own site, to collaboratively
edit a shared triple store without the need for physical
proximity, in order to produce a group-intended final triple
store. Each peer maintains a replica of the shared semantic
store and each user has full access to his/her local replica.
When a peer updates its local copy of data, it broadcasts a
corresponding operation to all other users such that all users
can view the update reflected in their local replicas. The
broadcasted operation realizes the intention of the user who
initiates. The main idea of this approach is to define a new
CRDT for semantic store of SPARQL/UPDATE where all
concurrent operations commute without any merge or
integration algorithms, and it does not require a central server.

A. Data structure
A semantic store is composed of the set of RDF data where

each RDF data consists of triples of the form (subject, property,
object). Each triple has a number of attributes, such as its
visibility in the semantic store, insert and delete counters.

Users work on a semantic store by adding triples to the
semantic store, deleting triples from the semantic store, and
modifying the existing triples in the semantic store. As opposed
to previously defined approaches, the notion of increment-
counter for RDF triples is introduced in our research as
explained in the following definition.

Definition 1: Given a triple t and a set of triples S , any
function :f S N , where N is a set of all natural
numbers. The value of ()f t is said to be the counter-
increment function of the triple t, it is equal to the number of
times t occurs in S. The counter increment function of an
element can be either a zero, or a positive number.

Definition 2: An insert counter-increment is the function that
represents the number of insert operations performed on the
triple t, denoted by fa(t).

Definition 3: A delete counter-increment is the function that
represents the number of delete operation performed on the
triple t, denoted by fd(t).

Insert and delete counter-increment can serve as a
mechanism of storage of the performed operations regardless
of their type remote or local. The size of the insert/delete
counter-increment is not taken into account since it it has not
effect on the consistency results.

Definition 4: Let S be a set. A set with double counter-
increment function 2MSet is just a triple (S; fa; fd) where S is a
set, fa and fd are insert and delete counter-increment functions
respectively. 2MSet is the empty set with double counter-
increment function if for all x S; fa(x) = fd(x) = 0.

The notion of a set with double counter-increment function
being proposed in this study is a generalization and a fusion of
two sets the first one corresponds to the sequence of the
removal operations and the second corresponds to the sequence
of insertion operation performed on a set of triples. Both
counter-increment function permit to obtain the same result

when the system is on idle state. In other words, all sites that
replicate a same initial data and afterwards execute the same
set of the data, even in a different order, will have identical
results since there are variables which maintain the effect of
any executed operation.

Definition 5: Let A = (S; fa; fd) be a set with double counter-
increment function. A visibility is a boolean value that allows
to all x A to be visible or not to end users. This value
depends directly on the difference between fa and fd. The
visibility function of a triple t is expressed as:

, () ()((), ()) , () ()
True fa t fd tf fa t fd t false fa t fd t

The visibility is a boolean that represents if the triple is
visible or not. A triple is never really removed it is just noted as
invisible.

Definition 6: An RDF store plus, denoted by R+, is a
repository used for storing RDF triples. It is a pair (A; V),
where A is a set with double counter-increment function and V
is V : A → Bool.

Figure 1 shows the logical view of an RDF store plus R+,
and how to compute the visibility of each triple from an insert
and delete counter-increment functions. All possible cases are
presented in this sample, only the second, third, fifth, seventh,
ninth, and eleventh triples appear to user because they have an
insert counter-increment greater than a delete counter-
increment, thus the visible RDF store plus contains (alice,
know, bob), (alice, likes, football), (bob, likes, baseball),
(cameron, knows, eve), (eve, likes, tennis), and (eric, plays,
handball).

This mechanism of RDF store plus construction ensures
convergence and consistency in any case. Therefore, deferent
users have the same RDF store plus when each triple is added
or removed, because the comparison between an insert and
delete counter-increment functions, used for computing the
visibility, is the same in any site.

Fig. 1. Logical view of RDF store plus R+

130

Each operation of a user has to be broadcast to all other
users such that all users can view the operation reflected in
their local replicas. Each distributed operation realizes the
intention of the user who initiates it, such that when the
operation is executed in another RDF store plus replica, the
operation is reflected correctly.

B. Updating operations
A user works on an RDF store plus by adding, deleting, and

modifying triples of the RDF store plus. Every update intended
by the user is realized by an operation.

In a collaborative editing system, there are two generic
operation primitives that affect an RDF store: insert and delete.
Meanwhile, the update operation can be considered or made
equivalent as a delete of the existing value to be updated
followed by an insert of the new value. The two generic
operation primitives used in the RDF store plus are: insTp(t)
and delTp(t). where insTp(t) is used to insert a triple t in the
RDF store, delTp(t) is used to remove the triple t from the RDF
store plus. An update request consists of two operations,
including a triple to be deleted and a triple to be added. In other
words, the execution of an update operation, changing a triple
t1 to a new value of t2, consists of the sequential execution of
delTp(t1) followed by insTp(t2). After each execution of local
insert or delete operation of the triple t, the visibility is
computed, and the corresponding remote operation is broadcast
to all other sites in order to be executed. The insertion and
deletion of triples group can be expressed as series execution of
insTp() and delTp() opeartions. In this work, we suppose that
the execution of any operation is atomic and it will be never
violated.

The figure 2 illustrates a sample of RDF store plus before
and after executing a delete and insert operations. The initial
state of RDF store plus includes only two triples (alice, tel,
"(213) 578-80") and (alice, know, bob) with visibilities equal to
true.

Fig. 2. Execution example of update operations on RDF Store plus model

In figure 2 (a), insert operation of a new triple is performed
in order to add (bob, likes, baseball) to RDF store plus. This
operation occurs to a new state of RDF sore plus that contains
the inserted triple. Since the triple to be added does not exist in
the initial state, it is inserted and initialized to 1 and 0. The first

value corresponds to the insert counter-increment whilst the
second corresponds to the delete counter-increment. In Figure
2 (b), the delete operation is performed for removing the triple
(alice, know, bob). Since the triple to be deleted is already in
the initial state, its deleted counter-increment is incremented,
and its visibility is now set to hidden, thus, the triple (alice,
know, bob) is masked.

Figure 3 presents a counter-example, where an existing
SPARQL/UPADTE with operations insert(triple) and
delete(triple) does not commute and the eventual consistency is
violated.

Fig. 3. An existing SPARQL/UPADTE

To explain the concepts of our solution clearly and
illustrate its advantages, the same scenario is executed twice,
one time for an existing SPARQL/UPADTE (see fig. 3) and
the other for a p2pCoSU solution (see fig. 4). Consider the
scenario outlined in figure 4. Three users at three distributed
peers are to collaboratively edit an RDF store plus using
p2pCoSU where each user has their own local replica. At the
beginning, the local RDF stores plus are empty. The user at
peer-2 inserts triple t=(alice, likes, football) (O1). This
operation is broadcasted to peer-1 and peer-3. The user at peer-
1 inserts another triple t (O2) and the user at peer-3 removes it
(O3). When O2 arrives at peer-3, it will be executed by
incrementing to 2 the insert counter-increment of t in the local

131

RDF store plus replica. Since the triple t is already in RDF
store plus of peer-3 it will be unmasked after obtaining the new
value of the visibility. When O3 arrives and executed at peer-1,
the delete counter-increment will be incremented. The visibility
is recomputed and its state becomes visible to the user. When
O2 and O3 are broadcasted and executed mutually at peer-1
and peer-3, the end results of all replicas are identical and
consistent. Thus, convergence is ensured. It should be noted
that the Peer-2, shown in figure 4, converges also to the same
results obtained at Peer-1 and Peer-3 contrary to the case of the
Peer-2 in figure 3 which diverges.

Fig. 4. Convergence scenario with p2pCoSU approach

C. Algorithmes
In collaborative editing systems, when a user updates the

local copy, the site generates an operation that realizes the
user's task. The generated operation is immediately executed at
the local copy. It is then published to all other users in order to
be executed. Algorithms 1 and 2, presented in figure 5 and 6
respectively, describe the procedures invoked by a site during
this phase. The function insTp(t) is a local operation that allows
to user to interpret the insertion intention of a new triple in two
steps: first, the insertion in local level is performed, then the
remote operation is sent to all peers.

Fig. 5. Insert algorithm

1:procedure insTp(t) >t is the triple to be inserted

2: add(t);

3 broadcastInsTp(t);

4: end procedure

In the same way, the local delete operation delTp(t) is used
for removing the triple t from the local RDF store plus replica.
After that, a corresponding remote operation is generated and
distributed to different peers via a network.

