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Abstract : Formal verification of UML diagram
is the act of proving or disproving the correctness
of intended algorithms underlying a system with
respect to a certain formal specification or
property, using formal methods of mathematics.
The most widely used techniques for system or
software verification: Simulation and testing,
deductive verification and Model checking. Model
checking is a formal verification technique, in
which an abstract model of a system is testing
automatically to verify whether this model meets a
given specification. SPIN Model checker is a
popular open-source software tool, used by
thousands of people worldwide that can be used for
the formal verification of distributed software
systems, SPIN is understand PROMELA code and
properties are express in Linear Temporal
Logic(LTL). This article aims propose a method
for converting UML sequence diagrams with
imbricate combined fragment automatically to
PROMELA code to simulate the execution and to
verify properties written in Linear Temporal Logic
(LTL) with SPIN Model checker.
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1. Introduction

One of the key issues in software development,
like in all engineering problems, is to ensure that
the product delivered meets its spécification. 
Verification and validation are well-established 
techniques for ensuring the quality of a product
within the overall software development lifecycle.

Verification and validation (V&V) is concerned
with answering two fundamental questions: did we
build the right product, and did we build the
product right?. Verification is a process that makes
it sure that the software product is developed in the
right way. The software should confirm to its
predefined specifications. Validation is a process of
finding out if the product being built is right? That
is, whatever software product is being developed, it
should do what the user expects it to do. The
software product should functionally do what it is
supposed to, it should satisfy all the functional
requirements set by the user.

The Unified Modeling Language (UML) is a 
collection of semi-formal standard notations and
concepts for modeling the software systems at
different stages and views during their
development. Beyond diagrams that represent the
static structure of a system, it also defines diagrams 
to model the dynamic behavior of systems. In our
approach, we focus to the Verification and
Validation of one of the most popular UML
diagrams: the sequence diagrams with imbricate
Combined Fragments witch describe messages
exchanged between objects to accomplish tasks.
UML 2.0 adds many major structural controls
construct to the Sequence Diagram, including
Combined Fragments and Interaction Use, to allow
multiple, complex scenarios to be aggregated in a
single Sequence Diagram. Combined Fragments
permit different types of control flow, such as 
interleaving and branching, for presenting complex
and concurrent behaviors, increasing a Sequence
Diagram’s expressiveness.

With models being expressed in the UML, the
application of verification and validation is 
complicated because UML model is not an input
language of a verification tool and not directly 
executable. Many techniques have been proposed
for V&V of UML diagrams, for example static
analysis, theorem proving and model checker.
Model checking is an automated verification
method to check whether a formally specified
property holds for a model of a system. Another
important contribution is the definition of the
PROMELA (Protocol Meta Language) structure
that provides a precise semantics of most of the
newly UML 2.0 introduced combined fragments,
allowing the execution of complex interactions.
PROMELA is a high level language to specify a
system description that is used by the software
verification and simulation tool SPIN which
designed for automatically verifying LTL formulas.

In our approach, graph transformation
techniques are applied for automated translation of
sequence diagrams with imbricate combined
fragment to PROMELA model. Graph
transformation is increasingly popular as a meta-
language to specify and implement visual modeling
techniques, such as the UML. We choose AToM3
(A Tool for Multi-formalism and Meta-Modeling) a
tool implemented in Python to realize our idea
which has a meta-modeling layer in which



formalisms are modeled graphically and concrete
syntax.

This article aims propose a method for
converting UML sequence diagrams with imbricate
combined fragment automatically to the SPIN
model checking code PROMELA to simulate the
execution and to verify properties written in Linear
Temporal Logic (LTL).

2. Related Work

Several researchers have studied the
Verification and Validation of UML diagrams [1, 
2, 3] and in particular, an approach for the formal
verification of UML diagrams, such as class, state
machine and communication diagrams, is
presented in [4]. In [5], a framework is proposed
for V&V of some UML diagrams (Class diagram,
State Machine, Activity diagram and Sequence
diagram). A verification approach of the UML
class and activity diagrams is illustrated for a
simple protocol is introduced by B. Prasanta [6].
The activity diagrams are converted into an FSM
(based on behaviors). Thereafter the FSM is
converted into PROMELA through an
intermediate language.

