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Abstract The present paper is concerned with the spectral analysis of a transport-like
operator derived from a model introduced by Rotenberg describing the growth of a
cell population. Each cell of this population is distinguished by its degree of maturity
µ and its maturation velocity v. The biological boundaries of µ = 0 and µ = a (a > 0)

are fixed and tightly coupled through mitosis. At mitosis daughter cells and mother
cells are related by a general reproduction rule which covers all known biological
ones. We first discuss in detail the spectrum of the streaming operator for smooth and
partly smooth boundary conditions. Next, we discuss the existence and nonexistence
of eigenvalues of the transport operator in the half plane {λ ∈ C : Reλ > −σ } where
−σ denotes the spectral bound of the streaming operator. In particular, the strict
monotonicity of the leading eigenvalue (when it exists) of the transport operator
with respect to different parameters of the equation is also considered. We close the
paper by describing in detail the various essential spectra of the transport operator
for wide classes of collision and boundary operators.
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1 Introduction

In [26] M. Rotenberg proposed the following partial differential equation

∂ψ

∂ t
(µ, υ, t) = −υ

∂ψ

∂µ
(µ, υ, t) − σ(µ, υ)ψ(µ, υ, t) +

∫ c

0
r(µ, υ, υ ′)ψ(µ, υ ′, t)dv′

= AKψ = SKψ + Bψ (1.1)

to describe the growth of cells of a population where SK denotes the streaming
operator and B stands for the collision operator (the integral part of AK). In this
model cells are distinguished by their degree of maturity µ ∈ [0, a], a > 0, and their
maturation velocity v ∈ [0, c], c > 0. The degree of maturation µ is then defined so
that µ = 0 at the birth and µ = a at the death. Equation (1.1) describes the number
density of cell population as a function of the degree of maturation µ, the maturation
velocity v and time t. The function r(., ., .) denotes the transition rate at which cells
change their maturation velocities from v to v′.

This model is one of the models of structured population dynamics with inherited
properties. Inherited property models allow memory of generation time and among
such models are the age-time and maturity-time models of proliferating cells popu-
lation with inherited cycle length of Lebowitz and Rubinow [20]. These models are
based on the assumption that the duration of the cycle from cell birth to mitosis is
determined at birth.

Rotenberg discussed essentially the Fokker-Plank approximation of (1.1) for
which he obtained numerical solutions. Using eigenfunction expansion technique
Van der Mee and Zweifel obtained analytical solutions for a variety of boundary
conditions [29]. The first theoretical approach to establish the well-posedness of (1.1)

supplemented with Lebowitz and Rubinow boundary conditions can be found in
[8, 28]. We quote also the works [18] and [19] where a stationary nonlinear version
of Rotenberg was considered. Here the transition rate and the total transition cross
section were allowed to depend on the density of population while the boundary
conditions are modeled by a nonlinear reproduction law. Despite these works, to
our knowledge, the spectral analysis of the operators SK and AK even for simple
reproduction laws has not yet been investigated. The main purpose of this work is
to fill this gap and to discuss various aspects of the spectral theory of the operators
SK and AK. The boundary conditions will be modeled by a general linear boundary
operator, i.e., at the mitosis the daughter cells and parent cells are related by a
general reproduction rule containing in particular all those considered in the papers
[8, 20, 26, 28, 29]. The paper is organized as follows:

– Introduction,
– Notations and preliminaries,
– Spectral properties of SK,
– Compactness results,
– Existence of the leading eigenvalues of AK,
– The strict monotonicity of the leading eigenvalue of AK,
– Essential spectra of AK.

In Section 2 we make precise the functional setting of the problem and establish
some preparation results required in the rest of the paper. The aim of Section 3 is
to deal with the spectral theory of the streaming operator SK involving both smooth
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(compact) and partly smooth transition operators (cf. assumptions (A1) and (A2)).
Very precise results are given, in particular, the spectrum of the transition operator
K enters in play and it behaves like a collision operator at the boundary. Section 5
deals with the existence of eigenvalues of AK in {λ ∈ C such that Reλ > −σ } where σ

denotes the spectral bound of SK. Existence and nonexistence results of eigenvalues
are given. The problem concerning the strict monotonicity of the leading eigenvalue
of the operator AK with respect to the parameters of the equation is the main
purpose of Section 6. We use the comparison results of the spectral radius of positive
operators obtained in [21]. We show, in particular, that the leading eigenvalue (when
it exists) increases strictly with respect to K and B. Finally, in Section 7, we will
describe the various essential spectra of the operator AK for general transition
operators. Our analysis is based on the compactness results of Section 4 (Theorem
4.1), Proposition 7.1 and the knowledge of the precise picture of essential spectra
of the operator S0 (i.e. K = 0). We show, in particular, that for collision operators
B satisfying the assumption (A3) (cf. Section 4) and a sizable class of transition
operators K the essential spectra of AK and S0 coincide.

2 Notations and Preliminaries

In this section we introduce the different notions and notations which we shall need
in sequel. Let us first make precise the functional setting of the problem. Let

Xp := Lp([0, a] × [0, c]; dµdv)

where a > 0, c > 0 and 1 ≤ p < ∞. We denote by X 0
p and X1

p the following
boundary spaces

X 0
p := Lp({0} × [0, c]; vdv),

X1
p := Lp({a} × [0, c]; vdv)

endowed with their natural norms. In the sequel X 0
p and X1

p will often be identified
with Lp([0, c]; vdv).

We define the partial Sobolev space Wp by

Wp =
{
ψ ∈ Xp such that v

∂ψ

∂µ
∈ Xp

}
.

It is well known (see [2] or [8]) that any ψ in Wp has traces on the spatial boundary
{0} and {a} which belong to the spaces X 0

p and X1
p, respectively. They are denoted,

respectively, by ψ0 and ψ1.

Let K be the following boundary operator

{
K : X1

p → X 0
p

u → Ku
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We define the free streaming operator SK by
⎧⎪⎪⎨
⎪⎪⎩

SK : D(SK) ⊂ Xp −→ Xp

ψ −→ SKψ(µ, v) = −v
∂ψ

∂µ
(µ, v) − σ(µ, v)ψ(µ, v)

D(SK) = {ψ ∈ Wp such that ψ0 = Kψ1},
where the function σ(., .) is bounded below and belongs to L1

loc[(0, a) × (0, c)].
Consider now the resolvent equation for the operator SK,

(λ − SK)ψ = ϕ, (2.1)

where ϕ is a given function of Xp, λ ∈ C and the unknown ψ must be sought in
D(SK). Let σ be the real defined by

σ = ess- inf{σ(µ, v), (µ, v) ∈ [0, a] × [0, c]}.
For Reλ > −σ the solution is formally given by

ψ(µ, v) = ψ(0, v) e− 1
v

∫ µ

0 (λ+σ(µ′,v))dµ′ + 1

v

∫ µ

0
e− 1

v

∫ µ

µ′ (λ+σ(τ,v))dτ
ϕ(µ′, v) dµ′. (2.2)

Accordingly, for µ = a, we get

ψ(a, v) = ψ(0, v) e− 1
v

∫ a
0 (λ+σ(µ′,v))dµ′ + 1

v

∫ a

0
e− 1

v

∫ a
µ′ (λ+σ(τ,v))dτ

ϕ(µ′, v) dµ′. (2.3)

In the sequel we shall need the following operators

Pλ : X 0
p −→ X1

p, u −→ (Pλu)(0, v) := u(0, v) e− 1
v

∫ a
0 (λ+σ(µ′,v))dµ′ ;

Qλ : X 0
p −→ Xp, u −→ (Qλu)(0, v) := u(0, v) e− 1

v

∫ µ

0 (λ+σ(µ′,v))dµ′ ;
⎧⎨
⎩

�λ : Xp −→ X1
p,

ϕ −→ (�λϕ)(µ, v) := 1

v

∫ a

0
e− 1

v

∫ a
µ′ (λ+σ(τ,v))dτ

ϕ(µ′, v) dµ′;

and ⎧⎨
⎩

	λ : Xp −→ Xp,

ϕ −→ (	λϕ)(µ, v) := 1

v

∫ µ

0
e− 1

v

∫ µ

µ′ (λ+σ(τ,v))dτ
ϕ(µ′, v) dµ′.

Clearly, for λ satisfying Reλ > −σ , the operators Pλ, Qλ, �λ and 	λ are bounded.
One readily checks that the norms of Pλ and Qλ satisfy

‖Pλ‖ ≤ e− a
c (Reλ+σ) and ‖Qλ‖ ≤ (p (Reλ + σ))

− 1
p .

Moreover, a simple calculation using the Hölder inequality shows that

‖�λ‖ ≤ (Reλ + σ)
− 1

q and ‖	λ‖ ≤ (Reλ + σ)−1

where q is the conjugate exponent of p, i.e. q = p
p−1 . Using the operators above and
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the fact that ψ must satisfy the boundary conditions, (2.3) may be written abstractly
in the form

ψ1 = PλKψ1 + �λϕ. (2.4)

Similarly, Eq. (2.2) becomes

ψ = QλKψ1 + 	λϕ. (2.5)

Throughout this paper we denote by λK the real

λK :=
{−σ if rσ (K) ≤ 1

−σ + c
a log(rσ (K)) if rσ (K) > 1.

Clearly, the solution of Eq. (2.4) reduces to the invertibility of the operator U(λ) :=
I − PλK (which is the case if Reλ > λK). This amounts to

ψ1 = {U(λ)}−1�λϕ

where {U(λ)}−1 =
∑
n≥0

(Pλ K)n. This together with (2.5) gives

ψ = QλK{U(λ)}−1�λϕ + 	λϕ.

Accordingly, for Reλ > λK, the resolvent of the operator SK may be written in
the form

(λ − SK)−1 =
∑
n≥0

QλK(Pλ K)n�λ + 	λ. (2.6)

Let X be a Banach space and T a linear operator on X. As usually we denote
by σ(T), σc(T), σr(T), σp(T) and ρ(T) the spectrum, the continuous spectrum, the
residual spectrum, the point spectrum and the resolvent set of T, respectively. We
say that λ0 ∈ σp(T) is the leading eigenvalue of T if λ0 ∈ R and, for every λ ∈ σ(T),
Reλ < λ0. The set of all bounded linear operators on X will be denoted by L(X). If
T ∈ L(X), we denote by rσ (T) the spectral radius of T.

We close this section by recalling some facts about positive operators on Lp

spaces. Let � be an open subset of Rm, m ≥ 1, and let Ep := Lp(�), 1 ≤ p < ∞,
be the Banach space of equivalence classes of measurable functions on � whose p’th
power is integrable. It’s dual space is Eq where q = p

p−1 . The positive cone E+
p,0 of

Ep is given by

E+
p,0 := { f ∈ Ep : f (x) ≥ 0 µ a.e. x ∈ �}.

The set of strictly positive elements in Ep is denoted by

E+
p := { f ∈ Ep : f (x) > 0 µ a.e. x ∈ �}.

Note that E+
p coincides with the set of quasi-interior points of Ep, i.e.

E+
p := { f ∈ E+

p,0 : < f, f ′ >> 0 ∀ f ′ ∈ E+
q,0\{0}}

where < ., . > is the duality pairing.



42 Acta Appl Math (2006) 92: 37–62

Definition 2.1 We say that T ∈ L(Ep) is positive on Ep if T(E+
p,0) ⊆ E+

p,0. T is called
strictly positive if T(E+

p,0\{0}) ⊆ E+
p .

Definition 2.2 An operator T ∈ L(Ep) is called irreducible if, for all f ∈ E+
p,0\{0},

there exists n ∈ N\{0} such that Tn f ∈ E+
p .

Consider two positive operators A and B in L(Ep). It is well known that if A and
B satisfy A ≤ B (i.e. A − B is positive), then rσ (A) ≤ rσ (B). The next result owing
to I. Marek [21, Theorem 4.4] provides sufficient conditions under which the latter
inequality is strict. More precisely:

Theorem 2.1 Let A and B be two positive operators in L(Ep) satisfying A ≤ B and
A �= B. If A is not quasinilpotent, B is irreducible and power compact (i.e. Bn is
compact for some integer n ≥ 1), then rσ (A) < rσ (B).

The next two results are also required below. The following one is established in
[14, p. 67].

Theorem 2.2 Let T ∈ L(Ep) be a positive compact operator satisfying

∃ϕ ≥ 0, ϕ �= 0 and α > 0 such that Tϕ ≥ αϕ.

Then T has an eigenvalue λ0 ≥ α with a corresponding nonnegative eigenfunction.

Corollary 2.1 Let T ∈ L(Ep) be a positive compact non quasinilpotent operator.
Then rσ (T) is an eigenvalue of T with a corresponding nonnegative eigenfunction.

Proof Let λ ∈ C be an eigenvalue of T such that |λ| = rσ (T). We have T(ϕ) = λϕ

with ϕ �= 0. This implies that |λ| |ϕ| ≤ T(|ϕ|). It follows from Theorem 2.2 that there
exists λ0 ≥ |λ| = rσ (T) which completes the proof. �

For the theory of positive operators on general Banach lattices (resp. Lp-spaces)
we refer to [14] or [22] (resp. [31]).