Fig. 6. Delete algorithm

1:procedure DelTp(t) >t is the triple to be deleted

2: rmv(t);

3 broadcastDelTp(t);

4: end procedure

Both functions broadcastInsTp() and broadcastDelTp()
guarantee to deliver successfully the local operations of insert
and delete triple to all peers in order to be executed. These
functions communicate respectively with integrateInsTp() and
integrateDelTp() that ensure the retrieving and execution of the
remote operations. The broadcast mechanism used in the delete
and insert algorithms serves to guarantee the diffusion of all
local executed operations to other peers of the network. If some
of the broadcast packets or recipients fail, the system replays
the broadcasting of the failed operation.

To add or remove a triple, two counters are used to
implement a set with double counter-increment function. The
first one corresponds to insert counter-increment whilst the
second corresponds to the delete counter-increment. Both
counters are associated to every triple, the values of these
counters represent the number of delete and insert occurrences
of the triple in the RDF store plus. During the insert operation
(see Figure 7), the counter of the triple to be inserted is
incremented and the function update(t) is invocated if it is
already in RDF store plus. Elsewhere, a new triple is created <
t; 1; 0; true >, where 1 and 0 are initial values of insert and
delete counter-increment functions respectively. The default
visibility value is true and the triple will appear to the user.

In the case of the delete operation (see Figure 8), if the
triple to be deleted was already inserted in the RDF store plus,
the counter that represents the delete counter-increment is
incremented, then the visibility value is computed by calling to
update() function, (see Figure 9). When a user executes a delete
operation of a triple that does not exist or has not been inserted,
the corresponding counter will be equal to one. Thus, this triple
will be inserted in the RDF store plus but it is hidden.

During executing any local or remote operation, an
update(t) algorithm computes the difference between the insert

132

and the delete counter-increment of the triple t. According to
the obtained value, the triple t will be masked or no. Algorithm
5 shows the procedure invoked by a peer during this phase.

Fig. 7. Add algorithm

1:procedure add(t)

2: if t R+ then

3 : fa(t)++;

4 : update(t);

5: else

6: fa(t)=1;

7: fd(t)=0;

8: ins(t, fa(t), fd(t),true);

9: end procedure

Fig. 8. rmv algorithm

1:procedure rmv(t)

2: if t R+ then

3 : fd(t)++;

4 : update(t);

5: else

6: fa(t)=0;

7: fd(t)=1;

8: ins(t, fa(t), fd(t),false);

9: end procedure

The remote operation being propagated by a peer will
arrive at another peer. Whenever a remote operation is
received, the peer applies the operation to its local copy in such
a way so as to maintain the intention of the user who initiates
the operation as well as to guarantee that the RDF store plus
replicas are identical at all peers. At arrival of the remote
operation at a peer, receiveInsTp(t) (see Figure 10) or
receiveDelTp(t) (see Figure 11) are invoked for executing
add(t) or rmv(t) according to the type of delivered operation.

Fig. 9. Update algorithm

1:procedure update(t)

2: if fa(t)- fd(t) >0 then

3 : v=true;

4 : else

5: v=false;

6: end procedure

Fig. 10. Receive insert algorithm

1:procedure receiveInsTp(t)

2: add(t);

3: end procedure

Fig. 11. Receive delete algorithm

1:procedure receiveDelTp(t)

2: rmv(t);

3: end procedure

D. CCI model correctness
The proof that p2pCoSu ensures CCI consistency model is

straightforward. In order to guarantee causality of the generated
operations, there are many causal diffusions for scalable
systems such as [23]. A scalable causally algorithm [24] can be
used to verify the causal consistency by tracking and checking
before the execution of each operation at any sites. However,
B-Set has a very interesting characteristic that ensures eventual
consistency without any requirement of causal delivery or
receive.

The visibility variable, which is associated to each triple, is
calculated base on the difference between the insert and delete
counter-increment function, as difference operation is
commutative in the set of integers, according to [4] p2pCoSu
ensures eventual consistency.

Since the effect of each generated operation is preserved in
local or remote site by the introduction of the insert and delete
counter-increment functions combined with the visibility
propriety, the intention operation is respected. An expanded
proof will be done in future work.

IV. EVALUATION
In this section, we present the experimentation we have

made in order to compare p2pCoSu to existing solutions.

