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Abstract

Many studies have now shown that it is possible to rec-
ognize people by the way they walk. As yet there has been
little formal study of the effects of covariates on the recog-
nition process. We show how these factors can separately
affect the walking pattern. Further we assess the contri-
bution and discriminatory significance of the gait dynam-
ics used for recognition. Based on a covariate-based probe
dataset of 440 samples, a high recognition rate of 73.4%
is achieved using the KNN classifier. This is to confirm
that people identification using dynamic gait features is still
perceivable with better recognition rate even under the dif-
ferent covariate factors.

1. Introduction
Surveillance technology is of increasing us in modern

society. This is largely due to the vital need to provide a
safer environment. Because of the rapid growth of security
cameras and need for automated analysis, the deployment
of biometric technologies becomes important for the devel-
opment of automated visual surveillance systems. The suit-
ability of gait recognition for surveillance systems emerges
from the fact that gait can be perceived from a distance as
well as its non-invasive nature. Although gait recognition
is still a new biometric and is not sufficiently mature to be
deployed in real world applications such as visual surveil-
lance, it overcomes most of the limitations that other bio-
metrics suffer from such as face, fingerprints and iris recog-
nition which can be obscured in most situations where seri-
ous crimes are involved.

Gait is a new biometric with a number of benefits aris-
ing from its non-intrusive nature and the possibility of use
at a distance [21, 3, 7, 9, 10] . Hence, the analysis of the
different covariate factors becomes essential to quantify the
intrusiveness of gait recognition which will be the focus of
this paper. The covariate factors can be related either to the
subject as for the case when a subject smiles for face recog-
nition, or related to the environmental conditions such as

lighting, nature of the ground or camera setup. Gait is also
affected by different covariate factors including footwear,
clothing, injuries, age, walking speed, and much more akin
with other biometrics. In fact, the effects of the different co-
variates for gait analysis and recognition have not been in-
vestigated much by medical and other researchers [10], This
is mainly due to the lack of availability for databases, as
well as the availability of automated systems which would
help for the extraction of gait features. Moreover, the com-
plexity of earlier model-based approaches has precluded
their deployment for this analysis.

The effects of covariate factors on the performance of
gait recognition using computer vision methods have been
investigated by only one recent major research study by
Sarkar et al. [15]. Sarker described a baseline algorithm
for gait recognition based on the temporal correlation of sil-
houette data. The algorithm is evaluated on a set of twelve
experiments in order to examine the effects of the different
covariates including viewpoint, footwear, walking surface,
time and carrying conditions. However, their work lacks
exploratory analysis of the different gait features under co-
variate data due to the use of the silhouette approach. In
this research, a full investigation is carried out to explore the
covariate effects on gait recognition using dynamic-related
features derived via model-based method. The covariate
factors includes footwear, clothing, carrying conditions and
walking speed. Furthermore, we assess the contribution and
discriminatory significance of the different dynamic ( gait-
related ) features used for gait recognition. The previous
covariate studies [15] have used the NIST data which com-
bines covariates. We now study the independent effect of
covariates using the SOTON covariate database where only
one covariate is changed between sequences ( except time
which affects all sequences equally).

2. Data Acquisition for Covariate Analysis
In order to study the exploratory effects of covariate fac-

tors on gait recognition, a gallery dataset of 160 video se-
quences is taken from the SOTON gait database. The galley
consists of 20 different walking subjects with 8 sequences



for every individual recorded without covariate effects. Fur-
ther, a probe dataset of 440 video sequences is collected
from the Southampton Covariate Database. The dataset
consists of ten different walking subjects with eight males
and two females. Each subject is recorded from the sagittal
view walking at eleven different scenarios, including nor-
mal walking. Four video sequences are taken for each situ-
ation. The different recorded scenarios are aimed to inves-
tigate the following factors:

• Footwear: flip-flop, trainer, bare-feet, boots.

• Clothing: coat, trench coat.

• Carrying Conditions: barrel bag, handbag.

• Walking Speed: normal, quick and slow walking.