Remark 2.1 Note that for λ > −σ , the operators Pλ, Qλ, �λ and 	 are positive in the
lattice sense. Hence, it follows from (2.6) that, if K ≥ 0, (λ − SK)−1 is also positive
on Xp for all λ > λ0.

3 Spectral Properties of SK

The purpose of this section is to derive, under reasonable hypotheses on the
transition operator K, a precise description of the spectrum of the streaming operator
SK. We shall also discuss the influence of the transition operators on the leading
eigenvalue (when it exists). To do so, we will first consider the case of smooth
transition operators, i.e., K satisfies the assumption:

(A1)

{
K is a positive operator (in the lattice sense)
and some power of K is compact.
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We define the sets

U = {λ ∈ C such that Reλ > −σ } and P(SK) = σ(SK) ∩ U.

Our first result is the following.

Theorem 3.1 Let p ∈ [1, +∞) and assume that the transition operator K satisfies the
hypothesis (A1). Then:

(i) P(SK) consists of, at most, isolated eigenvalues with finite algebraic multiplicity.
(ii) If P(SK) �= ∅, then SK has a leading eigenvalue λ(a).
(iii) P(SK) �= ∅ if and only if lim

λ→−σ
rσ (Pλ K) > 1. Furthermore, if λ(a) exists, then

−σ ≤ λ(a) ≤ −σ + c
a

log(rσ (K)). (3.1)

In particular, if σ(µ, v) = σ , then P(SK) �= ∅ if and only if rσ (K) > 1
(regardless of a).

(iv) If rσ (K) ≤ 1, then P(SK) = ∅ for all a.
(v) If rσ (K) > 1, then P(SK) �= ∅, at least, for small a and λ(a) → +∞ as a → 0.

Proof Let us first observe that if rσ (PλK) < 1 for all λ ∈ U, then I − PλK is
boundedly invertible. Hence, the solution of (2.4) can be written as

ψ1 = (I − PλK)−1�λϕ, ∀λ ∈ U.

This shows that U ⊆ ρ(SK) and then P(SK) = ∅.

Now we suppose that rσ (PλK) > 1 for some λ ∈ U. Clearly, for all λ > −σ , we
have Pλ ≤ e− a

c (λ+σ) I, where I denotes the identity operator on Lp([0, c]), vdv). (Here
we make the identification X1

p ∼ X0
p ∼ Lp([0, c]), vdv)). Consequently,

Pλ K ≤ e− a
c (λ+σ)K, ∀λ ≥ −σ (3.2)

On the other hand, by (A1), there exists N ∈ N∗ such that (K)N is compact.
Moreover, (3.2) implies (Pλ K)N ≤ (K)N ∀λ ≥ −σ . So, applying the Dodds-Fremlin
comparison theorem for compact operators [3], we find that (PλK)N is compact for
λ ≥ −σ . Next, using the analyticity of the operator valued function U � λ → (Pλ K)N

[13, p. 365 ], we infer the compactness of (PλK)N for all λ in U. On the other hand,
the inequality (PλK)N+1 ≤ PλKKN implies that

‖(PλK)N+1‖ ≤ ‖PλK(K)N‖.
Since PλK → 0 strongly as λ → +∞, the use of Lemma 3.7 in [13, p. 151] together
with the compactness of KN implies that PλK (K)N → 0 in the operator norm as
λ → +∞. This shows that ‖(PλK)N+1‖ → 0 as λ → +∞ and therefore

rσ ((PλK)N+1) → 0 as λ → ∞. (3.3)

It follows from (3.3) together with Gohberg-Shmul’yan’s theorem (see [11, Theorem
11.4, p. 258]), that (I − (PλK)N+1)−1 is a degenerate-meromorphic operator function
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on U (i.e. (I − (PλK)N+1)−1 is holomorphic on U except for a set S of isolated points
where (I − (PλK)N+1)−1 has poles and the coefficients of the principal part have
finite rank). From

I − (PλK)N+1 = (I − PλK) (I + PλK + .... + (PλK)N)

we conclude that

(I − PλK)−1 = (I + PλK + .... + (PλK)N) (I − (PλK)N+1)−1

is degenerate-meromorphic on U. So, if λ /∈ S, Eq. (2.4) becomes ψ1 = (I −
PλK)−1�λϕ. By inserting ψ1 into (2.5) we get ψ = (λ − SK)−1ϕ where (λ − SK)−1 =
QλK(I − PλK)−1�λ + 	λ. Thus (λ − SK)−1 is degenerate-meromorphic on U which
ends the proof of (i).

(ii) If λ0 ∈ P(SK), then there exists ϕ �= 0 such that Pλ0 Kϕ = ϕ. Thus, (Pλ0 K)Nϕ =
ϕ and therefore |ϕ| ≤ |(Pβ0 K)Nϕ| ≤ (Pβ0 K)N|ϕ| where β0 = Reλ0. This implies,

rσ ((Pβ0 K)N) ≥ 1. (3.4)

On the other hand, according to Theorem 0.4 in [23], rσ ((Pβ K)N) is a continuous
strictly decreasing function of β in ] − σ,+∞[. Moreover, by the spectral mapping
theorem [4, p. 569], there exists α(β0) ∈ σ(Pβ0 K) such that (α(β0))

N = rσ ((Pβ0 K)N),

i.e. α(β0) = N

√
rσ ((Pβ0 K)N). Thus α(β) is also a continuous strictly decreasing func-

tion of β in ] − σ, +∞[. On the other hand, (3.4) (resp. (3.3)) shows that α(β0) ≥ 1
(resp. lim

β→+∞ α(β) = 0). Accordingly, there exists (a unique) λ ≥ β0 such that α(λ) =
1, i.e. λ = λ(a) which is the leading eigenvalue of SK.

(iii) In order to prove this statement we restrict ourselves to σ(SK) ∩ (−σ , +∞).
Hence, proceeding as in the proof of the second assertion we find that the leading
eigenvalue λ(a) is characterized by

rσ (Pλ(a)K) = 1. (3.5)

Hence, λ(a) exists if and only if lim
λ→−σ

rσ (Mλ H) > 1. If λ(a) exists, using (3.2) and

(3.5) we get 1 ≤ e
a
c (λ(a)−σ )rσ (K). Hence,

−σ ≤ λ(a) ≤ −σ + c
a

log(rσ (K)).

Assume now σ(µ, v) = σ , then P−σ ≤ I and consequently P−σ K ≤ K which
completes the proof of (iii).

(iv) Note that as in (iii), P(−σ) K ≤ K. Hence, if lim
λ→−σ

rσ (K) ≤ 1, then

lim
λ→−σ

rσ (PλK) ≤ 1. The assertion is then an immediate consequence of (iii).

(v) Let λ be an arbitrary real satisfying λ > −σ . Clearly Pλ → I strongly as a → 0.
Now using the compactness of (K)N we see that lim

a→0
‖(Pλ K)N+1 − (K)N+1‖ = 0

and consequently lim
a→0

rσ (PλK) = rσ (K) > 1. This shows that, for a small enough,

rσ (PλK) > 1 and therefore λ(a) exists and λ(a) > λ. Next using the fact that λ is an
arbitrary real in ] − σ, +∞[ we infer that λ(a) → ∞ as a → 0. �
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Theorem 3.2 Let p ∈ [1,∞) and assume that K is a nonnegative compact transition
operator. Then the following statements hold:

(i) P(SK) is bounded and, for every η > 0, σ (SK) ∩ {λ ∈ C : Reλ > −σ + η} is
finite.

(ii) Assume that σ ∈ L∞[(0, a) × (0, c)]. If rσ (K) > 1, then there exists a positive

constant ν such that λ(a) ≥ −‖σ‖L∞ + ν

a
.

(iii) Let σ(µ, v) = σ . If rσ (K) = 1, then −σ ∈ σp(SK).

Let X be a Banach space and denote by B its closed unit ball. A set J ⊆ L(X) is
collectively compact if and only if the set J B = {Kx : K ∈ J , x ∈ B} has compact
closure.

Before proving Theorem 3.2 we first establish the following lemma.

Lemma 3.1 Let K be an arbitrary compact transition operator. Then (I − PλK)−1

exists for λ in the half plane {λ ∈ C : Reλ > −σ } with |Imλ| sufficiently large.

Proof Notice that if the transition operator K is compact, then there exists a se-
quence of finite rank operators which converges, in the operator norm, to K. Hence,
it suffices to establish the result for a finite rank operator, that is, K = ∑n

k=1 Kk,
Kk = 〈., ϑk〉ζk where n ∈ N, ϑk ∈ Xq

1 , ζk ∈ X 0
p and q denotes the conjugate exponent

of p. Thus we may restrict ourselves to a transition operator of rank one which we
denote also by K, namely, K. := 〈., ϑ〉ζ where ζ ∈ X 0

p and ϑ ∈ X1
q .

Let λ be a complex number such that Reλ > −σ . The dual of the operator PλK is
given by (Pλ K)∗ = K∗ P̃λ where

P̃λ : X1
q −→ X 0

q, u −→ (P̃λu)(0, v) := u(a, v) e− 1
v

∫ a
0 (λ+σ(µ′,v))dµ′

(3.6)

and

K∗ : X0
q −→ X1

q, u −→ (K∗u)(0, v) := 〈ζ, u〉ϑ (3.7)

where ζ and ϑ are the functions appearing in the expression of K.

Let λ0 be the real defined by

λ0 := −σ + c
a

log(rσ (K)).

Clearly, if Reλ > λ0, then ‖PλK‖ < 1 and consequently, the half plane Reλ > λ0

is contained in ρ(SK). So, it suffices to establish Lemma 3.1 in the strip {λ ∈
C such that − σ < Reλ ≤ λ0}.

Claim 1 If λ belongs to the strip −σ < Reλ ≤ λ0, then (K∗ P̃λ) converges to 0, for
the strong operator topology, as |Imλ| → +∞.

Let ϕ ∈ X1
q . It follows from (3.6) and (3.7) that

K∗ P̃λϕ := 〈ζ, Pλϕ〉ϑ =
∫ c

0
ϑ(v)ζ(v′)e− 1

v′
∫ a

0 (λ+σ(µ′,v′))dµ′
ϕ(a, v′)v′dv′
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Let (λn)n be a sequence of complex number such that λn = η + itn where η ∈] − σ, λ0]
an tn → +∞ as n → ∞. Thus

|(K∗ P̃λnϕ)(a, v)| =
∣∣∣∣
∫ c

0
ϑ(v)ζ(v′)e− 1

v′
∫ a

0 (η+σ(µ′,v′))dµ′
e

ai
v′ tnϕ(a, v′)v′dv′

∣∣∣∣ .
Applying the Riemann-Lebesgue lemma we find

lim
n→∞

∣∣∣∣
∫ c

0
ϑ(v)ζ(v′)e− 1

v′
∫ a

0 (η+σ(µ′,v′))dµ′
e

ai
v′ tnϕ(a, v′)v′dv′

∣∣∣∣ = 0 a.e. on {a} × (0, c).

Accordingly,

lim
n→+∞ |(K∗ P̃λnϕ)(a, v)| = 0 a.e. on {a} × (0, c).

Furthermore, for every integer n, we have:

|(K∗ P̃λnϕ)(a, v)| ≤
∫ c

0
|ϑ(v)| |ζ(v′)| |ϕ(a, v′)|v′dv′ ∈ X1

q .

Then according to the dominated convergence theorem of Lebesgue, we have

lim
n→+∞ ‖K∗ P̃λnϕ‖X1

q
= 0.

This proves the first claim.

Claim 2 The family {K∗ P̃λ, −σ < Reλ ≤ λ0} is collectively compact.
Let Bq denote the unit ball of the space X1

q and let (ψn)n∈N be a sequence in
∪λ(K∗ P̃λBq), λ ∈ {λ ∈ C : −σ < Reλ ≤ λ0}. Then there exists a sequence (ϕn)n∈N in
Bq such that ψn = K∗ P̃λnϕn, n = 1, 2, .... It is clear that the sequence (yn = P̃λnϕn)n∈N

is bounded in X 0
q . So, it follows from the compactness of K∗ that (ψn = K∗yn)n∈N has

a converging subsequence in ∪λ(K∗ P̃λBq). This ends the proof of the claim.

Claim 3 Let λ be in the strip −σ < Reλ ≤ λ0. Then lim
|Imλ|→+∞

rσ (Pλ K) = 0.

In view of the Claims 1, 2 and Proposition 3.1 in [1] we have

lim
|Imλ|→+∞

‖(K∗ P̃λ)
2‖ = 0 uniformly on {λ ∈ C : −σ < Reλ ≤ λ0}.

Therefore, since rσ (K∗ P̃λ) ≤ ‖(K∗ P̃λ)
n‖ 1

n with n = 1, 2, ..., we conclude that

lim
|Imλ|→+∞

rσ (K∗ P̃λ) = 0 uniformly on {λ ∈ C : −σ < Reλ ≤ λ0}.

