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Abstract—The purpose of this paper is to investigate some properties of polynomially Riesz opera-
tors acting on some Banach spaces, moreover a partially positive answer to the M.R.F. Smyth’s [29]
conjecture is given.
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1. INTRODUCTION AND NOTATIONS

Let X and Y be two Banach spaces. We denote by L(X,Y ) the set of bounded linear operators from
X into Y . The subset of all compact operators of L(X,Y ) is designated by K(X,Y ). If A ∈ L(X,Y ), we
write N(A) ⊆ X and R(A) ⊆ Y for the null space and range of A. We set α(A) := dimN(A), β(A) :=
codimR(A). The set of upper semi-Fredholm operators is defined by

Φ+(X,Y ) = {A ∈ L(X,Y ) : α(A) < ∞ and R(A) is closed in Y },
and the set of lower semi-Fredholm operators is defined by

Φ−(X,Y ) = {A ∈ L(X,Y ) : β(A) < ∞ (then R(A) is closed in Y )}.

Operators in Φ±(X,Y ) := Φ−(X,Y )
⋃

Φ+(X,Y ) are called semi-Fredholm operators from X into Y
while Φ−(X,Y )

⋂
Φ+(X,Y ) denotes the set of Fredholm operators from X into Y . If A ∈ Φ(X,Y ), the

number i(A) = α(A) − β(A) is called the index of A. If X = Y , then L(X,Y ), K(X,Y ), Φ+(X,Y ),
Φ±(X,Y ), and Φ(X,Y ) are replaced, respectively, by L(X), K(X), Φ+(X), Φ±(X), and Φ(X). For the
properties of these sets we refer to [12, 18].

Let A ∈ L(X). The spectrum of A will be denoted by σ(A). The resolvent set of A, ρ(A), is the
complement of σ(A) in the complex plane. An operator A ∈ L(X) is called a Weyl operator if A is a
Fredholm operator with index zero. The following definitions are well known: the Wolf essential spectrum
is defined by

σe(A) = {λ ∈ C : λI − A is not Fredholm},

and the Weyl spectrum ω(A) is

ω(A) = {λ ∈ C : λI − A is not Weyl}.

(Obviously σe(T ) ⊆ ω(T )).

*E-mail: dehicikader@yahoo.fr
**E-mail: n.boussetila@gmail.com
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40 DEHICI, BOUSSETILA

Definition 1.1. Let F ∈ L(X,Y ). F is called a Fredholm perturbation if U + F ∈ Φ(X,Y ) whenever
U ∈ Φ(X,Y ). F is called a upper (resp. lower) semi-Fredholm perturbation if F + U ∈ Φ+(X,Y ) (resp.
Φ−(X,Y )) whenever U ∈ Φ+(X,Y ) (resp. Φ−(X,Y )).

The sets of Fredholm, upper semi-Fredholm and lower semi-Fredholm perturbations are denoted by
F(X,Y ),F+(X,Y ) and F−(X,Y ), respectively. In particular, it is shown that F(X,Y ), F+(X,Y ) and
F−(X,Y ) are closed subsets of L(X,Y ), and if X = Y , then F(X) = F(X,X), F+(X) = F+(X,X)
are closed two-sided ideals of L(X). Recently, in the second edition of his book [26], Schechter proved
that F−(X) = F−(X,X) is also a closed two-sided ideal of L(X).

It is worth noticing that, in general, the structure ideal of L(X) is extremely complicated. Most of
the results on ideal structure deal with the well known closed ideals which have arisen from applied
work with operators. We can quote, for example, compact operators, strictly singular operators; strictly
cosingular operators, upper and lower semi-Fredholm perturbations and Fredholm perturbations.
In general, we have K(X) ⊂ S(X) ⊂ F+(X) ⊆ F(X) and K(X) ⊂ CS(X) ⊂ F−(X) ⊆ F(X) where
S(X) (resp. CS(X)) stands for the ideal of strictly singular (resp. strictly cosingular) operators of L(X)
(see [7]). The inclusion S(X) ⊂ F+(X) is due to Kato (cf. [18]) while CS(X) ⊂ F−(X) was proved by
Vladimirskii [31].