To evaluate the performance of our system, we edit the
FOAF (Friend of a friend) dataset to describe social network
within a virtual organization. For this reason we have
implemented p2pCoSu using the ARQ API’s of the open
source JENA Framework [25] that implements the W3C
standard SPARQL/Update language for data manipulation. We
have assessed the effectiveness of our technique by examining
the similarity between two different replicas performing a set
of concurrent operations. We measure the similarity for C-Set
[21], semantic part of SWOOKI [20], SPRAQL/UPDATE [2],
and p2pCoSU. The similarity between two replicas A and B
having a set structure is measured by the following function:

133

() 100, () 0
()(,)

100%, ()

g A B g A B
g A Bg A B

g A B

Where g(A B) is a function that returns the cardinality of
the union of A and B whilst g(A B) returns the cardinality of
the intersection of A and B. For instance, let us consider two
sets of triples A={(alice, know, bob),(bob, know, cameron)}
and B={(alice, know, bob)}. The similarity between these sets
is equal to 50% because g(A B) =1 and g(A B)=2.

Figure 12 shows the similarity calculated between two
stores of two different users executing concurrent operations
following four approaches: p2pCoSU, C-Set, SWOOKI, and
SPARQL/UPDATE. At the beginning, both replicas are
identical and the similarity equals to 100% in all considered
approaches. After executing the first set of concurrent
updating, the similarity of SPARQL/UPDATE and SWOOKI
decreases linearly to a minimum and begin to increase again.
The p2pCoSU similarity remains constant to 100% all along
the editing session, while the similarity of C-Set continuously
decreases. Finally, compared to C-Set, SWOOKI, and
SPARQL/UPDATE, p2pCoSU achieves better similarity in
any case.

Fig. 12. Similarity between two semantic stores executing concurrent
operations

Figure 13 shows the relative similarity of the three different
approaches. The relative similarity is a similarity of each
approach divided by the similarity of existing
SPARQL/UPDATE without any modification. We notice that
p2pCoSU is most efficient in terms of improvement compared
to SPARQL/UPADTE. Finally, the p2pCoSu similarity is
superior to the Basic SPARQL/UPADTE similarity while a
relative similarity of C-Set is inferior and SWOOKI has a poor
improvement.

As consequence, p2pCoSU is well-suited for such semantic
store editing since it remains the best improvement over
concurrent updating.

V. CONCLUSION
In this paper, we have presented p2pCoSU approach for

scalable collaborative editing of distributed semantic stores that
uses a new commutative replicated data type. p2pCoSU is
designed for large-scale decentralized networks that ensures
CCI consistency model. It is a general approach that can be
used with any set data type and can be a thrust for future
research in this area. We have validated the p2pCoSU approach
on triples collaborative editing of FOAF dataset. The
experiment results demonstrate that the p2pCoSU is scalable
and more efficient as it can cope well when more operations
are performed. The experimentation also shows that p2pCoSU
has better performances than the existing SPARQL/UPDATE,
SWOOKI and C-Set approaches. In the future, we plan to
integrate p2pCoSU algorithm in a distributed semantic wiki.
We are currently working on semantic MediaWiki[26]. We are

also working on a set undo for the p2pCoSU algorithm.

134

Fig. 13. Relative similarity

REFERENCES

[1] V. Martins, E. Pacitti, M. El Dick, and R. Jimenez-Peris, “Scalable and

Topology-Aware Reconciliation on P2P Networks”, Distrib Parallel
Databases, vol. 24(1), pp.1-43, 2008.

[2] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving
Convergence, Causality Preservation, and Intention Preservation in
Real-Time Cooperative Editing Systems”, ACM Transactions on
Computer-Human Interaction, vol.5(1), pp.63-108, 1998.

[3] SPARQL 1.1 Update, http://www.w3.org/TR/sparql11-update/, accessed
01 January 2013.

[4] N. M. Preguic J. M. Marques, M. Shapiro, and M. Letia, “A
commutative replicated data type for cooperative editing”, International
Conference On Distributed Computing Systems, ICDCS, IEEE
Computer Society, pp.395-403, 2009.

[5] G. Tsatsanifos, D. Sacharidis, T. Sellis, On Enhancing Scalability for
Distributed RDF/S Stores, in: Proceedings of International Conference
on International Conference on Extending Database Technology, EDBT,
pp.141-152, 2011.

[6] P.A. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl, “Publish/subscribe
for rdf based p2p networks”, The SemanticWeb: Research and
Applications, pp.182-197, 2004.

[7] G. Tummarello, C. Morbidoni, J. Petersson, P. Puliti, and F. Piazza,
“RDFGrowth, a P2P annotation exchange algorithm for scalable
Semantic Web applications”, The First International Workshop on Peer-
to-Peer Knowledge Management, 2004.

[8] G. Tummarello, C. Morbidoni, R. Bachmann-Gmur, and O. Erling,
“Rdfsync, Efficient remote synchronization of rdf models”, International

Semantic Web and Asian Semantic Web Conference, ISWC/ASWC,
pp.537-551, 2007.

[9] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,
M. Palmer, and T. Risch, “Edutella: a p2p networking infrastructure
based on rdf”, 11th international conference on World Wide Web, pp.
604-615, 2002.

[10] B. Quilitz, and U. Leser, “Querying Distributed RDF Data Sources with
SPARQL”, European Semantic Web Conference on The Semantic Web:
Research and Applications”, pp. 524-538, 2008

[11] C. Sun, and C. S. Ellis, “Operational transformation in real-time group
editors: issues, algorithms, and achievements”, ACM Conference on
Computer Supported CooperativeWork, pp. 59-68, 1998.

[12] M. Cart, and J. Ferri, “Asynchronous reconciliation based on operational
transformation for p2p collaborative environments”, International
Conference on Collaborative Computing: Networking, Applications and
Worksharing, CollaborateCom, IEEE Computer Society, pp 127-138,
2007.

[13] G. Oster, P. Urso, P. Molli, and A. Imine, “Proving correctness of
transformation functions in collaborative editing systems”, LORIA –
INRIA Lorraine, Research Report RR-5795, Dec. 2005. Available:
http://hal.inria.fr/inria-00071213/

[14] N. Preguica, J.M. Marques, M. Shapiro, and M. Letia, “A commutative
replicated data type for cooperative editing”, 29th IEEE International
Conference on Distributed Computing Systems, ICDCS ’09, pp.395–
403, Washington, DC, USA, 2009.

[15] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free
replicated data types”, Xavier Défago, Franck Petit, and Vincent Villain,
editors, Stabilization, Safety, and Security of Distributed Systems,
Lecture Notes in Computer Science, vol. 6976, pp. 386–400, Springer
Berlin / Heidelberg, 2011.

135

[16] We. Yu, “A string-wise CRDT for group editing”, 17th ACM
international conference on Supporting group work, pp.141-144,New
York, NY, USA, 2012

[17] Hafed Zarzour, Mokhtar Sellami, “B-Set: a synchronization method for
distributed semantic stores”, International Conference on Complex
Systems, ICCS'12, November 5 - 6, 2012.

[18] S. Weiss, P. Urso, and P. Molli, “Logoot-Undo: Distributed
Collaborative Editing System on P2P Networks”, IEEE Transactions on
Parallel and Distributed Systems, vol. 21(8), pp.1162-1174, 2010.

[19] S. Martin, P. Urso, and S. Weiss, “Scalable XML Collaborative Editing
with Undo”, International Conference on Cooperative Information
System, CoopIS, 2010.

[20] H. Skaf-Molli, C. Rahhal, P. Molli, “Peer-to-peer Semantic Wikis”,
International Conference on Database and Expert Systems Applications,
DEXA, pp.196-213, 2009.

[21] K. Aslan, H. Skaf-Molli, P. Molli, and S. Weiss, “C-set: a commutative
replicated data type for semantic stores”. RED: Fourth International
Workshop on Resource Discovery, At the 8th Extended Semantic Web
Conference, ESWC, pp. 123-130, 2011.

[22] M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski, “A
comprehensive study of Convergent and Commutative Replicated Data
Types”, Research Report RR-7506, INRIA, January 2011.

[23] S. Kawanami, T. Nishimura, T. Enokido, and M. Takizawa, “A Scalable
Group Communication Protocol with Global Clock”, AINA, pp. 625-
630, 2005.

[24] W. Lloyd, M-J. Freedman, M Kaminsky, D-G. Andersen, “Don't settle
for eventual: scalable causal consistency for wide-area storage with
COPS”, SOSP, pp. 401-416, 2011.

[25] Jena - A Semantic Web Framework for Java, http://jena.source.com,
2012

[26] M. Krtzsch, D. Vrandecic, M. Vlkel, H. Haller, and R. Studer,
“SemanticWikipedia”, Journal of Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 5(4), pp.251-261, 2007.

136