The most of the proposed approaches target
only activity diagrams [7,8,9,10,11] and state
machine diagrams [12,13,14,15,16,17,18]. There
are some approaches targeting sequence diagram
and message sequence charts. Such as M.F. van
Amstel [19] which introduces an approach to
improve the quality of UML sequence diagrams
using SPIN and PROMELA for the verification. In
[20], the state machine is converted into
PROMELA code as a protocol model and its
properties are derived from the sequence diagram
as Linear Temporal Logic (LTL). Peter B.Ladkin
and Stefan Leue [21], present a description of the
translation of Message Sequence Charts (MSCS)
into PROMELA. Since of MSCS is an interaction
diagram from the SDL (Specification and
Description Language) family very similar to
UML's sequence diagram. Yet, the proposed
approach trait only with the basic components but
its PROMELA representation of MSCS does not
cover the combined fragments. A formal
verification technique for UML 2.0 sequence
diagrams employing linear temporal logic (LTL)
formulas and the SPIN model checker to reason
about the occurrences of events is introduced by
Lima et al. [22].

However, the proposed approach, present the
trace semantics of the most popular combined
fragments with imbrications and their respective
PROMELA code that correctly simulates the
execution traces using AToM3 graph
transformation tool.

3. Proposed approach

Models drawn in a sequence diagram are
automatically converted to PROMELA the input
language of the SPIN model Checker using Linear
Temporal Logic (LTL) to express the validity of
models. Graph transformation techniques are
applied to realize the converter using AToM3.

Figure 1 shows the flow of automatic
conversion from UML sequence diagram with
imbricate combined fragment into a PROMELA
model.

Figure 1: Overview of our approach.

4. Graph transformation with AToM3
tool

Graph transformations is the approach that
emerges from a natural and intuitive way among the
model transformation approaches, this is due to the
nature of the two concepts. The graph
transformation is a process of graph rewriting based
on graph grammars. A graph grammar is simply a
result of well-formed rule, by analogy to Chomsky
grammars where words are replaced by graphs and
term rewriting is replaced by the bonding graph.
Graph grammars are composed of production rules
each having graphs in their left and right hand sides
(LHS and RHS). The host graph is an input graph
which compared with the rules. A rewriting system
iteratively applies matching rules in the grammar to
the host graph and replaces the sub graph by the
RHS until no more rules are applicable.

AToM3 is a Meta-Modeling tool. As it has been
implemented in Python, it is able to run (without
any change) on all platforms for which an
interpreter for Python is available: Linux, Windows
and Mac OS. The main idea of the tool is:
“everything is a model”. During its implementation,
the AToM3 kernel has been bootstrapped from a
small initial kernel. Models were defined for boots
trapped parts of it; code was generated and then
later incorporated into it. Also, for AToM3 users, it
is possible to modify some of these model defined
components, such as the meta-formalisms and the
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user interface. The main component of AToM3 is
the Kernel, responsible for loading, saving, creating
and manipulating models (at any meta-level, with
the Graph Rewriting Processor and graph grammar
models), as well as for generating code for
customized tools. This code (meta-models and
meta-meta-models) can be loaded into AToM3.

5. UML sequence diagram

A sequence diagram in Unified Modeling
Language (UML) is a kind of interaction diagram
that shows how processes operate with one another
and in what order. It is a construct of a Message
Sequence Chart. A sequence diagram shows object
interactions arranged in time sequence. It depicts
the objects and classes involved in the scenario and
the sequence of messages exchanged between the
objects needed to carry out the functionality of the
scenario. Table 1 describes the elements that you
can see on a sequence diagram with combined
fragment (CF).

Table 1: Basic element of sequence diagram

UML 2.0 has introduced significant
improvements to the capabilities of sequence
diagrams. Most of these improvements are based on
the idea of interaction fragments which represent
smaller pieces of an enclosing interaction. Multiple
interaction fragments are combined to create a
variety of combined fragments, which are then used
to model interactions that include parallelism,
conditional branches and optional interactions.

Combined Fragments permit different types of
control flow, such as interleaving and branching,
for presenting complex and concurrent behaviors,
increasing a Sequence Diagram’s expressiveness.
Through the use of Combined Fragments the user
will be able to describe a number of traces in a
compact and concise manner. The execution of
Occurrence Specifications (OS) enclosed in a CF is
determined by its Interaction Operator, which is
summarized as follows [23]:

 Alternatives: one of the Operands whose
interaction Constraints evaluate to True is
nondeterministically chosen to execute.