An operator R ∈ L(X) is called a Riesz operator if λ − R ∈ Φ(X) for all scalars λ �= 0. Let R(X)
denote the class of all Riesz operators. For our purpose we recall that Riesz operators satisfy the Riesz-
Schauder theory of compact operators, R(X) is not an ideal of L(X) [7] and F(X) is the largest proper
two-sided ideal of L(X) contained in R(X) [25]. Hence K(X),S(X), CS(X),F+(X) and F−(X) are
also contained in R(X). For more information concerning this family of operators we refer to [12, 25].

Definition 1.2. An operator A ∈ L(X) is said to be polynomially Riesz (resp. polynomially Fredholm
perturbation) if there exists a nonzero complex polynomial P such that P (A) is a Riesz operator (resp.
P (A) is a Fredholm perturbation).

By virtue of the famous theorem of Lomonosov [20], it follows that every polynomially compact
operator has a non-trivial invariant subspace. This result does not apply to the case of polynomially
Riesz operators. Indeed, C. Read [24] gave one example of a strictly singular operator which has not a
non-trivial invariant subspace, this can be seen as an answer to the fact that Fredholm perturbations, in
general, are not polynomially compact. One of the major questions in operator theory is the characteri-
zation of Riesz operators (resp. Polynomially Riesz operators) in Banach spaces. This subject is related
directly to the geometry of Banach spaces. Progress in this area has been made with the appearance of
hereditarily indecomposable Banach spaces and the results established in this direction by T. Gowers,
B. Maurey, T. Schlumprecht and other mathematicians ([1, 3–5, 15, 16, 28]). This attractive discovered
made it possible to divide the structure of Banach spaces into two categories, which was interpreted by
the dichotomy theorem of T. Gowers [15].

A bounded operator A on X is called quasi-nilpotent if lim
n−→+∞

||An|| 1
n = 0 (which is equivalent to

σ(A) = {0}).
It is a long standing question whether every Riesz operator splits as the quasinilpotent operator and a

compact operator. Such decomposition is called a West decomposition. This last was proved in the case
of Hilbert spaces by T.T. West [34]. The extension of the result to the case of lp-spaces (1 ≤ p < ∞) and
more generally to the spaces having F.D.P.B.D (Finite Dimensional P-block Decomposition) property
was obtained by K. Davidson and D. Herrero [8]. In (1988), using the concept of the B-convexity of
Lp[0, 1] (1 < p < ∞) spaces, H.J. Zhong [35] showed this decomposition for Riesz operators acting
on these spaces but the problem is always open in the case of an arbitrary Banach space. However
M.R.F. Smyth [29, p. 149] conjectured that every Riesz operator can be decomposed into the sum of a
Fredholm perturbation and a quasinilpotent operator, this bring us to give the following definition of the
Smyth decomposition.

Definition 1.3. Let X be a Banach space and let R be a Riesz operator in L(X). We say that
R satisfies the Smyth decomposition if R = F + Q where F is a Fredholm perturbation and Q is a
quasinilpotent operator.

It is easy to observe that every Riesz operator which has the West decomposition satisfies the
Smyth decomposition. The reverse is an open problem, owing to the fact that there is not yet a very
good knowledge and description of the class of Fredholm perturbations via compact and quasinilpotent
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PROPERTIES OF POLYNOMIALLY RIESZ OPERATORS 41

operators. We recall just that in lp-spaces (1 ≤ p < ∞), these two decompositions are equivalent, this
is an immediate consequence of the uniqueness of the nontrivial closed two-sided ideal in L(lp) [12].

The paper is summarized as follows:
First of all, we establish a principal result concerning the class of polynomially Fredholm perturbations
in Banach spaces. Motivated by the conjecture due to M.R.F. Smyth [29], a characterization of the set
of polynomially Riesz operators on various Banach spaces is given. We close this paper by discussing
some interesting questions.

2. MAIN RESULTS

We start our analysis by the following crucial result which will be used in the sequel.
Theorem 2.1. Let X be a Banach space and let T ∈ L(X) such that there exists a non-constant

complex polynomial P for which the set σe(P (T )) has an empty interior, then the interior of σe(T )
is empty. Moreover if T is a polynomially Riesz operator, then σe(T ) = ω(T ) is finite. Also if T is
a Riesz operator then T is polynomially Fredholm perturbation if and only if T n is a Fredholm
perturbation for some n ∈ N.

Proof. If the set σe(P (T )) has an empty interior, the spectral mapping theorem gives that
p(Int(σe(T ))) = Int(σe(p(T ))) = ∅, the fact that P is a non-constant analytic function, then it is an
open mapping, so if the set Int(σe(T )) is non empty, thus Int(p(σe(T ))) must be nonempty, which
is a contradiction and the result for the first assertion is concluded. Now, if p(T ) is Riesz for some
nonzero complex polynomial P , then it follows that p(σe(T )) = σe(p(T )) = {0}, which implies that
σe(T ) is finite. To prove the equality σe(T ) = ω(T ), it suffices to show that C\σe(T ) ⊆ C\ω(T ). Let
λ ∈ C\σe(T ), the set C\σe(T ) is connected and contains in particular the resolvent set of the operator
T . The stability of the index on the connected components shows that λ ∈ C\ω(T ) and gives the
result of the second assertion. Now, let p be a nonzero polynomial such that p(T ) is a Fredholm
perturbation. Writing p(λ) = a0(λ − λ1) . . . (λ − λm), we have a0(T − λ1I) . . . (T − λmI) = F , where
F is a Fredholm perturbation. Since T is a Riesz operator, we get T − λiI is a Fredholm operator
for each nonzero λi, then there exists at least one λi such that λi = 0 (1 ≤ i ≤ m): if it was not
the case, then F would be a Fredholm perturbation and a Fredholm operator, which contradicts the
infinite-dimensionality of X. We deduce that, for some 1 ≤ n ≤ m, a0T

nS = F where S ∈ Φ(X).
Therefore T n is a Fredholm perturbation. Indeed, since S ∈ Φ(X), there exist K1 ∈ K(X), A0 ∈ L(X)
such that SA0 = I − K1 (see [27, Theorem 3.7]), thus a0T

nSA0 = FA0, this fact implies that
a0T

n(I − K1) = FA0 and consequently a0T
n = FA0 + a0T

nK1, but F ∈ F(X) and K1 ∈ K(X), this
gives that FA0 + a0T

nK1 ∈ F(X) and finally T n ∈ F(X) which achieves the proof. The converse is
trivial. �

Remark 2.1. It is obvious to see the following implications: T is polynomially compact =⇒ T is
polynomially Fredholm perturbation =⇒ T is polynomially Riesz =⇒ ω(T ) is finite.

We note that in general, the reverse of the two first implications is not true, indeed, for the first
implication, it suffices to take the example established by C. Read [24] concerning a strictly singular
operator (thus is polynomially Fredholm perturbation and consequently is polynomially Riesz) but it is
not polynomially compact because it does not have any nontrivial invariant subspace.

Concerning the second implication, we can take the following celebrated example due to C. Foias
and C. Pearcy [11, 17, 22]:

T : l2 −→ l2 defined by T (e1) = 0 and T (en+1) = τnen, n ≥ 1 where {en}+∞
1 is the canonical basis

of l2 and the sequence {τn}+∞
1 is given by {1

2 , 1
24 , 1

2 , 1
216 , 1

2 , 1
24 , 1

2 , 1
264 , 1

2 , 1
24 , · · · }, this sequence can be

written in the form τn = 1

24k if n = 2k (mod 2k+1). For all n ≥ 1, T n is not a compact operator, indeed,
one knows that if S is a nonzero bounded operator commuting with T , then S can not be compact
(see [11, Theorem 5, p. 403]) and since that every power of T commutes with T , we obtain that T n is not
a compact operator, but T is quasinilpotent, then T is a Riesz operator and in particular it is polynomially
Riesz, the use of Theorem 2.1 together with the uniqueness of the closed two-sided ideal in L(l2) implies
that T is not polynomially compact.

A Banach space is said to be decomposable if it is the topological direct sum of two closed infinite
dimensional subspaces. A Banach space is said to be hereditarily indecomposable (in short H.I space)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 32 No. 1 2011



42 DEHICI, BOUSSETILA

if it does not contain any decomposable subspace. The class of hereditarily indecomposable Banach
spaces was first introduced and investigated by T. Gowers and B. Maurey [16].

A Banach space X is said to be quotient hereditarily indecomposable (in short Q.H.I) if no infinite
dimensional quotient of a subspace of X is decomposable.