Next, the use of the equality rσ (K∗ P̃λ) = rσ (Pλ K) proves the claim.
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Now according to Claim 3, there exists M > 0 such that for any λ in the strip −σ <

Reλ ≤ λ0 satisfying |Imλ| > M, we have rσ (PλK) < 1. This completes the proof of
Lemma 1. �

Proof of Theorem 3.2

(i) As mentioned above, if Reλ > λ0, then rσ (Pλ K) < 1 and therefore σ(SK) ∩
{λ ∈ C : Reλ > λ0} = ∅. Next, using Lemma 3.1 we conclude that there exists
M > 0 such that

P(SK) ⊆ {λ ∈ C : −σ < Reλ ≤ λ0 and |Imλ| ≤ M}.
This proves the boundedness of P(SK). Moreover, for any η > 0 such that
−σ + η < λ0, P(SK) ∩ {λ ∈ C : −σ + η < Reλ ≤ λ0} is confined in a compact
subset of the complex plane and, then, it is necessarily finite since it is discrete.

(ii) Let ε ∈ (0, c) and define the operator Kε by Kε : u → Iε Ku where Iε de-
notes the operator Iε : u → χ(ε,c)u and χ(ε,c)(.) stands for the characteristic
function of (ε, c). Obviously, Kε ≤ K and ‖Kε − K‖ → 0 as ε → 0 (use the
compactness of K). Let ϕε be a positive eigenfunction of Kε associated with
the eigenvalue rσ (Kε). Let λ > −σ . It is clear that PλKϕε ≥ PλKεϕε. On the
other hand, the fact that ϕε(v) = 0 if v ∈ [0, ε[ implies that

Pλϕε ≥ e−a
(

λ+‖σ‖L∞
ε

)
ϕε.

Similarly,

PλKεϕε ≥ e−a
(

λ+‖σ‖L∞
ε

)
Kεϕε.

Hence, PλK ≥ e−a(
λ+‖σ‖L∞

ε
)Kε and consequently,

rσ (Pλ K) ≥ e−a
(

λ+‖σ‖L∞
ε

)
rσ (Kε). (3.8)

Owing to the fact that rσ (Pλ(a)K) = 1, thus for λ = λ(a), (3.8) becomes

1 ≥ e−a
(

λ+‖σ‖L∞
ε

)
rσ (Kε).

Let ε be small enough so that rσ (Kε) > 1 (note that by Corollary 0.2 in [23],
rσ (Kε) → rσ (K) > 1 as ε → 0). Then

λ(a) ≥ −‖σ‖L∞ + ε

a
log(rσ (Kε)).

This ends the proof. �

In the following we denote by λ(K) the leading eigenvalue of the operator SK

(when it exists). We will now discuss the monotonicity properties of λ(K). To do so,
we consider two transition operators K1 and K2 satisfying K1 ≤ K2 and K1 �= K2.
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Theorem 3.3 Let K1 and K2 be two transition operators satisfying (A1). If λ(K1)

exists, then λ(K2) exists and λ(K1) ≤ λ(K2). Moreover, if there exists an integer m
such that (Pλ(K1)K2)

m is strictly positive, then λ(K1) < λ(K2).

Proof By hypothesis, there exist two integers n1 and n2 such that (K1)
n1 and (K2)

n2

are compact. Let n3 = max(n1, n2). It follows from (3.2) together with the Dodds-
Fremlin theorem [3] that (PλK1)

n3 and (PλK2)
n3 are compact for all λ belonging to

] − σ, ∞[. In particular, (Pλ(K1)K1)
n3 and (Pλ(K1)K2)

n3 are positive compact operators
on X1

p. As already seen in the proof of Theorem 3.1, λ is an eigenvalue of SK if and
only if 1 is an eigenvalue of Pλ K. So we conclude that

rσ (Pλ(K1)K1) ≥ 1. (3.9)

On the other hand, since K1 ≤ K2 and K1 �= K2, then Pλ(K1)K1 ≤ Pλ(K1)K2 and
Pλ(K1)K1 �= Pλ(K1)K2. This implies that rσ (Pλ(K1)K1) ≥ rσ (Pλ(K1)K2). But Pλ(K1)K2 is
irreducible and power compact, then using (3.9) and Theorem 2.1 we infer that

rσ [Pλ(K1)K2]n3 > 1. (3.10)

Clearly, [PλK2]n3 is an analytic operator-valued function whose values are com-
pact for all λ > −σ . Moreover, we have lim

λ→∞ ‖[PλK2]n3‖ = 0 (see the proof of

Theorem 3.1), thus the use of Theorem 0.4 in [23] implies that the function ] −
σ,+∞) � λ → rσ ([PλK2]n3) is strictly decreasing. This together with (3.10) implies
that there exists a unique λ > λ(K1) such that rσ ([PλK2]n3) = 1. Now the spectral
mapping theorem yields λ = λ(K2) and the proof is complete. �

Let us now consider the case of partly smooth transition operators:

(A2)

{
K = K1 + K2 with Ki ≥ 0 i = 1, 2, K2 is compact
if 1 < p < ∞ or weakly compact if p=1.

Theorem 3.4 Let p ∈ [1, ∞) and suppose that the hypothesis (A2) is satisfied. Then
the following assertions hold:

(i) σ (SK) ∩ {λ ∈ C : Reλ > λK1} consists of, at most, isolated eigenvalues with
finite algebraic multiplicity.

(ii) If σ(SK) ∩ {λ ∈ C : Reλ > λK1} �= ∅, then SK has a leading eigenvalue λ(a).
(iii) If lim

λ→λK1

rσ (PλK2) > 1, then σ(SK) ∩ {λ ∈ C : Reλ > λK1} �= ∅.

Proof
(i) Consider again the problem (2.1) which is now equivalent to solving in X1

p the
following one

ψ1 = Pλ K1ψ
1 + PλK2ψ

1 + �λϕ. (3.11)

Clearly, if λ > λK1 , then the operator I − PλK1 is boundedly invertible and
(3.11) becomes ψ1 = Fλψ

1 + Lλϕ where Fλ := (I − PλK1)
−1 PλK2 and Lλ :=

(I − PλK1)
−1�λ. As already mentioned, Pλ → 0 strongly as λ → ∞ for all

p in [1,∞). For p ∈ (1, ∞), K2 is compact and therefore ‖PλK2‖ → 0 as
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λ → ∞ in the operator topology (use Lemma 3.7 in [13, p. 151]). Now let p =
1, and λ2 > λK1 . It follows from the estimate (I − PλK1)

−1 ≤ (I − Pλ2 K1)
−1

(valid for λ > λ2) that (Fλ)
3 ≤ (I − Pλ2 K2)

−1 PλK2(Fλ2)
2∀λ > λ2. Since

K2 is weakly compact, applying Corollary 13 in [4, p. 510] we infer that (Fλ2)
2

is compact. Using again Lemma 3.7 in [13, p. 151] we get

‖(Fλ)
3‖ ≤ ‖(I − Pλ2 K1)

−1‖ ‖PλK2(Fλ1)
2‖ → 0 as λ → ∞.

Since rσ (Fλ) ≤ ‖Fn
λ‖ 1

n , n = 1, 2, 3, ..., we have rσ (Fλ) → 0 as λ → +∞ for all
p ∈ [1, ∞). Now applying the Gohberg-Shmul’yan theorem [11] we get the
desired result.

(ii) This assertion follows from the fact that (λ − SK)−1 is positive for large λ

(see [30]).
(iii) Let λ > λK1. The estimate Fλ ≥ Pλ K2 implies rσ (Fλ)) ≥ rσ (PλK2). Hence, if

lim
λ→λK1

rσ (PλK2) > 1, then

lim
λ→λK1

rσ (Fλ) ≥ lim
λ→λK1

rσ (PλK2) > 1.

Moreover, since F3
λ is compact on X 0

p, 1 ≤ p < ∞ (see the proof of (1)) and
satisfies lim

λ→∞ ‖(Fλ)
3‖ → 0, the use of Theorem 0.4 in [23] and the spectral mapping

theorem shows that rσ (Fλ) is a continuous strictly decreasing function of λ satisfying
lim

λ→+∞ rσ (Fλ) = 0. Therefore there exists λ̄ > λK1 such that rσ (Fλ̄) = 1 which is the

leading eigenvalue. �

4 Compactness Results

We now consider the transport operator AK = SK + B where B is the bounded
operator given by

⎧⎨
⎩

B : Xp −→ Xp

ψ −→
∫ c

0
r(µ, v, v′)ψ(µ, v′)dv′ (4.1)

with r(., ., .) is a measurable function from [0, a] × [0, c] × [0, c] to R+.
The purpose of this section is to give some compactness results which play a crucial

role in our subsequent analysis (cf. Sections 5, 6 and 7). Note that, in the classical
neutron transport theory, similar results are already present in the literature (see, for
example, [15, 16]).

Observe that the operator B acts only on the maturation velocity v′, so µ may
be viewed merely as a parameter in [0, a]. Hence, we may consider B as a function
B(.) : µ ∈ [0, a] −→ B(µ) ∈ Z where Z := L(Lp([0, c], dv)).
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In the following we will make the assumptions:

(A3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

the function B(.)is strongly measurable, (4.2)

there exists a compact subset C ⊆ Z such that
B(µ) ∈ C a.e. on [0, a], (4.3)

and B(µ) ∈ K(L1([0, c], dv)) a.e. on [0, a] (4.4)

where K(Lp([0, c], dv)) denotes the set of all compact operators on Lp([0, c], dv).
Obviously, (4.3) implies that

B(.) ∈ L∞(]0, a[,Z). (4.5)

Let ψ ∈ Xp. It is easy to see that (Bψ)(µ, v) = B(µ)ψ(µ, v) and then, by (4.5), we
have ∫ c

0
|(Bψ)(µ, v)|pdv ≤ ‖B(.)‖p

L∞(]0,a[,Z)

∫ c

0
|ψ(µ, v)|pdv

and therefore

∫ a

0

∫ c

0
|(Bψ)(µ, v)|pdvdµ ≤ ‖B(.)‖p

L∞(]0,a[,Z)

∫ a

0

∫ c

0
|ψ(µ, v)|pdvdµ.

This leads to the estimate

‖B‖L(Xp) ≤ ‖B(.)‖L∞(]0,a[,Z). (4.6)

The interest of collision operators in the form (4.1) which satisfy (A3) lies in the
following lemma.

Lemma 4.1 Assume that (A3) holds true. Then B can by approximated, in the
uniform topology, by a sequence (Bn)n of operators of the form

κn(µ, v, v′) =
n∑

j=1

η j(µ)θ j(v)β j(v
′)

where η j(.) ∈ L∞([0, a], dµ), θ j(.) ∈ Lp([0, c], dv) and β j(.) ∈ Lq([0, c], dv) (q de-
notes the conjugate of p).

Proof Let ε > 0. By the assumption (4.3) there exist B1, .., Bm such that (Bi)i ⊂ K
and K ⊂ ∪

1≤i≤m
B(Bi, ε) where B(Bi, ε) is the open ball, in K(Lp([0, c], dv)), centered

at Bi with radius ε.
Let A1 = B(B1, ε), A2 = B(B2, ε) − A1,.., Am = B(Bm, ε) − Am−1. Clearly, Ai ∩

A j = ∅ if i �= j and K ⊂ ∪
1≤i≤m

Ai. Let 1 ≤ i ≤ m and denote by Ii the set

Ii = B−1(Ai) = {µ ∈]0, a[ such that B(µ) ∈ Ai}.
Hence we have Ii ∩ I j = ∅ if i �= j and ]0, 1[= ∪

i=1

m Ii.
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Consider now the following step function from ]0, a[ to Z defined by

S(µ) =
m∑

i=1

χIi (µ)Bi

where χIi (.) denotes the characteristic function of Ii. Obviously, S(.) satisfies (4.2),
(4.3) and (4.4). Then using (4.5) we get B − S ∈ L∞(]0, a[,Z). Moreover, an easy
calculation leads to

‖B − S‖L∞(]0,a[,Z) ≤ ε.

Now, using (4.6) we obtain

‖B − S‖L(Xp) ≤ ‖B − S‖L∞(]0,a[,Z) ≤ ε.

Hence, we infer that the operator B may be approximated (in the uniform topology)
by operators of the form

U(µ) =
m∑

i=1

ηi(µ)Bi

where η j(.) ∈ L∞([0, a], dµ) and Bi ∈ K(Lp([0, c], dv)). On the other hand, each
compact operator Bi on Lp([0, c], dv) is a limit (for the norm topology) of a sequence
of finite rank operators because Lp([0, c], dv) (1 ≤ p < ∞) admits a Schauder basis.
This ends the proof. �

Theorem 4.1 Assume that (A3) holds true. Then, for any λ ∈ C such that Reλ > λK,
the operator (λ − SK)−1 B is compact on Xp, 1 < p < ∞, and weakly compact on X1.