To extract the gait features of walking subjects from the
covariate dataset, we applied the model-based method de-
scribed in [4] to automate the extraction process of the joint
trajectories. Spatial motion templates describing the motion
of the joints are derived by manual gait analysis and used to
aid the markerless extraction of the joint positions. A re-
cursive evidence gathering algorithm is employed for the
extraction process whereby spatial model templates for the
human motion are presented in a parameterized form using
the Elliptic Fourier Descriptors described in equation (1):[
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where α is the rotation angle, sx and sy are the scaling fac-
tors across the horizontal and vertical axes respectively. a0

and b0 define the position of the shape’s centre. Fx(t) and
Fy(t) are computed using equation :
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where axk
,ayk

, bxk
and byk

are the set of the elliptic cof-
fecients which can be computed by a Riemann summation
[1]. Gait knowledge is exploited via heel strike extraction to
reduce the the parameter space dimensionality and therefore
reduce the computational load of the evidence gathering al-
gorithm being used in the extraction process.

In order to identify a subject by their gait, we derive the
angular measurements as well as the trunk spatial displace-
ment which best describe the gait kinematics. The use of an-
gular motion is very common in gait analysis and recogni-
tion. The angles of the joints including the hip and the knee;
are considered the most important kinematics of the lower
limbs. Feature selection is employed to derive as many dis-
criminative cues as possible whilst removing the redundant

and irrelevant gait features which may degrade the recog-
nition rate. It is practically infeasible to run an exhaustive
search for all the possible combinations of features in or-
der to obtain the optimal subset for recognition due to the
high dimensionality of the feature space. For this reason, we
employed the Adaptive Sequential Forward Floating Selec-
tion (ASFFS) search algorithm [16]. The algorithm uses a
validation-based evaluation criterion which is proposed to
find the subset of features that minimises the classification
errors as well as ensure good separability between the dif-
ferent classes. In contrast to the voting scheme used in the
KNN, the evaluation function uses different weights w to
signify the importance of the most nearest neighbours. The
probability score for a sample sc to belong to class c is ex-
pressed in the following equation (3):

f(sc) =
∑Nc−1

i=1 ziwi∑Nc−1
i=1 wi

(3)

where Nc is the number of instances in class c, and the
weight wi for the ith nearest instance is inversely related
to proximity as:

wi = (Nc − i)2 (4)

The value of zi is defined as:

zi =
{

1 if nearest(sc, i) ∈ c
0 otherwise (5)

such that the nearest(sc, i) function returns the ith nearest
instance to the sample sc. The Euclidean distance metric is
employed to find the nearest neighbours.

3. Covariate Analysis for Gait Recognition
In order to quantity the covariate effects on the per-

formance of gait recognition, the Correct Classification
Rate (CCR) is computed using the K-nearest neighbour
(KNN) classifier with the Leave-one-out cross-validation
rule. Based on the subset of features derived using the Fea-
ture Selection algorithm, we have achieved a high recogni-
tion rate of 95.75% for the value of k = 5 using the set of
160 video sequences from the covariate-free dataset. This is
achieved using solely features describing purely the dynam-
ics of the locomotion process. Furthermore, we have probed
440 samples from the covariate dataset against the gallery
database. A recognition rate of 73.4% is achieved for all the
covariate factors including footwear, clothing, load carriage
and walking speed which is higher when compared to the
low recognition rates reported by Phillips et al. [15] using
the silhouette-based method.

The Cumulative Match Score curves showing the com-
parative results are shown in Figure (3). Phillips reported a
CCR of 57% for Data (I) with load carriage and footwear
covariates whilst a CCR of 3% is achieved for Data (II)



Figure 1. The Cumulative Match Score Curves for the Classifica-
tion Results.

with the following covariates : time, footwear, and cloth-
ing. Time has been shown [15, 19] to play a major part in
reducing recognition capability by gait. Using a silhouette
based approach Veres showed that this could be redressed
by fusing those parts of the gait signature which are invari-
ant with time. In this way the overall CCR could be im-
proved from 23 to 27% [20]. By modelling the change in
feature space (by using linear interpolation) the recognition
rate with variation in time was improved from 23% to 65%
[19]. Both of these are considerably improved over the 3%
achieved by Phillips et al [15]. Given the limited data on
time, Veres’ study and the depth of her results, the time fac-
tor is included implicitly and not considered further here.