One of the main facts relating to the classes of H.I and Q.H.I Banach spaces is the following result:
Lemma 2.1. Let X be a Banach space.
(a) If X is a complex H.I Banach space, then every operator inL(X) can be written in the form λI + S

where λ ∈ C and S ∈ S(X).
(b) If X is a complex Q.H.I Banach space, then every operator in L(X) can be written in the form

λI + S where λ ∈ C and S ∈ CS(X).
For more details we refer to [9, 13, 16].
Remark 2.2. It is worth noticing that the reverse of assertions a) and b) of Lemma 2.1 are in general

false, indeed V. Ferenczi [10] gave a rather complex construction of an indecomposable Banach space
X having copies of lp (then it is not hereditarily indecomposable) with L(X) = CI

⊕
S(X). Another

characterization of H.I Banach spaces was established by the same author and asserts that:

X is H.I ⇐⇒ L(Y,X) = CI(Y,X)

⊕
S(Y,X)

for every closed subspace Y of X (here I(Y,X) is the canonical injection from Y into X).

Definition 2.1. Let X be a Banach space, X is said to be a Smyth Banach space if for every
R ∈ R(X), R satisfies the Smyth decomposition.

In the following proposition we will prove that many well known spaces in the literature are a Smyth
Banach spaces.

Proposition 2.1. The following spaces are Smyth Banach spaces:
1. lp(1 ≤ p < ∞);
2. Lp(1 < p < ∞);
3. lp × lr, (r �= p);
4. H.I and Q.H.I Banach spaces;
5. Z = X × Y where X is a reflexive H.I Banach space and Y is a closed subspace of X such that

dim X/Y = ∞.
Proof. For assertions (1) and (2), this follows immediately from the fact that every Riesz operator

defined on these two spaces satisfies the West decomposition (see [8, 35]).

(3) Assume that p < r, let A ∈ L(lp × lr), then A can be written in the form A =

⎛

⎝
B C

D E

⎞

⎠ where

B ∈ L(lp), C ∈ L(lr, lp), D ∈ L(lp, lr) and E ∈ L(lr). On the other hand, we have L(lr, lp) = K(lr, lp),

L(lp, lr) = S(lp, lr) (see [19, Definition 2, c. 1]), which shows that

⎛

⎝ 0 C

D 0

⎞

⎠ ∈ F(lp × lr), moreover, it

can be observed that B ∈ R(lp) and E ∈ R(lr), it follows that B = K + Q and E = K ′ + Q′ where K ∈

K(lp),K ′ ∈ K(lr) and Q,Q′ are quasinilpotents, thus

⎛

⎝
B C

D E

⎞

⎠ =

⎛

⎝
0 C

D 0

⎞

⎠ +

⎛

⎝
K 0

0 0

⎞

⎠ +

⎛

⎝
0 0

0 K ′

⎞

⎠ +

⎛

⎝Q 0

0 0

⎞

⎠ +

⎛

⎝0 0

0 Q′

⎞

⎠. The sum of the three first operators is a Fredholm perturbation in L(lp × lr) while

the sum of the two last is quasinilpotent (since they are quasinilpotents operators which commutate),
this ends the proof of this assertion.

Let us note that on this space P. Volkmann [32] showed the existence of two maximal ideals such that
their intersection is the class of strictly singular operators.
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(4) In the case of H.I and Q.H.I Banach spaces the Smyth decomposition is trivial, indeed on these
spaces, we deduce directly that R(X) = S(X) = F(X) if X is H.I and R(X) = CS(X) = F(X) if X is
Q.H.I.

(5) Here, we haveL(X,Y ) = S(X,Y ) = F(X,Y ), which implies that L(Y,X) = F(Y,X) (see [13]),
moreover R(X) = S(X) = F(X) and R(Y ) = S(Y ) = F(Y ). The remainder of the proof is similar
to the case of assertion 3). On this space, M. Gonzalez [13] gave a negative answer concerning
the relationship between semi-Fredholm perturbations and the sets of strictly singular and strictly
cosingular operators. �

The Proposition 2.2 gives the structure of polynomially Riesz operators on Smyth Banach spaces.
Proposition 2.2. Let X be a Smyth Banach space, then T ∈ L(X) is polynomially Riesz if and

only if ω(T ) is finite. In this case, T is decomposed into a finite direct sum

T =
n⊕

i=1

(Fi + Qi + λiI),

where
(i) the Fi are Fredholm perturbations;
(ii) the Qi are quasinilpotents;
(iii) ω(T ) = {λ1, · · · , λn}.
Proof. According to Theorem 2.1, if T is polynomially Riesz, then ω(T ) is finite, now we examine the

reverse, if ω(T ) = {λ1, . . . , λn} and by taking the polynomial p(λ) =
∏n

i=1
(λ − λi) we can establish

that p(T ) is a Riesz operator. Indeed we have σe(p(T )) = p(σe(T )) = {0} which gives the result. On
the other hand we can find a collection {Δ1, · · · ,Δn} of closed subsets of σ(T ) satisfying

(i)
n⋃

i=1

Δi = σ(T );

(ii) Δi
⋂

Δj = ∅ if i �= j;
(iii) λi ∈ Δi for i = 1, . . . , n.
If for every i = 1, . . . , n,Ni is a neighborhood of Δi which contains no other points of σ(T ), by

using the spectral projections P = 1
2πi

∫

∂Ni

(λI − T )−1dλ corresponding to Δi (i = 1, . . . , n), we can

decompose T as

T =
n⊕

i=1

(Ti + λiI),

where σe(Ti) = {0}, i.e., Ti is a Riesz operator for every i = 1, . . . , n. Next, making use of the Smyth
decomposition of Riesz operators, each Ti is the sum of a Fredholm perturbation and a quasinilpotent
operator Qi. Also, we can argue as follows: Writing p(λ) = (λ − λ1) . . . (λ − λn), it follows that

p(T ) =
n⊕

j=1

[
n∏

i=1

(Kj + Qi + (λj − λi)I)

]

.

As already observed, for every j = 1, . . . , n, the j-th direct sum in can be written into the sum of
Fredholm perturbation and an operator of the form Vj = Qn

j + αn−1Q
n−1
j + . . . α1Qj for some αi ∈ C

(i = 1, . . . , n − 1).
Now, it is known that if a and b are quasinilpotents elements which commutate in a normed algebra,

then a + b and ab are both quasinilpotents, thus we can easily check that Vj is quasinilpotent for every
j = 1, . . . , n and consequently

T =
n⊕

i=1

(Fi + Qi + λiI),

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 32 No. 1 2011



44 DEHICI, BOUSSETILA

where
(i) the Fi are Fredholm perturbations;

(ii) the Qi are quasinilpotents;

(iii) ω(T ) = {λ1, · · · , λn}.

which achieves the proof. �

Remark 2.3. On Lp[0, 1](1 ≤ p < ∞) spaces, by taking account of the coincidence of all classes
of Fredholm and semi-Fredholm perturbations [33, p. 287], we conclude that T polynomially strictly
singular operator ⇐⇒ T polynomially strictly cosingular operator ⇐⇒ T polynomially Fredholm per-
turbations =⇒ T polynomially Riesz.

Moreover, on these spaces we have the following Lemma:

Lemma 2.2. Let X = Lp[0, 1] (1 ≤ p < ∞) and let T ∈ L(X), then T polynomially compact ⇐⇒
T polynomially Fredholm perturbation.

Proof. It suffices to prove the second implication. The use of [21, Theorem 1b)] gives the result. �

Let us give now the following decomposition of strictly singular operators on Lp[0, 1] spaces (1 <
p < ∞).

Proposition 2.3. Let X = Lp[0, 1](1 < p < ∞), and S be a strictly singular operator on X, then
S can be written in the form S = K + Q + R, where K is a compact operator, Q is nilpotent
(Q2 = 0) and PR = RP = 0 for a suitably selected projection P on X.

Proof. It suffices to prove the result for p > 2, the case 1 < p < 2 is established by duality.

Let S be a strictly singular operator X, then for every infinite dimensional subspace M in X, we can
find an infinite dimensional subspace H such that H ⊆ M and the restriction of S to H is compact.
In addition, according to the Kadec-Pelczynski Theorem [6] which asserts that an infinite dimensional
closed subspace M of X, is either isomorphic to l2 and complemented in X, or it contains a subspace
which is isomorphic to lp and complemented in X, we can find a non-trivial projection P on X such that
SP is a compact operator, which shows that S can be written as the following 2 × 2 operator matrix
relative to the direct sum P (X)

⊕
(I − P )(X):

S =

⎛

⎝
PSP PS(I − P )

(I − P )SP (I − P )S(I − P )

⎞

⎠ .

