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Let (U(t))t≥0 be a C0-semigroup of bounded linear operators on a Banach space X.
In this paper, we establish that if, for some t0 > 0, U(t0) is a Fredholm (resp., semi-
Fredholm) operator, then (U(t))t≥0 is a Fredholm (resp., semi-Fredholm) semi-
group. Moreover, we give a necessary and sufficient condition guaranteeing that
(U(t))t≥0 can be embedded in a C0-group on X. Also we study semigroups which
are near the identity in the sense that there exists t0 > 0 such thatU(t0)−I ∈ �(X),
where �(X) is an arbitrary closed two-sided ideal contained in the set of Fredholm
perturbations. We close this paper by discussing the case where �(X) is replaced
by some subsets of the set of polynomially compact perturbations.
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1. Introduction. Let X be a Banach space over the complex field and let

�(X) denote the Banach algebra of bounded linear operators on X. The subset

of all compact operators of �(X) is designated by �(X). For A∈�(X), we let

σ(A), ρ(A), R(λ,A), N(A), and R(A) denote the spectrum, the resolvent set,

the resolvent operator, the null space, and the range of A, respectively. The

nullity of A, α(A), is defined as the dimension N(A) and the deficiency of A,

β(A), is defined as the codimension of R(A) in X.

Write

Φ+(X)=
{
A∈�(X) :α(A) <∞, R(A) is closed in X

}
,

Φ−(X)=
{
A∈�(X) : β(A) <∞ (

then R(A) is closed in X
)}
.

(1.1)

By Φ±(X) := Φ+(X)∪Φ−(X) we denote the set of semi-Fredholm operators in

�(X), while Φ(X) := Φ+(X)∩Φ−(X) is the set of Fredholm operators in �(X).
If A∈ Φ±(X), the number i(A)=α(A)−β(A), a finite or infinite integer is the

index of A. Let X∗ denotes the dual space of X and A∗ the dual operator of A.

Let (U(t))t≥0 be a C0-semigroup of bounded linear operators on X. We say

that (U(t))t≥0 is a Fredholm (resp., semi-Fredholm) semigroup if U(t) is in

Φ(X) (resp., Φ±(X)) for all t > 0.
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In [7, Theorem 16.3.6], it is proved that a C0-semigroup of bounded linear

operators (U(t))t≥0 can be embedded in a C0-group if and only if there exists

t0 > 0 such that 0 ∈ ρ(U(t0)). The main goal of Section 2 is to give a gen-

eralization of this result to Fredholm semigroup. Our approach consists in

relaxing the requirement there exists t0 > 0 such that 0∈ ρ(U(t0)) and replac-

ing it by the weaker one there exists t0 > 0 such that U(t0) ∈ Φ(X). In fact,

we prove under this hypothesis that (U(t))t≥0 is a Fredholm semigroup, that

is, U(t) ∈ Φ(X) for all t ≥ 0. In particular, we show that if there exists t0 > 0

such that U(t0) ∈ Φ±(X), then (U(t))t≥0 is a semi-Fredholm semigroup, that

is, U(t)∈ Φ±(X) for all t ≥ 0.

In Section 3, we extend some results owing to Cuthbert [2] which deal with

C0-semigroups having the property of being near the identity, in the sense that,

for some value of t, U(t)− I ∈ �(X). We show that Cuthbert’s results remain

valid if, for some t0 > 0,U(t0)−I ∈ �(X)where �(X) is an arbitrary closed two-

sided ideal of �(X) contained in the ideal of Fredholm perturbations �(X). In

the last section, some generalizations of the results obtained in Section 3 to

polynomially compact perturbations are also given.

2. Embeddable C0-semigroups in C0-groups. Let X be a Banach space and

let (U(t))t≥0 be a C0-semigroup of bounded linear operators on X.

Theorem 2.1. A C0-semigroup (U(t))t≥0 can be embedded in a C0-group on

X if and only if there exists t0 > 0 such that U(t0)∈ Φ(X).
To prove Theorem 2.1, the following proposition is required.

Proposition 2.2. Let t0 > 0 and let (U(t))t≥0 be a C0-semigroup on X.

(i) If U(t0)∈ Φ+(X), then U(t)∈ Φ+(X) and α(U(t))= 0 for all t ≥ 0.

(ii) If U(t0)∈ Φ−(X), then U(t)∈ Φ−(X) and β(U(t))= 0 for all t ≥ 0.

(iii) If U(t0)∈ Φ(X), then U(t)∈ Φ(X) and i(U(t))= 0 for all t ≥ 0.

Obviously, Proposition 2.2 shows that if, for some t0 > 0, U(t0) ∈ Φ±(X),
then (U(t))t≥0 is a semi-Fredholm semigroup. In the case where U(t0)∈ Φ(X),
(U(t))t≥0 is a Fredholm semigroup and i(U(t))= 0 for all t ≥ 0.

Proof of Proposition 2.2. (i) We first show that U(t0) is injective. Since

α(U(t0)) < ∞, then 0 is an eigenvalue with finite multiplicity of U(t0). Let

x �= 0 be an eigenvector associated to 0. Putting t1 = t0/2, then U(t0)x =
U(t1)U(t1)x = 0, hence 0 is an eigenvalue of U(t1). Proceeding by induction,

we define a sequence (tn)n∈N with tn→ 0 as n→∞ such that 0 is an eigenvalue

of U(tn), ∀n∈N. For n≥ 0, we define the sets

Λn =N
(
U
(
tn
))⋂{

x ∈X : ‖x‖ = 1
}
. (2.1)

Clearly, the inclusion N(U(s)) ⊆ N(U(t)), for s ≤ t, and the compactness of

Λ0 imply that (Λn)n is a decreasing sequence (in the sense of the inclusion) of



REMARKS ON EMBEDDABLE SEMIGROUPS IN GROUPS . . . 1423

nonempty compact subsets of X. Thus
⋂∞
n=0Λn �= ∅. If x ∈⋂∞n=0Λn, then

∥∥U(tn)x−x∥∥= ‖x‖ = 1 ∀n≥ 1. (2.2)

Since tn → 0 as n → ∞, (2.2) contradicts the strong continuity of (U(t))t≥0.

This shows that N(U(t0))= {0}, that is, α(U(t0))= 0.

Let 0 ≤ t ≤ t0. The inclusion N(U(t)) ⊆ N(U(t0)) implies that α(U(t)) = 0.

Assume now that t > t0 and x ∈N(U(t)), then there exists an integer n such

that nt0 > t and therefore U(nt0)x = U(nt0− t)U(t)x = 0. Hence, we have

x = 0 and consequently N(U(t)) = {0} for all t > t0 which ends the proof

of (i).

(ii) To prove this item, we will proceed by duality. Let (U∗(t))t≥0 be the dual

semigroup of (U(t))t≥0. Since β(U(t))=α(U∗(t)), then it suffices to show that

α(U∗(t)) = 0 for all t ≥ 0. By hypothesis, we have α(U∗(t0)) <∞. Let x∗ be

an element of N(U∗(t0)). Arguing as above, we construct a sequence (tn)n∈N
with tn → 0 as n→∞ such that 0 is an eigenvalue of U∗(tn), for all n ∈ N a

decreasing sequence

Σn =N
(
U∗
(
tn
))⋂{

x∗ ∈X∗ :
∥∥x∗∥∥= 1

}
(2.3)

of nonempty compact subsets of X∗. We infer that
⋂∞
n=0Σn �= ∅. Let x∗ ∈⋂∞

n=0Σn, then for all n∈N
∣∣〈U∗(tn)x∗−x∗,x〉∣∣= ∣∣〈x∗,x〉∣∣ ∀x ∈X. (2.4)

Using the fact that (U∗(t))t≥0 is continuous in the weak∗ topology at t = 0, we

conclude that

lim
t→0

∣∣〈U∗(tn)x∗−x∗,x〉∣∣= 0 ∀x ∈X. (2.5)

Combining (2.4) and (2.5), we obtain 〈x∗,x〉 = 0 for all x ∈ X. This shows

that x∗ = 0 and therefore α(U∗(t0)) = 0. Arguing as above, we show that

α(U∗(t))= 0 for all t ≥ 0.

(iii) This follows from (i) and (ii).

To complete the proof of (i) it suffices to show that R(U(t)) is closed in X
for all t ≥ 0. Assume that U(t0)∈ Φ+(X), then α(U(t0)) <∞ and β(U(t0))=∞
(if β(U(t0)) <∞ the proof is contained in (ii) see below). Let U∗(to) be the dual

operator of U(t0). Obviously, U∗(t0) ∈ Φ−(X) and consequently β(U∗(t0)) <
∞. Hence β(U∗(t)) < ∞ for all t ