
Mockup-based Navigational Diagram for the Development
of Interactive Web Applications

I. Bouchrika, L. Ait-Oubelli & A. Rabir
Dept of Mathematics and Computer Science

University of Souk-Ahras
Souk-Ahras, 41000, Algeria

imed@imed.ws

N. Harrathi
Department of Computer Science

University of Mentouri - Constantine
Constantine, 25000, Algeria

harrati.nouzha@yahoo.fr

ABSTRACT
The web industry has evolved very rapidly since its begin-
ning from read-only static content to fully interactive ap-
plications. As opposed to traditional software applications,
the development of a web application is a challenging and
complex task involving many phases with different type of
stakeholders. In fact, the majority of web applications do
get shredded away or fail to gain popularity due the simple
fact that the application does not meet and achieve usability
goals with the accuracy and level outlined by the experts at
the early. In this research studies, we propose a communica-
tion channel to automate the process between user interface
prototyping and formalized software architecture in order
to bridge the gap between the different stakeholders. As
user interfaces provide a rich source of user requirements,
an approach is being investigated to formalize requirements
analysis from user interface using a proposed Mockup-based
navigational diagram that can be translated to other archi-
tectural models and therefore the possibility of automated
code generation.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: Evolu-
tionary prototyping

General Terms
HCI, Mockups, Prototyping, Software Engineering

1. INTRODUCTION
The web development industry has evolved very rapidly

since its beginning from read-only static content to fully in-
teractive and rich distributed web applications. As a result,
the web has become an essential part of our daily activities
from watching television, travel booking, reading news and
shopping. A number of technologies, tools and platforms
have emerged to ease and formalize the development of web

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISDOC’13 July 11-12, 2013, Lisbon, Portugal.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

applications as well as to alleviate the common problems en-
countered during the development by providing solutions to
common activities such scalability, authentication, database
access and session management. As opposed to traditional
software applications, the development of a web application
is a challenging and complex task [12] involving many phases
with different type of end-users and contributors throughout
the development phases from software developers, end-users,
HCI experts, User Experience (UX) designers and so on. In
fact, the majority of web applications do get shredded away
or fail to gain popularity due the simple fact that the ap-
plication does not meet and achieve usability goals [13, 9]
or wishes of end customers with the accuracy and level out-
lined by the experts at the early stage of the requirements
analysis.

The failure of web applications in meeting usability goals
stems from a number of factors mainly due to the lack
of communication between the different development teams
which are usually from different disciplines including end-
users, HCI specialists, UX designers, Quality Assurance (QA)
staff and marketers. In fact, such complexity is as result of
the development approach and methodologies where there
is no common bridge or platform between software develop-
ers and other members of the projects as end-users or HCI
experts who outline the strategies or requirements for the
system to interact with the end-user. Requirements anal-
ysis should be the results of an intensive, continuous and
iterative communication with the customers or experts to
provide a representation of the business and usability deci-
sions related to the expected applications. In practice, many
projects start ambitiously with the technical design or even
the implementation with the gap from other teams growing
wider and larger to the extent that the development pro-
cess becomes a functionality or code-driven project ignoring
severely other aspects of the applications that can be a fac-
tor for its success. Furthermore, to architect or redesign the
software to meet existing or new requirements, can be an
expensive and unbearable process. This is mainly because
software are fully driven by needs to satisfy usability goals
and please end customer rather than providing extra and
fancy functionalities that can drive away end-users.

Arguably during the requirements analysis, the end user
or teams from other disciplines cannot precisely define the
formal specification of the design even using a simple UML
use case diagram. On the other hand, specifications drawn
using a simple prototype or mockup interface [16] can influ-
ence deeply the formal specification or technical design of the
system. The involvement of end-users and HCI specialists is

a key factor for the success of a given web application. Pro-
totyping of user interfaces has been recently used as a way
to communicate requirements and project specification be-
tween the different teams. However, prototypes are usually
ignored when starting the development where the technical
and implementation aspects are being laid down from the
ground. This is because user interface prototypes are static
drawings introduced to provide insights to software archi-
tects and developers of the system’s functionalities.

In this research studies, we propose a communication chan-
nel to automate the process between user interface proto-
types and formalized software architecture in order to bridge
and narrow the gap between end-users and software devel-
opers. As user interfaces provide a rich source of user re-
quirements, an approach is being investigated to formalize
requirements analysis from user interface using a Mockup-
based navigational diagram. The proposed approach is aimed
to devising a way for automating the translation of user pro-
totypes which are not formalized towards to formalized de-
scription as UML diagrams or Architecture Definition Lan-
guage (ADL) using XML. This can be a major milestone
for developing web application with usability goals as a pri-
mary priority during the iterative and continuous develop-
ment phases.

The remainder of this research paper is organized as fol-
lows. The next section summarises the previous related work
for the different approaches being used for prototyping-based
development. The theoretical description of the proposed
approach for formalizing user requirements from user in-
terfaces using the Mockup-based navigational diagram pre-
sented in Section 4. A case study is discussed in the Section
5 followed with conclusions and future work.

2. RELATED WORK
The capturing and formalizing of specifications for web

applications is a challenging and complex task due to the
nature and characteristics of such systems such as the rapid
changes and evolution of requirements, participation of the
different stakeholders in the development process and tech-
nical constraints. During the last few years, a variety of
tools and methods are being proposed for the capturing of
web requirements using UML Diagrams including use cases
and sequence diagrams [1], task models [14] and navigational
models [7, 18]. Furthermore, a number of advanced tools
are being freely or commercially available to capture user
requirements for the graphical user interface such as Bal-
samiq. However, despite the outstanding advances in web
science and software engineering, existing methods still have
a number of limitations as it lacks the capability of providing
an efficient two-way communication channel between the dif-
ferent multidisciplinary participants. For instance, a number
of tools provide an informal platform for specifying require-
ments which cannot therefore be validated whilst other tools
lacks the ability to evolve with newly added specification.

The process of capturing and constructing requirements
models have been investigated by Koch et al. [7] who have
worked on the derivation of requirement models with the
aim of automatically generating UWE models. The au-
thors have presented a modelling language named WebRE in
which they have outlined a set of transformation rules spec-
ified at a meta-model level defined in the QVT language
[8]. The transformation process covers the generation of
content, navigational and presentation models. In the same

way, Montero et al. [11] Introduced a case tool which pro-
duces design models from requirement models following the
ADM model-driven approach used for generating light pro-
totypes of the applications. In [19] Valderas et al. proposed
the idea of including other team members within the devel-
opment life cycle such graphics designers by extending their
automatic code generation strategy of the Object-Oriented
Web Solution (OOWS).

Rivero et al. [17, 10] proposed a hybrid model-based agile
methodology named Mockup-Driven Development (Mock-
upDD) where the user interface mockups are designed and
constructed using a commercial software Balsami during the
requirements analysis phase with the active participation of
end users. Drawn mockups from Balsamiq are exported to
an XML format and later translated to an abstract user
interface model. Based on a tagging approach for the pre-
sentation models of mockups, the authors in [17, 10, 5] intro-
duced the navigational specification which is utilized along
a heuristic approach to infer the content model. Brogneaux
et al [2] discussed in their research study a methodology of
drawing user interfaces using 3rd party software which ex-
ports drawing to USIXML documents. Based on the form-
components within the interface, the database conceptual
schema is deduced using a semi-automated approach.

3. CONCEPTS & CHALLENGES
In software engineering, a number of modelling methods

and CASE tools have been defined to specify user and soft-
ware requirements [6]. The classical way to capturing and
define the system functionalities is to use UML diagrams.
Unified Modeling Language (UML) is used for the concep-
tual and logical modelling of mostly any system whilst it
supports both static and dynamic modelling with the abil-
ity to model complex systems [15]. UML notations include
a number of diagrams such as the use case diagram, activity
diagram and interaction diagram. The use case diagrams
are textually specified enabling the definition of a sequence
of steps that describe the interaction between one or more
actors and the system. Use case diagrams are important as
they lay the foundation for subsequent development phases
by providing a functional view where each use case describes
one use of the system. However, the discussion of whether
UML diagrams can be used to communicate ideas and re-
quirements between the different stakeholders can be a con-
cern. This is mainly because current modelling tools do not
visualize the end-user mental model for a desired system to
be delivered.