Note that PSP and (I − P )SP are both compact. Therefore if we put

K =

⎛

⎝ PSP 0

(I − P )SP 0

⎞

⎠ , Q =

⎛

⎝0 PS(I − P )

0 0

⎞

⎠ , R =

⎛

⎝0 0

0 (I − P )S(I − P )

⎞

⎠ .

Then K is compact, Q is nilpotent (Q2 = 0) and PR = RP = 0. This proves the result. �

Remark 2.4. It is clear that if the operator (I − P )S is compact, we obtain that S = K1 + Q where
K1 is compact and Q is nilpotent.

3. CONCLUDING REMARKS AND OPEN QUESTIONS

In this last section, we present some remarks on the two famous examples of strictly singular not
compact operators, the first operator is due to I. Gohberg, A. Markus and I.A. Feldmann [12] and is
constructed on Lp[−1, 1] (1 ≤ p < ∞) spaces while the second one, it can be constructed at the same
time on an H.I Banach space of T. Gowers and B. Maurey or on the complementably minimal Banach
space S due to T. Schlumprecht [28].

Example 3.1. Writing Lp[−1, 1] under the form

Lp[−1, 1] = Lp[0, 1]
⊕

Lp[−1, 0].
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Let N ⊆ Lp[0, 1]; p ≥ 1 the closed linear hull of the system of functions

yk(t) =

{
2

k
p , if t ∈ [2−k, 21−k] (k = 1, 2, . . . ),

0 if t /∈ [2−k, 21−k] (k = 1, 2, . . . ).

Let (ek)∞k=1 be the canonical base of lp. The operator S ∈ L(N, lp) defined by the equalities S(yk) = ek

(k = 1, 2, . . . ) maps N isometrically onto lp, and the subspace N has a direct complement in Lp[0, 1],
this follows from the fact that the bounded operator Q defined by

Q(x) =
∞∑

k=1

fk(x)yk(x ∈ Lp[0, 1])

where fk(x) =
∫ 1
0 x(t)[yk(t)]p−1dt(x ∈ Lp[0, 1], k = 1, 2, . . . ), is a projection which maps the whole

space Lp[0, 1] onto N . Now, let R ⊆ L2[−1, 0] be the closed linear hull of the orthonormal system of
Rademacher functions

rk(t) = sign sin(2kπt) (k = 1, 2, . . . ).

Then R is a closed subspace in every Lp[−1, 0] (1 ≤ p < ∞) and in R the norms of all the spaces
Lp(1 ≤ p < ∞) are topologically equivalent, moreover if p ≥ 2 there exists a direct complement to R
in Lp[−1, 0]. The projection here is given by

Q(x) =
∞∑

k=1

⎛

⎝

0∫

−1

x(s)rk(s)ds

⎞

⎠ rk (x ∈ Lp[−1, 0]).

Thus Lp[−1, 1] = Lp[0, 1]
⊕

Lp[−1, 0] = Lp[−1, 0]
⊕

N
⊕

F (where F is the direct complement to N
in Lp[0, 1]). We define the operator T by

T

(

x + z +
∑

k

αkyk

)

=
∑

k

αkrk (x ∈ Lp[−1, 0], z ∈ F ) (if 1 ≤ p < 2),

and

T

(

x + y +
∑

k

αkrk

)

=
∑

k

αkyk (x ∈ Lp[0, 1], y ∈ G) (if p > 2),

where G is the direct complement to R in Lp[−1, 0]).
Remark 3.1. T is a bounded strictly singular operator on Lp[−1, 1](1 ≤ p < ∞) but it is not compact,

moreover T is nilpotent, indeed (T 2 = 0) and for the case p = 1, this gives an example of a weakly
compact (not compact) operator.