Remark 4.1 Let λ be such that Reλ > λK. We know from Eq. (2.6) that

(λ − SK)−1 B =
∑
n≥0

QλK(Pλ K)n�λ B + 	λ B.

To prove the compactness (resp. the weak compactness) of (λ − SK)−1 B on Xp (resp.
X1), it suffices to show that the operators �λ B and 	λ B are compact (resp. weakly
compact) on Xp (resp. X1). �

Lemma 4.2 Assume that (A3) holds true. Then the operators �λ B and 	λ B are
compact on Xp and weakly compact on X1.

Proof Since (A3) is satisfied, then it follows from Lemma 4.1 that B can be
approximated, in the uniform topology by a sequence Bn of finite rank operators on
Lp([0, c], dv) which converges, in the operator norm, to B. Then it suffices to estab-
lish the result for a finite rank operator, that is κn(µ, v, v′) = ∑n

j=1 η j(µ)θ j(v)β j(v
′)

where η j(.) ∈ L∞([0, a], dµ), θ j(.) ∈ Lp([0, c], dv) and β j(.) ∈ Lq([0, c], dv) (q de-
notes the conjugate of p). So, we infer from the linearity and the stability of the
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compactness by summation that it suffices to prove the result for an operator B
whose kernel is in the form κ(µ, v, v′) = η(µ) θ(v)β(v′) where η(.) ∈ L∞([0, a], dµ),
θ(.) ∈ Lp([0, c], dv) and β(.) ∈ Lq([0, c], dv).

Consider g ∈ Xp,
⎧⎨
⎩

(�λ Bg)(v) =
∫ c

0

∫ a

0

1

v
η(µ)θ(v) e− 1

v

∫ 1
µ
(λ+σ(τ,v))dτ

β(v′)g(µ, v′) dµdv′

= Jλ Ug

where U and Jλ denote the following bounded operators⎧⎨
⎩

U : Xp −→ Lp([0, a], dµ)

ϕ −→ (Uϕ)(µ) =
∫ c

0
β(v) ϕ(µ, v) dv

⎧⎪⎨
⎪⎩

Jλ : Lp([0, a], dµ) −→ X1
p

ψ −→
∫ a

0

η(µ) θ(v)

v
e− 1

v

∫ a
µ
(λ+σ(τ,v))dτ

ψ(µ) dµ.

We first consider the case p ∈ (1, ∞). It is then sufficient to check that Jλ is compact.
This will follow from Theorem 11.6 in [10, p. 275] if we show

∫ c

0

[∫ a

0

∣∣∣∣1

v
η(µ) θ(v) e− 1

v

∫ a
µ
(λ+σ(τ,v))dτ

∣∣∣∣
q

dµ

] p
q

vdv < +∞

(Jλ is then a Hille-Tamarkin operator). To do so, let us first observe that we have
∫ a

0

∣∣∣∣1

v
η(µ) θ(v) e− 1

v

∫ a
µ
(λ+σ(τ,v))dτ

∣∣∣∣
q

dµ ≤ ‖η‖q
∞

|θ(v)|q
vq

∫ a

0
e−q (Reλ+σ)

v
(a−µ)dµ

≤ ‖η‖q
∞

|θ(v)|q
q(Reλ + σ)v(q−1)

which leads to

[∫ a

0

∣∣∣∣1

v
η(µ) θ(v) e− 1

v

∫ a
µ
(λ+σ(τ,v))dτ

∣∣∣∣
q

dµ

] p
q

≤ ‖η‖p
∞

|θ(v)|p

(q(Reλ + σ))
p
q

v
(

p
q −p)

.

Integrating in v from 0 to c we obtain

∫ c

0

[ ∫ a

0

∣∣∣∣1

v
η(µ) θ(v) e− 1

v

∫ a
µ
(λ+σ(τ,v))dτ

∣∣∣∣
q

dµ

] p
q

vdv

≤
∫ c

0
‖η‖p

∞
|θ(v)|p

(q(Reλ + σ))
p
q

v
(

p
q −p)

vdv.

≤ ‖η‖p
∞

‖θ‖p

(q(Reλ + σ))
p
q
.

Now we consider the case p = 1. Let λ be such that Reλ > −σ + c
a ln(U). As

above, according to Lemma 3.1 it suffices to establish the result for an operator B
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with kernel of the form κ(µ, v, v′) = η(µ)θ(v)β(v′), where η ∈ L∞([0, a], dµ), θ ∈
L1([0, c], dv) and β ∈ L∞([0, c], dv). The operator �λ B writes in the form �λ B =
�λ Rβ where Rβ and �λ are the two bounded operators given by

Rβ : X1 −→ L1([0, a], dµ), u −→ (Rβϕ)(µ) := ∫ c
0 β(v)ϕ(µ, v)dv

and ⎧⎨
⎩

�λ : L1([0, a], dµ) −→ X1
1 ,

ϕ −→ 1

v

∫ a

0
η(µ′)θ(v)e− 1

v

∫ a
µ′ (λ+σ(τ,v))dτ

ϕ(µ′) dµ′.

Thus it suffices to prove that �λ is weakly compact. To this end, let O be a bounded
subset of L1([0, a], dµ) and let ϕ ∈ O. We have∫

E
|(�λϕ)(v)|vdv ≤ ‖η‖∞‖ϕ‖

∫
E

|θ(v)|dv,

for all measurable subsets of [0, c]. Next, applying Corollary 11 in [4, p. 294] we infer
that the set �λ(O) is weakly compact, since lim|E|→0

∫
E |θ(v)|dv = 0, where |E| is the

measure of E.
A similar reasoning allows us to reach the same results for the operator 	λ B. This

completes the proof. �

Proof of Theorem 4.1 This follows from Lemma 4.2 and Remark 4.1. �

5 Existence of the Leading Eigenvalues of AK

Denote by Lp(dv) the space of functions Lp[(0, c); dv]. Notice that Lp(dv) is a
subspace of X0

p and the imbedding Lp(dv) ↪→ X0
p is continuous. By B we mean the

integral operator on Xp whose kernel is given by r(µ, v, v′) = r(µ, v, v′)
v .

Theorem 5.1 Suppose that the operator B is bounded on Xp and K is bounded from
X0

p into Lp(dv) with ‖K‖ < 1. Then σ(AK) ∩ {λ ∈ C : Reλ > −σ } = ∅ for a small
enough.

Proof Let ψ ∈ Xp and put ϕ = Bψ. Then we have

|	λϕ(µ, v)|p ≤ a
p
q

∫ a

0

|ϕ(µ, v)|p

v p
dµ

and so,

∫ a

0

∫ c

0
|	λϕ(µ, v)|pdvdµ ≤ a(

p
q +1)

∫ a

0

∫ c

0

|ϕ(µ, v)|p

v p
dvdµ

= ap
∫ a

0

∫ c

0
|Bψ(µ, v)|pdvdµ

where q is the conjugate of p. Thus, we can write
[∫ a

0

∫ c

0
|	λϕ(µ, v)|pdvdµ

] 1
p ≤ a ‖B‖ ‖ψ‖
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which gives the estimate

‖	λ B‖ ≤ a‖B‖. (5.1)

On the other hand, the operator �λ satisfies the following inequality

|�λϕ(µ, v)| ≤ 1

v

∫ a

0
e− 1

v
(Reλ+σ)(a−µ) |ϕ(µ, v)|dµ ≤ 1

v

∫ a

0
|ϕ(µ, v)|dµ.

Using Hölder’s inequality we obtain

|�λϕ(µ, v)| ≤ a1/q

v

[∫ a

0
|ϕ(µ, v)|pdµ

]1/p≤ a1/q
[∫ a

0

|ϕ(µ, v)|p

v p
dµ

]1/p
.

Finally, we have the estimate

‖�λ B‖ ≤ a1/q‖B‖. (5.2)

Next, the hypothesis on K together with the estimate ‖Pλ‖ ≤ e− a
c (Reλ+σ) gives

‖PλK‖ < 1 uniformly on {λ ∈ C : Reλ ≥ −σ }
which implies

‖(I − PλK)−1‖ ≤ 1

1 − ‖K‖ , for Reλ ≥ −σ . (5.3)

Moreover, a simple calculation leads to

‖Qλ‖L(Lp(dv),Xp) ≤ a1/p. (5.4)

Now combining (5.1), (5.2), (5.3), (5.4) together with the hypothesis on
K (‖Ku‖Lp(dv) ≤ ρ ‖u‖X0

p
, ρ > 0), we may write

‖(λ − SK)−1 B‖ ≤ a1/pρ a1/q‖B‖
1 − ‖K‖ + a ‖B‖

=
[ρ + 1 − ‖K‖

1 − ‖K‖
]
‖B‖ a = f (a).

Clearly, f is a continuously increasing function on [0, ∞[ which satisfies f (0) = 0 and
lim

a�→∞ f (a) = +∞. Hence there exists a0 > 0 such that f (a0) < 1. This completes the

proof. �
In what follows, we turn our attention to the bounded part of the transport

operator AK which we denote by N . We will discuss the relationship between the
real eigenvalues of AK and those of N . For the sake of simplicity we will deal here
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with the homogeneous case, i.e. σ(µ, v) = σ(v) and r(µ, v, v′) = r(v, v′). Hence the
bounded part of AK is then defined by

⎧⎨
⎩
N : Lp([0, c]; dv) −→ Lp([0, c]; dv)

ϕ −→ (Nϕ)(v) = −σ(v) ϕ(v) +
∫ c

0
r(v, v′)ϕ(v′)dv′

In the following we denote by P(AK) (resp. P(N )) the set

σ(AK) ∩ {λ ∈ C : Reλ > λK} (resp. σ (N ) ∩ {λ ∈ C : Reλ > λK}).

Theorem 5.2 Suppose that B is a positive regular operator on Xp, and K ≤ Id. Then,
if P(N ) = ∅, then P(AK) = ∅ ∀ a > 0 and the leading eigenvalue of AK is less than or
equal to that of N . Moreover, the latter is less than or equal to −σ + rσ (B).

Proof Since B is regular, then according to Theorem 4.1, for all λ such that
Reλ > −σ , (λ − SK)−1 B is power compact on Xp, 1 ≤ p < +∞. Applying Theorem
III in [30] we conclude that AK has a leading eigenvalue λ with a corresponding
nonnegative eigenfunction ψ , i.e. AKψ = λ ψ . This equation may be written as

−v
∂ψ

∂µ
(µ, v) − (λ + σ(v))ψ(µ, v) +

∫ c

0
r(v, v′)ψ(µ, v′)dv′ = 0. (5.5)

Set

ϕ(v) =
∫ a

0
ψ(µ, v)dµ.

It is clear that ϕ ≥ 0 and ϕ �= 0. By integrating (5.5) with respect to µ, we get

−v [ψ(a, v) − ψ(0, v)] − σ(v)ϕ(v) +
∫ c

0
r(v, v′)ϕ(v′)dv′ = λ ϕ(v).

Taking into account of the hypotheses and the sign of ψ we obtain

−v [ψ(a, v) − ψ(0, v)] = −v[ψ1 − ψ
0] = −v(I − K)ψ

1 ≤ 0 ∀v ∈ [0, c]. (5.6)

Now, Eqs. (5.5) and (5.6) lead to

−σ(v) ϕ + B ϕ ≥ λϕ

and therefore

∫ c

0

r(v, v′)
λ + σ(v)

ϕ ≥ ϕ. (5.7)

Let λ ∈] − σ, +∞[ and define the operator Bλ on Lp([0, c]; dv) by

⎧⎨
⎩

Bλ : Lp([0, c]; dv) −→ Lp([0, c]; dv)

ϕ −→ (Bλϕ)(v) =
∫ c

0

r(v, v′)
λ + σ(v)

ϕ(v′)dv′.
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Since B is a positive regular operator on Xp, then Bλ is positive and compact
on Lp([0, c]; dv). It follows from Corollary 2.1 that rσ (Bλ) is an eigenvalue of Bλ

depending continuously on λ. On the other hand, using Eq. (5.7) and Theorem 2.2
we conclude that rσ (Bλ) ≥ 1. Since lim

λ �→+∞ rσ (Bλ) = 0, then there exists λ0 ≥ λ such

that rσ (Bλ0) = 1. Consequently, there exists ϕ0 �= 0 and ϕ0 ≥ 0 in Lp([0, c]; dv) such
that

Bλ0ϕ0 = ϕ0. (5.8)

This leads to Nϕ0 = λ0ϕ0 and proves the first part of the theorem.
On the other hand, (5.8) may be written in the form

∫ c

0
r(v, v′)ϕ0(v

′)dv′ = (λ0 + σ(v))ϕ0(v) ≥ (λ0 + σ)ϕ0(v).

Since ϕ0 �= 0 and ϕ0 ≥ 0, applying Theorem 2.2 we conclude that rσ (B) ≥ σ + λ0

which ends the proof. �

Corollary 5.1 Suppose that the hypotheses of Theorem 5.2 hold. If the operator
N is subcritical (i.e. P(N ) ⊆ {λ ∈ R : λ < 0}), then the transport operator AK is
subcritical ∀ a > 0.

Remark 5.1 Let λ be in ρ(AK) ∩ ρ(A0) such that rσ ((λ − SK)−1 B) < 1. Then

(λ − SK − B)−1 =
∑
n≥0

[ (λ − SK)−1 B ]n(λ − SK)−1.

The positivity of B and the fact that (λ − SK)−1 ≥ (λ − S0)
−1 ≥ 0 imply that

[ (λ − SK)−1 B ]n(λ − SB)−1 ≥ [ (λ − S0)
−1S ]n(λ − S0)

−1 ≥ 0

and therefore,

R(λ, AK) ≥ R(λ, A0) ≥ 0. (5.9)

Next, using (5.9) and Proposition 2.5 in [24, p. 67], it follows that if P(A0) �= ∅, then
P(AK) �= ∅.

6 The Strict Monotonicity of the Leading Eigenvalue of AK

The objective of this section is to study the strict growth properties of the leading
eigenvalue with respect to the parameters of the equation. We start our study by
discussing the incidence of the boundary operators on the monotony of the leading
eigenvalue. To this end, we consider two positive boundary operators K1 and K2

satisfying K1 ≤ K2 and K1 �= K2. We denote by λ(K) the leading eigenvalue of AK

(when it exists).
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Theorem 6.1 Suppose that the assumption (A3) is satisfied and λ(K1) exists, then
λ(K2) exists and λ(K1) ≤ λ(K2). Further, if one of the following conditions (i) and
(ii) is satisfied, then λ(K1) < λ(K2).

(i) There exists an integer n ≥ 1 such that (	λ(K1))]n is strictly positive.

(ii) There exists an integer n ≥ 1 such that
(

Qλ(K1)K2(I − Pλ(K1)K2)
−1�λ(K1) B

)n
is

strictly positive.

Remark 6.1 More practical criterions are given in Corollary 6.1.

Proof of Theorem 6.1 Since K1 ≤ K2, then λK1 ≤ λK2 . The positivity of the operators
K1, K2, B and the fact that K1 ≤ K2 imply that, for all λ > λK2 , (λ − SK1)

−1 B ≤
(λ − SK2)

−1 B and therefore rσ ((λ − SK1)
−1 B) ≤ rσ ((λ − SK2)

−1 B). On the other
hand, by Theorem 4.1, (λ − SK1)

−1 B is power compact on Xp, 1 ≤ p < +∞. So, using
Gohberg-Shmul’yan’s theorem and arguing as in the proof of Theorem III in [30], we
infer that P(AK1) consists of at most eigenvalues with finite algebraic multiplicity.
On the other hand, it is clear that λ ∈ P(AK1) if and only if 1 is an eigenvalue of
(λ − SK1)

−1 B. Accordingly, since λ(K1) ∈ P(AK1), we have

rσ [(λ(K1) − SK1)
−1 B] ≥ 1. (6.1)

Set χ1 = (λ(K1) − SK1)
−1 B and χ2 = (λ(K1) − SK2)

−1 B. By Theorem 4.1, χ2 is power
compact on Xp. Moreover, if one of the conditions above is satisfied, then χ2 has a
strictly positive power. Now, the fact that χ1 ≤ χ2, (6.1) and Theorem 2.1 give

rσ (χ2) = rσ [(λ(K1) − SK2)
−1 B] > 1

But the function ]s(SK2), +∞[� λ → rσ [(λ − SK2)
−1 B] is strictly decreasing. Hence,

there exists a unique λ′ > λ(K1) such that rσ [(λ′ − SK2)
−1 B] = 1. This immediately

implies that λ′ = λ(K2) which completes the proof. �

We deduce the following corollary which provides a practical criteria of
monotonicity of λ(K).

Corollary 6.1 Suppose that B satisfies the hypothesis (A3) and λ(K1) exists. Then
λ(K2) exists and λ(K1) ≤ λ(K2). Further, if one of the following conditions is
satisfied, then λ(K1) < λ(K2).

(i) K2 is strictly positive and Ker(B) ∩ {ϕ ∈ Xp, ϕ ≥ 0} = {0}.
(ii) There exists an integer n ≥ 1 such that (Pλ(K1)K2)

n is strictly positive and
Ker(B) ∩ {ϕ ∈ Xp, ϕ ≥ 0} = {0}.

The proof of this corollary is similar to that of Theorem 6.1. It uses the fact that,
for λ > −σ , the operators Pλ and Qλ are two multiplication operators by strictly
positive functions.

In the following, we shall study the strict monotonicity of the leading eigenvalue of
AK with respect to the collision operators. In fact, consider B1 and B2 two operators
satisfying the hypothesis (A3), B1 ≤ B2 and B1 �= B2. We denote by λ(B) the leading
eigenvalue of AK = SK + B (when it exists).
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Proposition 6.1 Assume that B1 and B2 satisfy (A3) and λ(B1) exists. Then λ(K2)

exists and λ(B1) ≤ λ(B2). Further, if one of the following conditions is satisfied, then
λ(B1) < λ(B2).

(i) There exists an integer n ≥ 1 such that [	λ(B1) B2]n is strictly positive.
(ii) There exists an integer n ≥ 1 such that [Qλ(B1)K(I − Pλ(B1)K)−1�λ(B1) B2]n is

strictly positive.

Proof Since B1 is regular, as in the proof of Theorem 6.1, we have P(SK + B1) �= ∅
and λ(B1) ∈ P(SK + B1). This implies that

rσ [(λ(B1) − SK)−1 B1] ≥ 1. (6.2)

Set χ1 = (λ(B1) − SK)−1 B1 and χ2 = (λ(B1) − SK)−1 B2. Clearly χ1 ≤ χ2 and, by
Theorem 4.1, χ2 is power compact on Xp. Moreover, if one of the conditions above
is satisfied, then χ2 has a strictly positive power. Using (6.2) and applying Theorem
2.1 we conclude that

rσ (χ2) = rσ [(λ(B1) − SK)−1 B2] > 1

Since the function ]λK, +∞[� λ → rσ [(λ − SK)−1 B2] is strictly decreasing, there
exists a unique λ′ > λ(B1) such that rσ [(λ′ − SK)−1 B2] = 1. This implies that λ′ =
λ(B2) which completes the proof. �

As an immediate consequence of Proposition 6.1, we have:

Corollary 6.2 Assume that λ(B1) exists, then λ(B2) exists and λ(B1) ≤ λ(B2). Fur-
ther, if one of the following conditions is satisfied, then λ(B1) < λ(B2).

(i) K is strictly positive and Ker(B2) ∩ {ϕ ∈ Xp, ϕ ≥ 0} = {0}.
(ii) There exists an integer n ≥ 1 such that (Pλ(B1)K)n is strictly positive and

Ker(B2) ∩ {ϕ ∈ Xp, ϕ ≥ 0} = {0}.

7 Essential Spectra of AK

The aim of this section is to describe in detail the various essential spectra of the
operator AK for large classes of transition and collision operators. For the reader’s
convenience, we first recall some notations and definitions, referring for instance to
[5, 6, 9, 13, 27].

Let X be a Banach space. We denote by C(X) (resp. L(X)) the set of all closed,
densely defined (resp. bounded) linear operators on X. The subset of all compact
operators of L(X) is designated by K(X). An operator A ∈ C(X) is said to be in
�+(X) if its range, R(A), is closed in X and the dimension α(A) of the null space of
A, N(A), is finite. It is said to be in �−(X) if R(A) is closed in X and the codimension
β(A) of R(A) is finite. Operators in �±(X) := �+(X) ∪ �−(X) are called semi-
Fredholm operators. For such operators the index is defined as i(A) = α(A) − β(A).
The set of Fredholm operators is defined by �(X) := �+(X) ∩ �−(X). A complex
number λ is in �+A, �−A, �±A or �A if λ − A belongs to �+(X), �−(X), �±(X) or
�(X), respectively.
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Definition 7.1 Let X be a Banach space and let F ∈ L(X). F is called a Fredholm
perturbation if U + F ∈ �(X) whenever U ∈ �(X). Let F(X) denote the set of
Fredholm perturbations on X.

Various notions of essential spectrum appear in the applications of spectral theory,
most are enlargement of the continuous spectrum. For A ∈ C(X), let ρ1(A) := �+A,
ρ2(A) := �−A, ρ3(A) := �+A ∪ �−A, ρ4(A) := �A, ρ5(A) the set of those λ ∈ �A

such that i(λ − A) = 0 and ρ6(A) the set of those λ ∈ ρ5(A) such that all scalars near
λ are in ρ(A). Following [9], we let σei(A) = C\ρi(A), 1 ≤ i ≤ 6. These are called
essential spectra of A. Note that, in general, we have

σe3(A) ⊆ σe4(A) ⊆ σe5(A) ⊆ σe6(A).

But if X is a Hilbert space and A is self-adjoint, then

σe1(A) = σe2(A) = σe3(A) = σe4(A) = σe5(A) = σe6(A).

A simple consequence of these definitions is that σei(.), i = 1, ..., 6, are closed subsets
of the complex plane.

Definition 7.2 Let X be a Banach space and let T ∈ L(X). T is said to be strictly
singular, if for every infinite dimensional subspace M of X, the restriction of T to M
is not a homeomorphism. We denote by S(X) the set of all strictly singular operators
on X.

For the properties of strictly singular operators we refer to [7, 12]. In general,
strictly singular operators are not compact and S(X) is a closed two-sided ideal of
L(X) containing K(X). If X is a Hilbert space, then S(X) = K(X).

A detailed analysis of essential spectra on general Banach spaces by means
of the concept of Fredholm perturbations was done in [17]. On the other hand,
when dealing with the spaces Lp(dµ) := Lp(�, �, dµ), where (�, �, µ) denotes
a positive measure space, we have

F(Lp(dµ)) = S(Lp(dµ)) (7.1)

(cf. [17, p. 292]). Using (7.1), we can state the following result which is a special case
of Theorem 3.3 in [17].

Proposition 7.1 Let A and B be two elements of C(Lp(dµ)). If, for some λ ∈ ρ(A) ∩
ρ(B), (λ − A)−1 − (λ − B)−1 ∈ S(Lp(dµ)), then

σei(A) = σei(B), i = 1, . . . , 5.

Moreover, if Cσe5(A) [the complement of σe5(A)] is connected and neither ρ(A) nor
ρ(B) is empty, then

σe6(A) = σe6(B).

After these preparations, we are now in a position to discuss the invariance
properties of essential spectra of transport operators.
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We know from Section 2 (Eq. (2.6)) that, if Reλ > λK, then λ ∈ ρ(SK) and (λ −
SK)−1 is given by

(λ − SK)−1 =
∑
n≥0

QλK(Pλ K)n�λ + 	λ.

On the other hand, the operator 	λ is nothing else but (λ − S0)
−1, i.e. K = 0. So, if

Reλ > λK, then λ ∈ ρ(SK) ∩ ρ(S0) and

(λ − SK)−1 − (λ − S0)
−1 = Vλ. (7.2)

where Vλ :=
∑
n≥0

QλK(Pλ K)n�λ.

Let λ ∈ C be such that Reλ ≤ −λ∗. The solution of the eigenvalue problem
(λ − S0)ψ = 0 is formally given by

ψ(µ, v) = k(v)e− 1
v
(λ+σ(v))µ. (7.3)

Moreover, ψ must satisfy the boundary conditions, i.e., ψ0 = 0. So, we obtain k(v) =
0 and consequently, ψ = 0. This shows that the point spectrum of the operator S0 is
empty, i.e., σp(S0) = ∅.

Let S∗
0 denotes the dual operator of S0. It is given by

⎧⎪⎪⎨
⎪⎪⎩

S∗
0 : D(S∗

0) ⊂ Xq −→ Xq

ψ −→ S∗
0ψ(µ, v) = v

∂ψ

∂µ
(µ, v) − σ(µ, v)ψ(µ, v)

D(S∗
0) = {ψ ∈ Wq such that ψ1 = 0},

where q is the conjugate of p. Consider now the eigenvalue problem (λ − S∗
0)ψ =

0 with Reλ ≤ −λ∗ (because σ(S0) = σ(S∗
0)). In view of the boundary conditions, a

straightforward computation shows that the problem above admits only the trivial
solution, i.e. σp(S∗

0) = ∅. Now using the inclusion σr(S0) ⊆ σp(S∗
0) we conclude that

σr(S0) = ∅. This leads to the following lemma.

Lemma 7.1 With the notations introduced above, we have

σ(S0) = σc(S0) = {λ ∈ C : Reλ ≤ −λ∗}.

As an immediate consequence of Lemma 7.1 and the fact that all essential spectra
are enlargements of the continuous spectrum we have

σei(S0) = {λ ∈ C : Reλ ≤ −σ } for i = 1, ..., 6. (7.4)

Note that the perturbation of the boundary conditions of the operator S0 leads to
the Eq. (7.2) above. So, if the transition operator K is strictly singular (in applications,
K is compact or weakly compact), then by Lemma 461 in [12], Vλ is strictly singular
too. So Lemma 7.1, Proposition 7.1 and (7.3) give

σei(SK) = {λ ∈ C : Reλ ≤ −σ }, i = 1, 2, 3, 4 and 5. (7.5)
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Recall that the transport operator AK is defined as a bounded perturbation of SK,
i.e. AK = SK + B where B is the operator defined by (4.1). We now introduce the
class G(Xp) of collision operators defined by

G(Xp) =
{

B ∈ L(Xp) : (λ − SK)−1 B ∈ S(Xp) for some λ ∈ ρ(SK)
}
.

Clearly if B is a collision operator on Xp satisfying (A3), then it follows from
Theorem 4.1 that (λ − SK)−1 B is compact on Xp for 1 < p < ∞ (resp. weakly
compact on X1). Hence, using the inclusion K(Xp) ⊆ S(Xp) (resp. the fact that
the set of weakly compact operators on X1 coincide with S(X1) (cf. [25])), we infer
that B ∈ G(Xp). In particular, the set of collision operators with kernels in the form
r(v, v′) = f (v) g(v′) with f ∈ Lp([0, c], dv) and g ∈ Lq([0, c], dv), q = p

p−1 , is
contained in G(Xp). This shows that G(Xp) �= ∅.

Let λ ∈ ρ(SK) be such that rσ ((λ − SK)−1 B) < 1, then λ ∈ ρ(SK + B) and

(λ − AK)−1 − (λ − SK)−1 =
∑
n≥1

[(λ − SK)−1 B]n(λ − SK)−1. (7.6)

Theorem 7.1 Let p ∈ [1, ∞). If the collision operator B ∈ G(Xp), then

σei(AK) = σei(SK), for i = 1, ..., 5.

Moreover, if K is strictly singular, then

σei(AK) = {λ ∈ C : Reλ ≤ −σ }, for i = 1, ..., 5.

Proof Since B ∈ G(Xp), according to (7.4) and Theorem 4.1, (λ − AH)−1 −
(λ − SK)−1 ∈ G(Xp). Then, the first claim follows from Proposition 7.1. To establish
the second claim, observe that Eqs. (7.2) and (7.5) give

(λ − AK)−1 − (λ − S0)
−1 = Vλ+

∑
n≥1

[(λ − SK)−1 B]n (λ − SK)−1.

Next, if K is strictly singular, then Vλ is strictly singular too. This together with
Theorem 4.1 leads to (λ − AK)−1 − (λ − S0)

−1 ∈ S(Xp). Again the use of Lemma
7.1 and Proposition 7.1 gives the result. �

Acknowledgements The authors are grateful to the referee for his patience and
their constructive remarks and suggestions which helped us to improve the paper.

References

1. Anselone, P. M., Palmer, T. W.: Collectively compact sets of linear operators. Pacific J. Math.,
25, 417-422 (1968)

2. Dautray, R., Lions, J. L.: Analyse Mathématique et Calcul Numérique, Vol. 9. Masson, Paris,
(1988)



62 Acta Appl Math (2006) 92: 37–62

3. P. Dodds, P., Fremlin, D. R.: Compact operators in Banach lattices. Israel J. Math., 34, 287-320
(1979)

4. Dunford, N., Schwartz, J. T.: Linear Operators: Part I. Wiley-Interscience, New York, (1958)
5. Gohberg, I. C., Krein, G.: Fundamental theorems on deficiency numbers, root numbers and

indices of linear operators. Amer. Math. Soc. Transl. Ser. 2, 13, 185-264 (1960)
6. Gohberg, I. C., A. Markus, A., Feldman, I. A.: Normaly solvable operators and ideals associated

with them. Amer. Math. Soc. Transl. Ser. 2, 61, 63-84 (1967)
7. Goldberg, S.: Unbounded Linear Operators. McGraw-Hill, New-York, (1966)
8. Greenberg, W., Van der Mee, C., Protopopescu, V.: Boundary Value Problems in Abstract

Kinetic Theory. Birkhäuser, Basel, (1987)
9. Gustafson, K., Weidmann, J.: On the essential spectrum. J. Math. Anal. Appl., 25, 121-127 (1969)

10. Jörgens, K.: Linear Integral Operators. Pitman Advanced Publishing Program, (1982)
11. Kaper, H. G., Lekkerkerker, C. G., Hejtmanek, J.: Spectral Methods in Linear Transport Theory.

Birkhäuser Basel,(1982)
12. Kato, T.: Perturbation theory for nullity, deficiency and other quantities of linear operators. J.

Anal. Math., 6, 261-322 (1958)
13. Kato, T.: Perturbation Theory for Linear Operators. Springer-Verlag, New York, (1966)
14. Krasnoselskii, M. A.: Positive Solutions of Operator Equations. Noordhoff, Groningen, (1964)
15. Latrach, K.: Compactness properties for linear transport operator with abstract boundary condi-

tions in slab geometry. Transport Theory Statist. Phys., 22 39-64 (1993)
16. Latrach, K.: Compactness results for transport equations and applications. Math. Models

Methods Appl. Sci., 11 181-1202 (2001)
17. Latrach, K., A. Dehici, A.: Fredholm, semi-Fredholm perturbations and essential spectra. J.

Math. Anal. Appl., 259 277-301 (2001)
18. Latrach, K., Jeribi, A.: A nonlinear boundary value problem arising in growing cell population.

Nonlinear Anal. TMA, 36 843-862 (1999)
19. Latrach, K., Jeribi, A.: Sur une équation de transport intervenant en dynamique des populations.

C. R. Acad. Sci. Paris, Sér. I Math. 325 1087-1090 (1997)
20. Lebowitz, J. L., Rubinow, S. I.: A theory for the age and generation time distribution of a

microbial population. J. Math. Biol., 1 17-36 (1974)
21. Marek, I.: Frobenius theory of positive operators : Comparison theorems and applications.

SIAM. J. Appl. Math., 19 607-628 (1970)
22. Meyer-Nieberg, P.: Banach Lattices. Springer-Verlag, New York, (1991)
23. Mokhtar-Kharroubi, M.: Propriétés spéctrales de l’opérateur de transport dans le cas anisotrope.

Thèse de Doctorat de 3ème cycle, Université Paris 6, (1983)
24. Nagel (ed.), R.: One-parameter Semigroups of Positive Operators. Lecture Notes in Math., 1184,

Springer Verlag, (1986)
25. Pelczynski, A.: Strictly singular and strictly cosingular operators. Bull. Acad. Polon. Sci., 13 31-41

(1965)
26. Rotenberg, M.: Transport theory for growing cell populations. J. Theor. Biol. 103 181-199 (1983)
27. Schechter, M.: On the essential spectrum of an arbitrary Operator. J. Math. Anal. Appl., 13,

205-215 (1966)
28. Van der Mee, C.: A transport equation modelling cell growth. In: P. Tautu (ed.), Stochastic Mod-

elling in Biology. Relevant Mathematical Concepts and Recent Applications, Word Sientific,
Singapore, pp. 381-398 (1990)

29. Van der Mee, C., Zweifel, P.: A Fokker-Plank equation for growing cell populations. J. Math.
Biol. 25, 61-72 (1987)

30. Vidav, I.: Existence and uniqueness of nonnegative eigenfunction of the Boltzmann operator. J.
Math. Anal. Appl., 22 144-155 (1968)