For instance, a simple case scenario for an online system
setup for an online visitor to sign-up or login in order to
view a private video is considered during the course of this
research studies. The use case diagram is plotted as shown
in Figure (1) showing the cases or the main functionalities of
the system which are: signup, login and show video. How-
ever, in practice, such a simple system can contain a large
number of use cases such as reset forgotten passwords, ban
user, update member details, update video, show help or
advertisement, and so on. Without doubt, a use case dia-
gram or other UML diagrams are central for a model-driven
engineering approach facilitating software abstraction and
development productivity. However, as a vital process for
requirement engineering, a number of critical and essential
use cases for the system can be missed or ignored that highly
related to the usability of the system.

Figure 1: The Use Case Diagram

The UML activity diagram showing the operational work-
flow of the online system is being illustrated in Figure (2).
The large black dot located at the top is the starting point
of the flow. Rounded rectangles represent actions whilst di-
amonds represent decisions with true and false outputs. In
fact, the activity diagram provides rich information about
the system core behaviour for software developers. However,
other stakeholders may find it difficult to interpret or collab-
orate using such a simple medium. This is mainly because
the activity diagram is a graphical representation of the al-
gorithm or pseudo-code. Interaction styles, event triggers or
other essential user interface components are not considered
which are essential for the usability of the system as well the
development process. For instance, the transitional arrow
between actions or decision node in the diagram shown can
be implemented as simple HTML links. However, a HCI ex-
pert may argue that having an AJAX-driven interface [4] for
the system is far more superior for a better usability experi-
ence. Therefore, the user would be able to login or register
on the welcome page using a lightbox or a modal box with-
out leaving the homepage. Indeed, such a simple argument
can affect the implementation and development process at
an expensive cost.

Figure 2: The UML Activity Diagram

Whilst Model-Driven methodologies facilitate software spec-
ification, abstraction as well as productivity they fail in pro-
viding an agile interaction across the different stakeholders.
This is mainly because concrete results are obtained too late
at the final phase of the development process [17]. In fact,

MDA methodologies would not be ideal for developing web
applications that require different multidisciplinary stake-
holders to be involved and communicating constantly from
HCI experts, web designers, quality assurance staff, end-
users as well as software developers. On the other hand,
agile methods promote early and constant interaction with
the customers and other stakeholders to assure that the
software complies with their requirements [3]. This is usu-
ally observed by delivering prototypes in short periods of
time meanwhile software specification would emerge natu-
rally and therefore enhancing former prototypes along the
development process until the final product is obtained.

4. THE PROPOSED APPROACH
To ease the development process for web application, there

needs to be a solid and self-describing communication pro-
tocol for all different team members involved at the early
stage of development. This is in order to discuss, derive and
capture the set of requirements that might even change from
time to time quickly. Mock-ups and wire framing for soft-
ware application using drawing tools such as Balsamiq have
been reported to be useful for communicating ideas. How-
ever, such tools are commercial and proprietary and there-
fore cannot be extended to translate their mock-ups to other
architectural models in addition to the fact that mock-ups
are not considered as models and they are trashed after re-
quirement engineering [17]. Further, produced mock-ups are
usually cluttered with design elements where it is impossi-
ble to integrate the navigational and interactional data or
business decisions.

In this research studies, we propose a mockup-based nav-
igational approach that can be translated to other architec-
tural models and therefore the possibility of automated code
generation. An overview of the proposed approach is be-
ing illustrated in Figure (3) where all different stakeholders
from HCI experts, QA staff, end-users or software develop-
ers should be able to communicate together using a common
protocol in order to visualize the requirements of the desired
system. The mockup-based diagram contains only essential
components relating to the user interaction and navigation
through the use of the application. The Mockup diagram is
exported to an XML file complying with a pre-defined XML
schema where the transformation can be devised heuristi-
cally in order to generate different models such as UML di-
agrams and testing cases.