Example 3.2. Let c00 be the vector space of sequences in R for which only finitely coordinates are not
zero and S is the complementably minimal Banach space constructed by T. Schlumprecht in [28]. On
the other hand, in [1] the authors showed the existence of a seminormalized block sequences (xi

∗)∞i=1

in S∗ and an increasing sequence C(l)l∈N ⊆ R
+ such that C(l) −→ +∞ if l −→ +∞, for which the

following condition holds: H) If (zi)∞i=1 is a block sequence in S, so that for each i ∈ N, x∗
i (zi) = 1 and

x∗
i−1 < zi < x∗

i+1 (x∗
0 = 0), then for any 2 ≤ l ∈ N and (λi)∞i=1 ∈ c00, we have

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

i=1

λiei

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
l

≤ 1
C(l)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

i=1

λizi

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
S

.

(where ||.||l is an equivalent norm to that of the space S). Then the operator T̃ =
∑∞

i=1
x∗

i

⊗
ei, with

T̃ (x) =
∑∞

i=1
x∗

i (x)ei, for x ∈ S, is bounded, strictly singular, but not compact.

Remark 3.2. This operator shows that hereditarily indecomposable Banach space of T. Gowers and
B. Maurey is not simple, i.e. in this case, the set of compact operators is not the unique nontrivial closed
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two-sided ideal, we will prove that T̃ is quasinilpotent. Indeed, Since T̃ is strictly singular, then its
spectrum sp(T̃ ) must check the Riesz-Schauder theory, an easy calculation shows that the equation
T̃ (x) = λx (x �= 0) does not have a nonzero solution λ which proves that the spectrum of T̃ is reduced
to the set {0}.

Remark 3.3. Also let us note that the null space of strictly singular operators in Banach spaces can
be of finite dimensions. In the preceding example, the space N(T̃ ) is of infinite dimensional, since the set

N

∖ ⋃+∞

i=1
Supp(x∗

i ) is infinite (where Supp(x∗
i ) is the support of x∗

i in S∗) (for more details, see [1]).

We complete this study by stating some interesting questions.

Question 1. Let X be a Banach space and let I(X) be a family of closed two sided ideals in L(X)
defined by:

I(X) = {J such that for all T ∈ J, T satisfies the West decomposition}.

Observing that I(X) is not empty, since it contains at least the ideal of compact operators.

Can we to say that I(X) must contain a maximal element (for the inclusion) represented by the ideal
of Fredholm perturbations?

Question 2. Is it true that on every not simple H.I. Banach space, we can construct a strictly singular
operator such that all its powers are not compacts?

Question 3. Is it true that all strictly singular operators acting on H.I Banach spaces satisfy the West
decomposition?

Question 4. Is it true that all Riesz operators on L1[0, 1] satisfy the Smyth decomposition or the
West decomposition? Here the class of Fredholm perturbations is nothing else but the ideal of weakly
compact operators (see [23]).

Question 5. Let X denote a Banach space, we say that T ∈ L(X) satisfies the problem of Salinas
if there exists a compact operator K such that σω(T ) = σ(T + K) [2]. It is further remarked that if
this property is satisfied for every bounded operator on X, then every Riesz operator has the West
decomposition, the problem whether the second property implies the first one is open, we recall that
they are satisfied at the same time on lp (1 ≤ p < ∞) spaces. Also, it should be observed that in the case
of the famous Argyros-Haydon Banach space X for which the Calkin algebraL(X)/K(X) is isomorphic
to the complex field C [4], then these two properties hold.

Question 6. By which criterion, the richness of the algebra of bounded operators on Banach spaces
is measured. By misuse of language, a rich algebra of bounded operators on a certain Banach space is
connected to the fact that for example the space is decomposed and an infinite number of its subspaces
have an infinite number of projections, this can be seen of another angle, indeed let K(C) be the family of
all nonempty compact sets of the complex plane, a rich Banach space is a space for which the mappings
spectra and essential spectra defined by

σ : L(X) −→ K(C) σe : L(X) −→ K(C)
A −→ σ(A) A −→ σe(A)

are surjective. Let us note that this property is satisfied if X is a Hilbert space. Unfortunately, it is not
the case of hereditarily indecomposable Banach spaces (or a finite product of H.I Banach spaces), since
here K(C) is replaced by a subset of the family of all convergent sequences in C as the range of the first
mapping and as the range of the second one, we have the family of all the sets which are made up of one
element (or finite number of elements).

Now the question is of knowing, which is the structure of Banach spaces X such that these two
mappings are surjective at the same time?
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