31. Zerner, M.: Quelques propriétés spectrales des opérateurs positifs. J. Funct. Anal., 72 381-417
(1987)


	Spectral Analysis of a Transport Operator Arising  in Growing Cell Populations
	Abstract
	Introduction
	Notations and Preliminaries
	Spectral Properties of SK
	Compactness Results
	Existence of the Leading Eigenvalues of AK
	The Strict Monotonicity of the Leading Eigenvalue of AK
	Essential Spectra of AK
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AardvarkPSMT
    /AceBinghamSH
    /AddisonLibbySH
    /AGaramond-Italic
    /AGaramond-Regular
    /AkbarPlain
    /Albertus-Bold
    /AlbertusExtraBold-Regular
    /AlbertusMedium-Italic
    /AlbertusMedium-Regular
    /AlfonsoWhiteheadSH
    /Algerian
    /AllegroBT-Regular
    /AmarilloUSAF
    /AmazoneBT-Regular
    /AmeliaBT-Regular
    /AmerigoBT-BoldA
    /AmerTypewriterITCbyBT-Medium
    /AndaleMono
    /AndyMacarthurSH
    /Animals
    /AnneBoleynSH
    /Annifont
    /AntiqueOlive-Bold
    /AntiqueOliveCompact-Regular
    /AntiqueOlive-Italic
    /AntiqueOlive-Regular
    /AntonioMountbattenSH
    /ArabiaPSMT
    /AradLevelVI
    /ArchitecturePlain
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialMTBlack-Regular
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeLight
    /ArialUnicodeLight-Bold
    /ArialUnicodeLight-BoldItalic
    /ArialUnicodeLight-Italic
    /ArrowsAPlentySH
    /ArrusBT-Bold
    /ArrusBT-BoldItalic
    /ArrusBT-Italic
    /ArrusBT-Roman
    /Asiana
    /AssadSadatSH
    /AvalonPSMT
    /AvantGardeITCbyBT-Book
    /AvantGardeITCbyBT-BookOblique
    /AvantGardeITCbyBT-Demi
    /AvantGardeITCbyBT-DemiOblique
    /AvantGardeITCbyBT-Medium
    /AvantGardeITCbyBT-MediumOblique
    /BankGothicBT-Light
    /BankGothicBT-Medium
    /Baskerville-Bold
    /Baskerville-Normal
    /Baskerville-Normal-Italic
    /BaskOldFace
    /Bauhaus93
    /Bavand
    /BazookaRegular
    /BeauTerrySH
    /BECROSS
    /BedrockPlain
    /BeeskneesITC
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BenguiatITCbyBT-Bold
    /BenguiatITCbyBT-BoldItalic
    /BenguiatITCbyBT-Book
    /BenguiatITCbyBT-BookItalic
    /BennieGoetheSH
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BernhardBoldCondensedBT-Regular
    /BernhardFashionBT-Regular
    /BernhardModernBT-Bold
    /BernhardModernBT-BoldItalic
    /BernhardModernBT-Italic
    /BernhardModernBT-Roman
    /Bethel
    /BibiGodivaSH
    /BibiNehruSH
    /BKenwood-Regular
    /BlackadderITC-Regular
    /BlondieBurtonSH
    /BodoniBlack-Regular
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /BodoniBT-Bold
    /BodoniBT-BoldItalic
    /BodoniBT-Italic
    /BodoniBT-Roman
    /Bodoni-Italic
    /BodoniMTPosterCompressed
    /Bodoni-Regular
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolFive
    /BookshelfSymbolFour
    /BookshelfSymbolOne-Regular
    /BookshelfSymbolThree-Regular
    /BookshelfSymbolTwo-Regular
    /BookwomanDemiItalicSH
    /BookwomanDemiSH
    /BookwomanExptLightSH
    /BookwomanLightItalicSH
    /BookwomanLightSH
    /BookwomanMonoLightSH
    /BookwomanSwashDemiSH
    /BookwomanSwashLightSH
    /BoulderRegular
    /BradleyHandITC
    /Braggadocio
    /BrailleSH
    /BRectangular
    /BremenBT-Bold
    /BritannicBold
    /Broadview
    /Broadway
    /BroadwayBT-Regular
    /BRubber
    /Brush445BT-Regular
    /BrushScriptMT
    /BSorbonna
    /BStranger
    /BTriumph
    /BuckyMerlinSH
    /BusoramaITCbyBT-Medium
    /Caesar
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-Italic
    /CalligrapherRegular
    /CameronStendahlSH
    /Candy
    /CandyCaneUnregistered
    /CankerSore
    /CarlTellerSH
    /CarrieCattSH
    /CaslonOpenfaceBT-Regular
    /CassTaylorSH
    /CDOT
    /Centaur
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturyOldStyle-BoldItalic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Cezanne
    /CGOmega-Bold
    /CGOmega-BoldItalic
    /CGOmega-Italic
    /CGOmega-Regular
    /CGTimes-Bold
    /CGTimes-BoldItalic
    /CGTimes-Italic
    /CGTimes-Regular
    /Charting
    /ChartreuseParsonsSH
    /ChaseCallasSH
    /ChasThirdSH
    /ChaucerRegular
    /CheltenhamITCbyBT-Bold
    /CheltenhamITCbyBT-BoldItalic
    /CheltenhamITCbyBT-Book
    /CheltenhamITCbyBT-BookItalic
    /ChildBonaparteSH
    /Chiller-Regular
    /ChuckWarrenChiselSH
    /ChuckWarrenDesignSH
    /CityBlueprint
    /Clarendon-Bold
    /Clarendon-Book
    /ClarendonCondensedBold
    /ClarendonCondensed-Bold
    /ClarendonExtended-Bold
    /ClassicalGaramondBT-Bold
    /ClassicalGaramondBT-BoldItalic
    /ClassicalGaramondBT-Italic
    /ClassicalGaramondBT-Roman
    /ClaudeCaesarSH
    /CLI
    /Clocks
    /ClosetoMe
    /CluKennedySH
    /CMBX10
    /CMBX5
    /CMBX7
    /CMEX10
    /CMMI10
    /CMMI5
    /CMMI7
    /CMMIB10
    /CMR10
    /CMR5
    /CMR7
    /CMSL10
    /CMSY10
    /CMSY5
    /CMSY7
    /CMTI10
    /CMTT10
    /CoffeeCamusInitialsSH
    /ColetteColeridgeSH
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CommercialPiBT-Regular
    /CommercialScriptBT-Regular
    /Complex
    /CooperBlack
    /CooperBT-BlackHeadline
    /CooperBT-BlackItalic
    /CooperBT-Bold
    /CooperBT-BoldItalic
    /CooperBT-Medium
    /CooperBT-MediumItalic
    /CooperPlanck2LightSH
    /CooperPlanck4SH
    /CooperPlanck6BoldSH
    /CopperplateGothicBT-Bold
    /CopperplateGothicBT-Roman
    /CopperplateGothicBT-RomanCond
    /CopticLS
    /Cornerstone
    /Coronet
    /CoronetItalic
    /Cotillion
    /CountryBlueprint
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CSSubscript
    /CSSubscriptBold
    /CSSubscriptItalic
    /CSSuperscript
    /CSSuperscriptBold
    /Cuckoo
    /CurlzMT
    /CybilListzSH
    /CzarBold
    /CzarBoldItalic
    /CzarItalic
    /CzarNormal
    /DauphinPlain
    /DawnCastleBold
    /DawnCastlePlain
    /Dekker
    /DellaRobbiaBT-Bold
    /DellaRobbiaBT-Roman
    /Denmark
    /Desdemona
    /Diploma
    /DizzyDomingoSH
    /DizzyFeiningerSH
    /DocTermanBoldSH
    /DodgenburnA
    /DodoCasalsSH
    /DodoDiogenesSH
    /DomCasualBT-Regular
    /Durian-Republik
    /Dutch801BT-Bold
    /Dutch801BT-BoldItalic
    /Dutch801BT-ExtraBold
    /Dutch801BT-Italic
    /Dutch801BT-Roman
    /EBT's-cmbx10
    /EBT's-cmex10
    /EBT's-cmmi10
    /EBT's-cmmi5
    /EBT's-cmmi7
    /EBT's-cmr10
    /EBT's-cmr5
    /EBT's-cmr7
    /EBT's-cmsy10
    /EBT's-cmsy5
    /EBT's-cmsy7
    /EdithDaySH
    /Elephant-Italic
    /Elephant-Regular
    /EmGravesSH
    /EngelEinsteinSH
    /English111VivaceBT-Regular
    /English157BT-Regular
    /EngraversGothicBT-Regular
    /EngraversOldEnglishBT-Bold
    /EngraversOldEnglishBT-Regular
    /EngraversRomanBT-Bold
    /EngraversRomanBT-Regular
    /EnviroD
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /ErasITC-Ultra
    /ErnestBlochSH
    /EstrangeloEdessa
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /EuroRoman
    /EuroRomanOblique
    /ExxPresleySH
    /FencesPlain
    /Fences-Regular
    /FifthAvenue
    /FigurineCrrCB
    /FigurineCrrCBBold
    /FigurineCrrCBBoldItalic
    /FigurineCrrCBItalic
    /FigurineTmsCB
    /FigurineTmsCBBold
    /FigurineTmsCBBoldItalic
    /FigurineTmsCBItalic
    /FillmoreRegular
    /Fitzgerald
    /Flareserif821BT-Roman
    /FleurFordSH
    /Fontdinerdotcom
    /FontdinerdotcomSparkly
    /FootlightMTLight
    /ForefrontBookObliqueSH
    /ForefrontBookSH
    /ForefrontDemiObliqueSH
    /ForefrontDemiSH
    /Fortress
    /FractionsAPlentySH
    /FrakturPlain
    /Franciscan
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /FranklinUnic
    /FredFlahertySH
    /Freehand575BT-RegularB
    /Freehand591BT-RegularA
    /FreestyleScript-Regular
    /Frutiger-Roman
    /FTPMultinational
    /FTPMultinational-Bold
    /FujiyamaPSMT
    /FuturaBlackBT-Regular
    /FuturaBT-Bold
    /FuturaBT-BoldCondensed
    /FuturaBT-BoldItalic
    /FuturaBT-Book
    /FuturaBT-BookItalic
    /FuturaBT-ExtraBlack
    /FuturaBT-ExtraBlackCondensed
    /FuturaBT-ExtraBlackCondItalic
    /FuturaBT-ExtraBlackItalic
    /FuturaBT-Light
    /FuturaBT-LightItalic
    /FuturaBT-Medium
    /FuturaBT-MediumCondensed
    /FuturaBT-MediumItalic
    /GabbyGauguinSH
    /GalliardITCbyBT-Bold
    /GalliardITCbyBT-BoldItalic
    /GalliardITCbyBT-Italic
    /GalliardITCbyBT-Roman
    /Garamond
    /Garamond-Antiqua
    /Garamond-Bold
    /Garamond-Halbfett
    /Garamond-Italic
    /Garamond-Kursiv
    /Garamond-KursivHalbfett
    /Garcia
    /GarryMondrian3LightItalicSH
    /GarryMondrian3LightSH
    /GarryMondrian4BookItalicSH
    /GarryMondrian4BookSH
    /GarryMondrian5SBldItalicSH
    /GarryMondrian5SBldSH
    /GarryMondrian6BoldItalicSH
    /GarryMondrian6BoldSH
    /GarryMondrian7ExtraBoldSH
    /GarryMondrian8UltraSH
    /GarryMondrianCond3LightSH
    /GarryMondrianCond4BookSH
    /GarryMondrianCond5SBldSH
    /GarryMondrianCond6BoldSH
    /GarryMondrianCond7ExtraBoldSH
    /GarryMondrianCond8UltraSH
    /GarryMondrianExpt3LightSH
    /GarryMondrianExpt4BookSH
    /GarryMondrianExpt5SBldSH
    /GarryMondrianExpt6BoldSH
    /GarryMondrianSwashSH
    /Gaslight
    /GatineauPSMT
    /Gautami
    /GDT
    /Geometric231BT-BoldC
    /Geometric231BT-LightC
    /Geometric231BT-RomanC
    /GeometricSlab703BT-Bold
    /GeometricSlab703BT-BoldCond
    /GeometricSlab703BT-BoldItalic
    /GeometricSlab703BT-Light
    /GeometricSlab703BT-LightItalic
    /GeometricSlab703BT-Medium
    /GeometricSlab703BT-MediumCond
    /GeometricSlab703BT-MediumItalic
    /GeometricSlab703BT-XtraBold
    /GeorgeMelvilleSH
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansBC
    /GillSans-Bold
    /GillSans-BoldItalic
    /GillSansCondensed-Bold
    /GillSansCondensed-Regular
    /GillSansExtraBold-Regular
    /GillSans-Italic
    /GillSansLight-Italic
    /GillSansLight-Regular
    /GillSans-Regular
    /GoldMinePlain
    /Gonzo
    /GothicE
    /GothicG
    /GothicI
    /GoudyHandtooledBT-Regular
    /GoudyOldStyle-Bold
    /GoudyOldStyle-BoldItalic
    /GoudyOldStyleBT-Bold
    /GoudyOldStyleBT-BoldItalic
    /GoudyOldStyleBT-Italic
    /GoudyOldStyleBT-Roman
    /GoudyOldStyleExtrabold-Regular
    /GoudyOldStyle-Italic
    /GoudyOldStyle-Regular
    /GoudySansITCbyBT-Bold
    /GoudySansITCbyBT-BoldItalic
    /GoudySansITCbyBT-Medium
    /GoudySansITCbyBT-MediumItalic
    /GraceAdonisSH
    /Graeca
    /Graeca-Bold
    /Graeca-BoldItalic
    /Graeca-Italic
    /Graphos-Bold
    /Graphos-BoldItalic
    /Graphos-Italic
    /Graphos-Regular
    /GreekC
    /GreekS
    /GreekSans
    /GreekSans-Bold
    /GreekSans-BoldOblique
    /GreekSans-Oblique
    /Griffin
    /GrungeUpdate
    /Haettenschweiler
    /HankKhrushchevSH
    /HarlowSolid
    /HarpoonPlain
    /Harrington
    /HeatherRegular
    /Hebraica
    /HeleneHissBlackSH
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /HenryPatrickSH
    /Herald
    /HighTowerText-Italic
    /HighTowerText-Reg
    /HogBold-HMK
    /HogBook-HMK
    /HomePlanning
    /HomePlanning2
    /HomewardBoundPSMT
    /Humanist521BT-Bold
    /Humanist521BT-BoldCondensed
    /Humanist521BT-BoldItalic
    /Humanist521BT-Italic
    /Humanist521BT-Light
    /Humanist521BT-LightItalic
    /Humanist521BT-Roman
    /Humanist521BT-RomanCondensed
    /IBMPCDOS
    /IceAgeD
    /Impact
    /Incised901BT-Bold
    /Incised901BT-Light
    /Incised901BT-Roman
    /Industrial736BT-Italic
    /Informal011BT-Roman
    /InformalRoman-Regular
    /Intrepid
    /IntrepidBold
    /IntrepidOblique
    /Invitation
    /IPAExtras
    /IPAExtras-Bold
    /IPAHighLow
    /IPAHighLow-Bold
    /IPAKiel
    /IPAKiel-Bold
    /IPAKielSeven
    /IPAKielSeven-Bold
    /IPAsans
    /ISOCP
    /ISOCP2
    /ISOCP3
    /ISOCT
    /ISOCT2
    /ISOCT3
    /Italic
    /ItalicC
    /ItalicT
    /JesterRegular
    /Jokerman-Regular
    /JotMedium-HMK
    /JuiceITC-Regular
    /JupiterPSMT
    /KabelITCbyBT-Book
    /KabelITCbyBT-Ultra
    /KarlaJohnson5CursiveSH
    /KarlaJohnson5RegularSH
    /KarlaJohnson6BoldCursiveSH
    /KarlaJohnson6BoldSH
    /KarlaJohnson7ExtraBoldCursiveSH
    /KarlaJohnson7ExtraBoldSH
    /KarlKhayyamSH
    /Karnack
    /Kartika
    /Kashmir
    /KaufmannBT-Bold
    /KaufmannBT-Regular
    /KeplerStd-Black
    /KeplerStd-BlackIt
    /KeplerStd-Bold
    /KeplerStd-BoldIt
    /KeplerStd-Italic
    /KeplerStd-Light
    /KeplerStd-LightIt
    /KeplerStd-Medium
    /KeplerStd-MediumIt
    /KeplerStd-Regular
    /KeplerStd-Semibold
    /KeplerStd-SemiboldIt
    /KeystrokeNormal
    /Kidnap
    /KidsPlain
    /Kindergarten
    /KinoMT
    /KissMeKissMeKissMe
    /KoalaPSMT
    /KorinnaITCbyBT-Bold
    /KorinnaITCbyBT-KursivBold
    /KorinnaITCbyBT-KursivRegular
    /KorinnaITCbyBT-Regular
    /KristenITC-Regular
    /Kristin
    /KunstlerScript
    /KyotoSong
    /LainieDaySH
    /LandscapePlanning
    /Lapidary333BT-Bold
    /Lapidary333BT-BoldItalic
    /Lapidary333BT-Italic
    /Lapidary333BT-Roman
    /Latha
    /LatinoPal3LightItalicSH
    /LatinoPal3LightSH
    /LatinoPal4ItalicSH
    /LatinoPal4RomanSH
    /LatinoPal5DemiItalicSH
    /LatinoPal5DemiSH
    /LatinoPal6BoldItalicSH
    /LatinoPal6BoldSH
    /LatinoPal7ExtraBoldSH
    /LatinoPal8BlackSH
    /LatinoPalCond4RomanSH
    /LatinoPalCond5DemiSH
    /LatinoPalCond6BoldSH
    /LatinoPalExptRomanSH
    /LatinoPalSwashSH
    /LatinWidD
    /LatinWide
    /LeeToscanini3LightSH
    /LeeToscanini5RegularSH
    /LeeToscanini7BoldSH
    /LeeToscanini9BlackSH
    /LeeToscaniniInlineSH
    /LetterGothic12PitchBT-Bold
    /LetterGothic12PitchBT-BoldItal
    /LetterGothic12PitchBT-Italic
    /LetterGothic12PitchBT-Roman
    /LetterGothic-Bold
    /LetterGothic-BoldItalic
    /LetterGothic-Italic
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LetterGothic-Regular
    /LibrarianRegular
    /LinusPSMT
    /Lithograph-Bold
    /LithographLight
    /LongIsland
    /LubalinGraphMdITCTT
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /LydianCursiveBT-Regular
    /Magneto-Bold
    /Mangal-Regular
    /Map-Symbols
    /MarcusHobbesSH
    /Mariah
    /Marigold
    /MaritaMedium-HMK
    /MaritaScript-HMK
    /Market
    /MartinMaxxieSH
    /MathTypeMed
    /MatisseITC-Regular
    /MaturaMTScriptCapitals
    /MaudeMeadSH
    /MemorandumPSMT
    /Metro
    /Metrostyle-Bold
    /MetrostyleExtended-Bold
    /MetrostyleExtended-Regular
    /Metrostyle-Regular
    /MicrogrammaD-BoldExte
    /MicrosoftSansSerif
    /MikePicassoSH
    /MiniPicsLilEdibles
    /MiniPicsLilFolks
    /MiniPicsLilStuff
    /MischstabPopanz
    /MisterEarlBT-Regular
    /Mistral
    /ModerneDemi
    /ModerneDemiOblique
    /ModerneOblique
    /ModerneRegular
    /Modern-Regular
    /MonaLisaRecutITC-Normal
    /Monospace821BT-Bold
    /Monospace821BT-BoldItalic
    /Monospace821BT-Italic
    /Monospace821BT-Roman
    /Monotxt
    /MonotypeCorsiva
    /MonotypeSorts
    /MorrisonMedium
    /MorseCode
    /MotorPSMT
    /MSAM10
    /MSLineDrawPSMT
    /MS-Mincho
    /MSOutlook
    /MSReference1
    /MSReference2
    /MTEX
    /MTEXB
    /MTEXH
    /MT-Extra
    /MTGU
    /MTGUB
    /MTLS
    /MTLSB
    /MTMI
    /MTMIB
    /MTMIH
    /MTMS
    /MTMSB
    /MTMUB
    /MTMUH
    /MTSY
    /MTSYB
    /MTSYH
    /MT-Symbol
    /MTSYN
    /Music
    /MVBoli
    /MysticalPSMT
    /NagHammadiLS
    /NealCurieRuledSH
    /NealCurieSH
    /NebraskaPSMT
    /Neuropol-Medium
    /NevisonCasD
    /NewMilleniumSchlbkBoldItalicSH
    /NewMilleniumSchlbkBoldSH
    /NewMilleniumSchlbkExptSH
    /NewMilleniumSchlbkItalicSH
    /NewMilleniumSchlbkRomanSH
    /News702BT-Bold
    /News702BT-Italic
    /News702BT-Roman
    /Newton
    /NewZuricaBold
    /NewZuricaItalic
    /NewZuricaRegular
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NigelSadeSH
    /Nirvana
    /NuptialBT-Regular
    /OCRAbyBT-Regular
    /OfficePlanning
    /OldCentury
    /OldEnglishTextMT
    /Onyx
    /OnyxBT-Regular
    /OpenSymbol
    /OttawaPSMT
    /OttoMasonSH
    /OzHandicraftBT-Roman
    /OzzieBlack-Italic
    /OzzieBlack-Regular
    /PalatiaBold
    /PalatiaItalic
    /PalatiaRegular
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /PalmSpringsPSMT
    /Pamela
    /PanRoman
    /ParadisePSMT
    /ParagonPSMT
    /ParamountBold
    /ParamountItalic
    /ParamountRegular
    /Parchment-Regular
    /ParisianBT-Regular
    /ParkAvenueBT-Regular
    /Patrick
    /Patriot
    /PaulPutnamSH
    /PcEncodingLowerSH
    /PcEncodingSH
    /Pegasus
    /PenguinLightPSMT
    /PennSilvaSH
    /Percival
    /PerfectRegular
    /Pfn2BlackItalic
    /Phantom
    /PhilSimmonsSH
    /Pickwick
    /PipelinePlain
    /Playbill
    /PoorRichard-Regular
    /Poster
    /PosterBodoniBT-Italic
    /PosterBodoniBT-Roman
    /Pristina-Regular
    /Proxy1
    /Proxy2
    /Proxy3
    /Proxy4
    /Proxy5
    /Proxy6
    /Proxy7
    /Proxy8
    /Proxy9
    /Prx1
    /Prx2
    /Prx3
    /Prx4
    /Prx5
    /Prx6
    /Prx7
    /Prx8
    /Prx9
    /Pythagoras
    /Raavi
    /Ranegund
    /Ravie
    /Ribbon131BT-Bold
    /RMTMI
    /RMTMIB
    /RMTMIH
    /RMTMUB
    /RMTMUH
    /RobWebsterExtraBoldSH
    /Rockwell
    /Rockwell-Bold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /RomanC
    /RomanD
    /RomanS
    /RomanT
    /Romantic
    /RomanticBold
    /RomanticItalic
    /Sahara
    /SalTintorettoSH
    /SamBarberInitialsSH
    /SamPlimsollSH
    /SansSerif
    /SansSerifBold
    /SansSerifBoldOblique
    /SansSerifOblique
    /Sceptre
    /ScribbleRegular
    /ScriptC
    /ScriptHebrew
    /ScriptS
    /Semaphore
    /SerifaBT-Black
    /SerifaBT-Bold
    /SerifaBT-Italic
    /SerifaBT-Roman
    /SerifaBT-Thin
    /Sfn2Bold
    /Sfn3Italic
    /ShelleyAllegroBT-Regular
    /ShelleyVolanteBT-Regular
    /ShellyMarisSH
    /SherwoodRegular
    /ShlomoAleichemSH
    /ShotgunBT-Regular
    /ShowcardGothic-Reg
    /Shruti
    /SignatureRegular
    /Signboard
    /SignetRoundhandATT-Italic
    /SignetRoundhand-Italic
    /SignLanguage
    /Signs
    /Simplex
    /SissyRomeoSH
    /SlimStravinskySH
    /SnapITC-Regular
    /SnellBT-Bold
    /Socket
    /Sonate
    /SouvenirITCbyBT-Demi
    /SouvenirITCbyBT-DemiItalic
    /SouvenirITCbyBT-Light
    /SouvenirITCbyBT-LightItalic
    /SpruceByingtonSH
    /SPSFont1Medium
    /SPSFont2Medium
    /SPSFont3Medium
    /SpsFont4Medium
    /SPSFont4Medium
    /SPSFont5Normal
    /SPSScript
    /SRegular
    /Staccato222BT-Regular
    /StageCoachRegular
    /StandoutRegular
    /StarTrekNextBT-ExtraBold
    /StarTrekNextPiBT-Regular
    /SteamerRegular
    /Stencil
    /StencilBT-Regular
    /Stewardson
    /Stonehenge
    /StopD
    /Storybook
    /Strict
    /Strider-Regular
    /StuyvesantBT-Regular
    /StylusBT
    /StylusRegular
    /SubwayRegular
    /SueVermeer4LightItalicSH
    /SueVermeer4LightSH
    /SueVermeer5MedItalicSH
    /SueVermeer5MediumSH
    /SueVermeer6DemiItalicSH
    /SueVermeer6DemiSH
    /SueVermeer7BoldItalicSH
    /SueVermeer7BoldSH
    /SunYatsenSH
    /SuperFrench
    /SuzanneQuillSH
    /Swiss721-BlackObliqueSWA
    /Swiss721-BlackSWA
    /Swiss721BT-Black
    /Swiss721BT-BlackCondensed
    /Swiss721BT-BlackCondensedItalic
    /Swiss721BT-BlackExtended
    /Swiss721BT-BlackItalic
    /Swiss721BT-BlackOutline
    /Swiss721BT-Bold
    /Swiss721BT-BoldCondensed
    /Swiss721BT-BoldCondensedItalic
    /Swiss721BT-BoldCondensedOutline
    /Swiss721BT-BoldExtended
    /Swiss721BT-BoldItalic
    /Swiss721BT-BoldOutline
    /Swiss721BT-Italic
    /Swiss721BT-ItalicCondensed
    /Swiss721BT-Light
    /Swiss721BT-LightCondensed
    /Swiss721BT-LightCondensedItalic
    /Swiss721BT-LightExtended
    /Swiss721BT-LightItalic
    /Swiss721BT-Roman
    /Swiss721BT-RomanCondensed
    /Swiss721BT-RomanExtended
    /Swiss721BT-Thin
    /Swiss721-LightObliqueSWA
    /Swiss721-LightSWA
    /Swiss911BT-ExtraCompressed
    /Swiss921BT-RegularA
    /Syastro
    /Sylfaen
    /Symap
    /Symath
    /SymbolGreek
    /SymbolGreek-Bold
    /SymbolGreek-BoldItalic
    /SymbolGreek-Italic
    /SymbolGreekP
    /SymbolGreekP-Bold
    /SymbolGreekP-BoldItalic
    /SymbolGreekP-Italic
    /SymbolGreekPMono
    /SymbolMT
    /SymbolProportionalBT-Regular
    /SymbolsAPlentySH
    /Symeteo
    /Symusic
    /Tahoma
    /Tahoma-Bold
    /TahomaItalic
    /TamFlanahanSH
    /Technic
    /TechnicalItalic
    /TechnicalPlain
    /TechnicBold
    /TechnicLite
    /Tekton-Bold
    /Teletype
    /TempsExptBoldSH
    /TempsExptItalicSH
    /TempsExptRomanSH
    /TempsSwashSH
    /TempusSansITC
    /TessHoustonSH
    /TexCatlinObliqueSH
    /TexCatlinSH
    /Thrust
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-ExtraBold
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Oblique
    /Times-Roman
    /Times-Semibold
    /Times-SemiboldItalic
    /TimesUnic-Bold
    /TimesUnic-BoldItalic
    /TimesUnic-Italic
    /TimesUnic-Regular
    /TonyWhiteSH
    /TransCyrillic
    /TransCyrillic-Bold
    /TransCyrillic-BoldItalic
    /TransCyrillic-Italic
    /Transistor
    /Transitional521BT-BoldA
    /Transitional521BT-CursiveA
    /Transitional521BT-RomanA
    /TranslitLS
    /TranslitLS-Bold
    /TranslitLS-BoldItalic
    /TranslitLS-Italic
    /TransRoman
    /TransRoman-Bold
    /TransRoman-BoldItalic
    /TransRoman-Italic
    /TransSlavic
    /TransSlavic-Bold
    /TransSlavic-BoldItalic
    /TransSlavic-Italic
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /TribuneBold
    /TribuneItalic
    /TribuneRegular
    /Tristan
    /TrotsLight-HMK
    /TrotsMedium-HMK
    /TubularRegular
    /Tunga-Regular
    /Txt
    /TypoUprightBT-Regular
    /UmbraBT-Regular
    /UmbrellaPSMT
    /UncialLS
    /Unicorn
    /UnicornPSMT
    /Univers
    /UniversalMath1BT-Regular
    /Univers-Bold
    /Univers-BoldItalic
    /UniversCondensed
    /UniversCondensed-Bold
    /UniversCondensed-BoldItalic
    /UniversCondensed-Italic
    /UniversCondensed-Medium
    /UniversCondensed-MediumItalic
    /Univers-CondensedOblique
    /UniversExtended-Bold
    /UniversExtended-BoldItalic
    /UniversExtended-Medium
    /UniversExtended-MediumItalic
    /Univers-Italic
    /UniversityRomanBT-Regular
    /UniversLightCondensed-Italic
    /UniversLightCondensed-Regular
    /Univers-Medium
    /Univers-MediumItalic
    /URWWoodTypD
    /USABlackPSMT
    /USALightPSMT
    /Vagabond
    /Venetian301BT-Demi
    /Venetian301BT-DemiItalic
    /Venetian301BT-Italic
    /Venetian301BT-Roman
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /VinetaBT-Regular
    /Vivaldii
    /VladimirScript
    /VoguePSMT
    /Vrinda
    /WaldoIconsNormalA
    /WaltHarringtonSH
    /Webdings
    /Weiland
    /WesHollidaySH
    /Wingdings-Regular
    /WP-HebrewDavid
    /XavierPlatoSH
    /YuriKaySH
    /ZapfChanceryITCbyBT-Bold
    /ZapfChanceryITCbyBT-Medium
    /ZapfDingbatsITCbyBT-Regular
    /ZapfElliptical711BT-Bold
    /ZapfElliptical711BT-BoldItalic
    /ZapfElliptical711BT-Italic
    /ZapfElliptical711BT-Roman
    /ZapfHumanist601BT-Bold
    /ZapfHumanist601BT-BoldItalic
    /ZapfHumanist601BT-Italic
    /ZapfHumanist601BT-Roman
    /ZappedChancellorMedItalicSH
    /ZurichBT-BlackExtended
    /ZurichBT-Bold
    /ZurichBT-BoldCondensed
    /ZurichBT-BoldCondensedItalic
    /ZurichBT-BoldItalic
    /ZurichBT-ExtraCondensed
    /ZurichBT-Italic
    /ZurichBT-ItalicCondensed
    /ZurichBT-Light
    /ZurichBT-LightCondensed
    /ZurichBT-Roman
    /ZurichBT-RomanCondensed
    /ZurichBT-RomanExtended
    /ZurichBT-UltraBlackExtended
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