 Option: its sole operand executes if the
Interaction Constraint is true.

 Break: its sole operand executes if the
Interaction Constraint evaluates to True.
Otherwise, the remainder of the enclosing
Interaction Fragment executes.

 Parallel: the OSs on a Lifeline within different
Operands may be interleaved, but the ordering
imposed by each operand must be maintained
separately.

 Critical Region: the OSs on a Lifeline within
its sole operand must not be interleaved with
any other OSs on the same Lifeline.

 Loop: its sole operand will execute for at least
the minimum count (lower bound) and no more
than the maximum count (upper bound) as long
as the Interaction Constraint is true.

 Assertion: the OSs on a lifeline within its sole
operand must occur immediately after the
preceding OSs.

 Negative: its operand represents forbidden
traces.

 Strict Sequencing: in any operand except the
first one, OSs cannot execute until the previous 
operand completes.

 Weak Sequencing: on a lifeline, the OSs within
an operand cannot execute until the OSs in the
previous operand complete, the OSs from
different operands on different lifelines may
take place in any order (CF. Strict Sequencing).

 Consider: any message types other than what is
specified within the CF is ignored. 

 Ignore: the specified messages types are 
ignored within the CF.

In our approach we focus to some combined
fragment such as Alternative, Weak sequencing,
Loop, Option and Break.

6. PROMELA Representation

The PROcess MEta LAnguage (PROMELA) is
a high level language to specify system descriptions
that is used by the software verification and
simulation tool SPIN. We choose PROMELA/SPIN
because PROMELA provides all necessary
concepts (sending and receiving primitives, parallel

Element Description Represen-
tation

Interaction The collection of messages
and lifelines that is
displayed in the sequence
diagram.

Line Life A lifeline represents an
individual participant in the
Interaction.

Combined
Fragment

A combined fragment is
used to group sets of
Messages together to show
conditional flow in a
Sequence diagram.

Message A message defines a
particular communication
between Lifelines of an
Interaction.

Execution
Specification

A participant that is
external to the system that
you are developing.

Operand Defines the content of a
combined fragment.

SD

Linelife

Alt

Guard



and asynchronous composition of concurrent
processes and communication channels) that were
necessary to implement the sequence diagram with
combined fragment [21].

Table 2 provides the representation of the basic
elements of the sequence diagram and their
combined fragment in PROMELA. The conversion
presented here is an adaptation of the one presented
in [21].

UML
element

PROMELA
element

PROMELA
statement

Lifeline Process proctype {...}

Message Message mtype ={m1,...,mn}

Connector

Communication
channel for each
message arrow

chan chan1 = [1] of
{mtype}

Send and
receive
events

Send and receive
operations

Send->
ab_msg1!Msg1;
Receive->
ab_msg1?Msg1;

Table 2: Mapping of basic UML sequence
diagrams into PROMELA [21]

7. Meta-model sequence diagram

The meta-models in AToM3 are a UML class
diagrams and the constraints are expressed in
Python language. We proposed the meta-model
sequence diagrams containing five classes such as
interaction is a global model containing the
remaining elements and it is represented by a set of
lifelines, executionspecification which refers to the
period of activity, combinedfragement spans over
many lifelines and it has one or more operands. A
combined fragment with operator option, loop or
neg contains exactly one operand, while for other
operators it contains an arbitrary number of
operands, each operand has a guard attribute and
spans over a subset of the lifelines which it’s
combined fragment spans over. The relation
CFContain, OpContain and IContain allow the
combination or overlapping fragments combined so
to define relationships (father / child), Connect
represent the relation between periods of activity
and the lifeline or between two periods of activity,
message consists of a send event and a receive
event, which are normally placed on two different
lifelines as show as in Figure 3. Figure 2 shows our
simplified meta-model for UML 2.0 sequence 
diagram.

Figure 2: A simplified meta-model for UML 
2.0 sequence diagrams

Figure 3: Meta Model of sequence diagram
with AToM3



8. Transformation rules
In this section we present the rules of

transformation and we show how the rules
gradually transform from a sequence diagram and
the imbrications of FC into PROMELA code.