In practice, a web application is composed of web pages
that are traversed through transition events triggered usu-
ally by the user such as clicking or pressing some keys. Dur-
ing the transition across different pages or within the same
page, business logic is being conducted either at the server,
client level or both. Our approach is based on three main
components which are: pages, transition events and business
entities for visualizing the system behaviour for all team
members. Mockup diagram can be considered as a graph
diagram where the nodes are either the pages or business
entities whilst the edges linking the nodes are the transition
events. Special notations are being utilized for distinguish-
ing the different naming for the elements contained within
the diagram.

The main element is a web page conventionally noted as
#nameofthepage as shown in Figure (4). The page can be
either a standalone web page or loaded as embedded within
other active pages using a lightbox. The name of the page

Figure 3: Overview of the Mockup-based Naviga-
tional Development Process

is written on top left corner meanwhile an icon is placed on
the top right corner to signify the type of the page. Wid-
gets are essential elements contained within a web page or
a virtual container to aid the interaction process between
the system and the user such as a button, label, textfield,
checkbox, radiobox, image or video. For the naming of a
widget element as referenceable, the @ symbol is utilized to
access an element.

Figure 4: Pages & Elements being used for the
Mockup Diagram

The transition between different nodes is triggered through
interaction events between the user and the system such as
clicking, pressing a key, scrolling or even closing a page.
Transitions are plotted using an arrow with the annotation
of the event and the corresponding arguments. The form of
the annotation is written as follows:

e(@element).Event(EventArgs);
The function e() is for accessing a widget element using its
reference. The values of Event and Action which are dis-
cussed in this section are summarized in Table (1). The
AjaxAct is introduced to use Ajax functionalities like dy-
namically updating, showing as well as adding content.

Element Events Page Events Actions
Click Loaded Lightbox

MouseOn Scroll Redirect
MouseOut Closed ProcessForm
KeyPressed AjaxAct

KeyUp
KeyDown

Table 1: Events & Actions for the Widget Elements

To further illustrate the use of transition, an example is
considered for the event of clicking on a link named @help
in order to show a lightbox which loads the content from a
webpage named #HelpPg; it is annotated as:

e(’@help’).Click();
Meaning that on clicking the link named @help, a lightbox
should be opened within the active page as furtherly shown
in Figure (5). Transition arrows do not have to be linked to
the element itself, we have sought that linking to its page
container would be sufficient and therefore avoid diagram
clutter with arrows.

Figure 5: Transition between Pages

For the business entities introduced in the Mockup-based
diagram, they are modelled as diamond object in the same
way as UML activity diagram that does refer to business de-
cisions within the application. Usually business entities are
annotated with actions to be carried out either at the client
level or at the server level. A number of actions are listed in
Table (1). The Lightbox action is utilized for showing modal
box loaded with content from an external page within the
actual active page as mentioned in the previous example and
illustrated in Figure (5). The Redirect action is aimed to
navigate or send the user to a different page. ProcessForm
is used to redirect the user to a different page along with
form data for processing at the server level. The AjaxAct
is introduced to add dynamicity and improved interactivity
to the application page taking the following syntax:

AjaxAct(’subAction’,’Arg1’,’Arg2’,...)

The subAction can take various values including ’AjaxForm-
Proc’,’Hide’,’Show’, ’UpdateContent’, ’Toggle’, For ex-
ample, in order to hide a button referenced as @ProcessPay
after Click event trigger to avoid double payment process-
ing, we use the following annotation:

AjaxAct(’Hide’,’@ProcessPay’)
The AjaxFormProcess subAction processes the form within
the same active page in contrast to the ProcessForm ac-
tion. The subAction takes two arguments which are the
references for the form and a message container to display
any returned results. This is illustrated in the following ex-
ample for a login form:

AjaxAct(’AjaxFormProcess’, ’@LoginForm’,’@LoginMsg’)
For advanced business actions that need to be carried out at
the server level, an OOP-based annotation can be used by
software developers. For example, to show a business entity
for processing user authentication, the following annotation
is being adopted:

$User.Login():Boolean
where this is a function named login belonging to the object
User introduced to process its authentication and should re-
turn a Boolean value.

Listing 1: DTD for the Mockup-Based Diagram

<?xml version="1.0"?>

<!DOCTYPE System [

<!ELEMENT System (Pages) >

<!ELEMENT Pages (page+) >

<!ELEMENT page (Widgets) >

<!ATTLIST page name CDATA #REQUIRED >

<!ATTLIST page type CDATA #IMPLIED >

<!ELEMENT Widgets (widget*) >

<!ELEMENT widget (Triggers) >

<!ATTLIST widget name CDATA #REQUIRED >

<!ATTLIST widget type CDATA #REQUIRED >

<!ELEMENT Triggers (trigger*) >

<!ELEMENT trigger (event, process, Args, Returns)>

<!ELEMENT event (#PCDATA) >

<!ELEMENT process (#PCDATA) >

<!ELEMENT Args (arg*) >

<!ELEMENT arg (#PCDATA) >

<!ELEMENT Returns (return*) >

<!ATTLIST Returns type CDATA #REQUIRED >

<!ELEMENT return (value, action*)>

<!ELEMENT value (#PCDATA) >

<!ELEMENT action (#PCDATA) >

]

The Mockup-based navigational diagram is usually ex-
ported to an XML document as an initial phase for a trans-
formation process to other models. Therefore, the XML
file can be parsed and utilized for automated code genera-
tion, derivation of UML diagrams or testing scenarios. The
Document Type Definition (DTD) is outlined in Listing
(1) showing the structure or format for the generated XML
document of the Mockup diagram.

5. CASE STUDY
For the case being shown in Figure (2) for an online ap-

plication where a user can login or register for an account
in order to view a private multimedia content, the UML
activity diagram without doubt bears little knowledge for

teams to reinforce or communicate their ideas as it is rather
an abstract description for the system. Using the proposed
Mockup-Base navigational diagram, the same system is be-
ing modelled and illustrated in Figure (6).

Figure 6: Mockup-Based Navigational Diagram for
an Online Application

Upon the user initial visit, a business entity is placed to
check the authentication status of the user to redirect to the
corresponding page. For the case where the user is logged
in, they will be redirected to the page named #HomeL-
ogged which have the private content. In case, the user is
not logged in, a normal guest page is being loaded where the
user can login or signup if they do not already have an ac-
count. Upon clicking the button @Signup, a Lightbox with
the content of the page #LoginBox will be shown to pro-
ceed to the registration process. Indeed, it can be observed
that a lot of interaction as well as functionality cases covered
inside the Mockup-based diagram including login, signup, lo-
gout, forget password. Furthermore, all team members from
different disciplines can understand and collaborate on con-
structing the navigational mockup diagram. For simplicity
sake, other cases for the system are ignored such as resetting
forgotten password and updating user account details.

6. CONCLUSIONS
The web development industry has evolved very rapidly

since its beginning from static content to fully interactive
and rich distributed web applications. A number of tech-
nologies, methodologies and platforms have emerged to ease
and formalize the development of web applications. As op-
posed to traditional software applications, the development
of a web application is a challenging and complex task in-
volving many phases with different stakeholders throughout
the development phases from software developers, end-users,
HCI experts, User Experience designers and so on. In fact,
the majority of web applications do get shredded away or
fail to gain popularity due the simple fact that the appli-
cation does not meet and achieve usability goals outlined
by the experts. We propose a communication channel to
automate the process between user interface prototypes and
formalized software architecture in order to the gap between
end-users and software developers. As user interfaces pro-
vide a rich source of user requirements, an approach is being
investigated to formalize requirements analysis from user in-
terface using a Mockup-based navigational diagram that can
be translated to other architectural models and therefore the
possibility of automated code generation. This can be a ma-
jor milestone for developing web application with usability
goals as a primary priority during the iterative and contin-
uous development phases.

7. REFERENCES
[1] A. I. Anton, R. A. Carter, A. Dagnino, J. H.

Dempster, and D. F. Siege. Deriving goals from a
use-case based requirements specification.
Requirements Engineering, 6(1):63–73, 2001.

[2] A.-F. Brogneaux, R. Ramdoyal, J. Vilz, and J.-L.
Hainaut. Deriving user-requirements from
human-computer interfaces. In Proc. of 23rd IASTED
Int. Conf. Citeseer, 2005.

[3] J. Ferreira, J. Noble, and R. Biddle. Agile
development iterations and ui design. In Agile
Conference (AGILE), 2007, pages 50–58. IEEE, 2007.

[4] J. J. Garrett et al. Ajax: A new approach to web
applications, 2005.

[5] J. Grigera, J. M. Rivero, E. R. Luna, F. Giacosa, and
G. Rossi. From requirements to web applications in an

agile model-driven approach. In Web Engineering,
pages 200–214. Springer, 2012.

[6] M. Jackson. Software requirements & specifications,
volume 8. ACM Press New York, 1995.

[7] N. Koch, A. Knapp, G. Zhang, and H. Baumeister.
Uml-based web engineering. In Web Engineering:
Modelling and Implementing Web Applications, pages
157–191. Springer, 2008.

[8] I. Kurtev. State of the art of qvt: A model
transformation language standard. In Applications of
Graph Transformations with Industrial Relevance,
pages 377–393. Springer, 2008.

[9] P. Lew, L. Olsina, and L. Zhang. Quality, quality in
use, actual usability and user experience as key drivers
for web application evaluation. In Web Engineering,
pages 218–232. Springer, 2010.

[10] E. R. Luna, G. Rossi, and I. Garrigós. Webspec: a
visual language for specifying interaction and
navigation requirements in web applications.
Requirements Engineering, 16(4):297–321, 2011.

[11] S. Montero, P. Dı́az, and I. Aedo. From requirements
to implementations: a model-driven approach for web
development. European Journal of Information
Systems, 16(4):407–419, 2007.

[12] S. Murugesan, Y. Deshpande, S. Hansen, and
A. Ginige. Web engineering: A new discipline for
development of web-based systems. In Web
Engineering, pages 3–13. Springer, 2001.

[13] J. Offutt. Quality attributes of web software
applications. Software, IEEE, 19(2):25–32, 2002.

[14] F. Paternò, C. Mancini, and S. Meniconi.
Concurtasktrees: A diagrammatic notation for
specifying task models. In Proceedings of the IFIP
TC13 Interantional Conference on Human-Computer
Interaction, volume 96, pages 362–369, 1997.

[15] C. Phillips, E. Kemp, and S. M. Kek. Extending uml
use case modelling to support graphical user interface
design. In Software Engineering Conference, 2001.
Proceedings. 2001 Australian, pages 48–57. IEEE,
2001.

[16] F. Ricca, G. Scanniello, M. Torchiano, G. Reggio, and
E. Astesiano. On the effectiveness of screen mockups
in requirements engineering: results from an internal
replication. In Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software
Engineering and Measurement, page 17. ACM, 2010.

[17] J. M. Rivero, J. Grigera, G. Rossi, E. R. Luna, and
N. Koch. Improving agility in model-driven web
engineering. In CAiSE Forum, volume 734, pages
163–170, 2011.

[18] J. M. Rivero, J. Grigera, G. Rossi, E. R. Luna, and
N. Koch. Towards agile model-driven web engineering.
In IS Olympics: Information Systems in a Diverse
World, pages 142–155. Springer, 2012.

[19] P. Valderas, V. Pelechano, and O. Pastor. Introducing
graphic designers in a web development process. In
Advanced Information Systems Engineering, pages
395–408. Springer, 2007.