3.1. The Footwear Effects

The gait pattern is affected by the different footwear as
people are observed to walk differently when wearing train-
ers as to when wearing flip flops. This has been confirmed
by research carried out by Dobbs et al. [5]. Based on
their experimental results, it was reported that the stride and
cadence parameters of the walking pattern are affected by
footwear as opposed to walking with barefeet. Moreover,
recent studies [11] showed that changing the footwear tex-
ture causes changes in the gait pattern. In the studies carried
out by Phillips et al. [15] to investigate the footwear effects
on the performance of gait recognition, a high recognition
rate of 78% is reported using a silhouette-based method.
This is because of the fact that body-related or silhouette-
based features are almost invariant to the different footwear.

In order to explore the effects of footwear on the perfor-
mance of people identification using dynamic gait features,
a number of experiments are carried out for subjects wear-
ing a variety of different footwear including flip flop, boots

and normal shoes. In addition, subjects are also recorded
walking with barefeet. For each of the footwear-related fac-
tors, 40 video sequences are processed to derive gait signa-
tures based on the dynamic gait features. To assess the clas-
sification performance, subjects are validated against the
gallery dataset which consists of 160 gait signatures for 20
different subjects recorded with no covariate effects.

Figure 2. Classification Results for the Footwear Covariates.

The classification results for the footwear covariates are
expressed using the cumulative match score as shown in
Figure (2). The recognition rates for the trainer and boots
cases are observed to be almost the same as the normal case
with achieved rates of 78%, 83.33% and 86.67% for the
boots, trainer and normal shoe cases respectively. When
subjects are assessed walking with barefeet, the same gait
recognition rate is achieved as the other footwear factors
including trainers, boots and normal shoes with a reported
CCR of 83.33%. This suggests that the dynamic gait fea-
tures for people identification are not affected largely with
the different footwear. However, the human gait is observed
to vary much when people walk with flip flops as the recog-
nition rate drops largely to 46%. This is likely due to the
comfortability issue with flip flops which are not commonly
to worn in the UK, and the mode grip differs in that the pil-
lar in the flip flop is clenched between the big toe and its
neighbour. Further, there is no rear part of the shoe so this
must be compensated when walking.

3.2. The Clothing Effects

The clothing effects on human gait as well as the pos-
ture and balance can be considerably important. In [13],
Punakallio et al showed that suits wore by fire-fighters have
significantly impaired their postural and functional balance.
In another study by Egan et al [6], it was revealed that cloth-
ing properties such as weight can be another factor which
have effects on balance and gait of people. Furthermore,
Rahmatalla et al [14] concluded that restrictive clothing can



impose constraints on the relative joint angle limits of the
walking subject and therefore affect their gait pattern. In
the study carried out by Phillips et al. [15] for gait recog-
nition using the silhouette-based approach, the recognition
rate dropped sharply to 3% for the following combined co-
variate factors: time, footwear and clothing.

(a) (b) (c)

Figure 3. Clothing Covariate Factors: (a) Normal Clothing (b)
Coat (c) Trench Coat

In order to investigate the effects of clothing on the hu-
man gait and people identification using gait, we have per-
formed a number of experiments on people wearing dif-
ferent clothing including coat, trench coat and their nor-
mal clothing as depicted in Figure (3.2). For each of the
clothing-related factors, the gait signature is derived from
the dynamic features for 10 subjects with 4 sequences for
every individual. The classification performance is assessed
as the same way as the footwear case by matching the probe
set against the gallery dataset. Figure (4) shows the cu-
mulative match score curves for the gait classification ex-
periments. The correct classification rate for the coat is
almost the same as the normal case with reported rates of
83.33% and 86.67% respectively. However for the case of
the trench coat, the recognition decreases largely to 60%.
This is mainly due to nature of the clothing which is dis-
tracting the gait dynamics as well as the occlusion of the
knee and hip joints faced during the extraction of gait fea-
tures. This does not occur with the trousers which adhere to
the front of the leg, but could equally occur with the female
clothing (eg. a chardor ).

3.3. Load Carriage

The impact of load carried on human gait and body pos-
ture has been extensively investigated for different purposes
including medical, training and military [8] use but rarely
for the purpose of gait recognition. In [12], Pascoe et al
carried out a number of experiments to examine the effects
of carrying bags on gait kinematics for youth people. Pas-
coe reported that the stride length decreases whilst the gait

Figure 4. Classification Results for the Clothing Covariates.

cadence increases in response to the weight of the load. The
same results were also confirmed by the work of Attwells et
al [2] and Wang [22]. Attwells observed from experiments
carried out on military personnel that the gait angular data
including the knee and femur angles are significantly af-
fected with the increase of carriage load. For the effects of
carrying conditions on the performance of gait recognition,
Phillips et al. [15] reported a correct classification rate of
61% using KNN for k = 1 employing a silhouette-based
method for people carrying a briefcase.

(a) (b) (c)

Figure 5. Load Carriage Covariate Factors: (a) Normal Walking
(b) Handbag (c) Barrel Bag

To investigate the impact of load carriage on the perfor-
mance of gait recognition using the model-based method
for the extraction of dynamic gait features, three different
covariate cases related to carrying conditions are used to
construct the probe dataset. The cases include people car-
rying handbags and barrel bags besides the normal walk-
ing without carriage as illustrated in Figure (5). The probe
set consists of 120 video sequences for 10 different sub-



jects with 4 trials for every case. People in the probe set are
matched against the same gallery dataset which is used for
the evaluation of previous covariate factors. The classifica-
tion results for gait recognition are detailed using the CMS
curves shown in Figure (7).

Figure 6. Classification Results for the Load Carriage.

The achieved recognition rate for people carrying a
handbag is almost the same as the normal case with a re-
ported CCR of 80%. This is because of the lightness of the
handbag which does not affect the gait pattern. For the case
of the barrel bag which is covering the mid part of the hu-
man body, the recognition rate drops slightly to 77%. How-
ever, such results may not express the real impact of the
carriage load on the performance of gait recognition. This
is because the duration of load carriage was brief, as the re-
sponses and effects of load may change with the duration
of carriage as a result of exacerbated fatigue. This was not
possible to study in this research due to the limitation of the
gait database.

3.4. The Speed Effects

There is currently not much work that investigates the
effects of speed on the performance of gait recognition
methods and the relationship between the gait features and
the varying walking speed [18]. Based on a model-based
method for feature extraction, Yam [23] reported the possi-
ble existence of an individual mapping between the walking
and running gait patterns. In [17], Bobick et al observed
that appearance-based features derived from silhouette of
walking people are speed-dependent and therefore, a pre-
processing stage for feature adjustment is suggested to im-
prove the recognition performance. To study the impact of
speed variation on gait recognition, a probe dataset is con-
structed consisting of 10 subjects recorded at different walk-
ing speed: slow, normal and quick with 4 trials for every
case. The recognition rate for both slow and quick walk-
ing drops largely to 60% and 50% respectively compared

Figure 7. Classification Results for the Walking Speed Covariates.

to the achieved CCR of %86 for the normal walking case
leading to the conclusion that dynamic gait features are also
dependent on speed.

4. Covariate Factor Analysis of Gait Features
Feature analysis is performed to quantify the footwear

effects on the different dynamic gait components employed
for recognition. For each of the gait angular signature com-
ponents ( i.e. knee, ankle and hip), the correct recogni-
tion rate is computed using leave-one-out validation and a
KNN classifier with k = 5 for the different covariate fac-
tors. The overall results are summarised in Table (1) which
shows the means and standard deviations of the recogni-
tion rates for the various gait dynamic features. The knee
is observed to have the highest average CCR whilst it is the
most component susceptible to the different covariates with
a standard deviation of 14.1%. The ankle has the lowest
standard deviation among the angular features. the vertical
tipping motion of the trunk ( Y displacement ) is observed
as the most stable features with high average CCR and al-
most low standard deviation.

Table 1. Statistical Analysis of Gait Features.
Mean CCR Std. Deviation

Hip 25 12.1
Knee 27.9 14.1
Ankle 24.1 9.6
X Displacement 15.9 7.2
Y Displacement 23.3 7.3

5. Conclusions
In this chapter, we have investigated the impact of the

different covariate factors on the performance of gait recog-
nition using kinematic-related features. Four different co-



variates are analysed including footwear, load carriage,
clothing and walking speed. Based on a covariate-based
probe dataset of 440 samples, a high recognition rate of
73.4% is achieved using the KNN classifier with k = 5.
This is to conclude that people identification using dynamic
gait features is still perceivable with better recognition rate
even under the different covariate factors. The footwear,
clothing and load carriage covariates are observed to have
almost no effects on the performance of gait recognition
with similar results when walking with barefeet or with-
out carrying bags. However, the gait recognition drops
largely when walking with flip flops or wearing a trench
coat due the difficulties encountered during the extraction
of dynamic gait features using the model-based method.
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