8.1. Create file rule

This rule permits the creation of file for each
proctype. The Listing 1 shows the action of this
rule.

Listing 1

8.2. Messages and channels declaration rule

Figure 4 represent the input model of the rule
transformation for declaration of messages and
channels in PROMELA. For lack of space we only
describe in the following some rules.

Figure 4: Translation rule for message and
channels to PROMELA code.

Figure 5 represents a simple example and their
respective PROMELA code after the application of
this rule.

Source

Target

/*Message declaration */
mtype={ M1 ,M2 };
/* Channels Declaration*/
chan AB_M1 =[1] of {mtype};
chan BA_M2 =[1] of {mtype};

Figure 5: simple example

8.3. Combined Fragment rule

The goal of this rule is converting the combined
fragment with imbrications to PROMELA, we refer
to [22] for shows each combined fragment and their
respective PROMELA code. To keep the execution
traces and the conditional flow of imbricate
combined fragment we use the following methods
getHierChildren() and getAllHierChildren().

Figure 6 represents the input model of the rule
transformation for combined fragment.

LHS

RHS

Figure 6: Translation rule for deferent

combined fragment to PROMELA code.

LHS

RHS

node = self.getMatched(graphID,

self.LHS.nodeWithLabel(1))

node.visited=1

cgd = self.graphRewritingSystem.parent.codeGenDir

self.graphRewritingSystem.file

=open(cgd+"/proctype"+node.ObjectName.toString()

+".txt","w+t")

file = self.graphRewritingSystem.file

file.close()



The conversion is illustrated by an algorithm
represented in Listing 2. We define a number of
methods to realize this rule such as method grand()
to extract the grand parent of all diagram’s elements
as shows in Listing 3, and method boite() to extract
the message related with the ExecSpecif as shows
in Listing 4. Due to space constraint the Python
code corresponding to the action of this rule cannot
be represented in this paper.

Listing 2

Listing 3

Listing 4

9. Example

We will illustrate our approach at the hand of a
simple UML model shown in Figure 7. After the
application of the previous grammar we have
obtained the PROMELA code as indicated by
Listing 5.

Figure 7: Example of sequence diagram.

def boite(boite):

t=""

ll=[]

for b in Msgl:

if b.in_connections_[0] not in ll and

b.out_connections_[0] not in ll :

ll.append(b.in_connections_[0])

ll.append(b.out_connections_[0])

if boite in ll:

t=b

break

return t

#definition of method to extract the grand Parent.

def grand(self):

lst = self.getHierParent()

if lst != None and lst.getHierParent() not in Inter :

return Tout(lst)

else:

return lst

We suppose :

Cff: list of combined fragment.

Nop: list of ExecSpecif.

Msgl: list of message.

Inter: list of interaction.

grand (): method to extract the grandparent.

Boite(): method to extract all messages related

with ExecSpecif.

begin

for I in grand() do:

If I in Cff then:

G=i.type()

If g=”alt” then:

Alt()

Else if g=”Seq” then:

seq()

Else if g=”option” then:

option()

Else if g=”break” then:

break ()

Else if g=”loop” then:

loop()

else :

msg=Boite(i)

write the corresponding PROMELA code of

msg in the file.

end



Listing 5

10. Conclusion

In this paper, we have suggested a method for
automatic conversion of a model drawn in UML 2.0
sequence diagrams with imbricate Combined
Fragments to PROMELA code. UML 2.0 adds
many major structural controls construct to the

Sequence Diagram, including Combined Fragments
and Interaction Use, to allow multiple, complex
scenarios to be aggregated in a single Sequence
Diagram. Combined Fragments permit different
types of control flow, such as interleaving and 
branching, for presenting complex and concurrent
behaviors.

The transformation rules are used here to
transform the host graph into final one by adding or 
removing vertices as specified in the predefined 
rules. We choose the tool AToM3 to run our case
studies. We have shown how concrete syntax-based
graph transformation rules can be used to specify a
complicate transformation (the imbrication)
implemented in the software tool AToM3

Near future work in UML sequence diagram is
to add more transformation rules to manipulate the
graph model of UML sequence diagram into other
model.
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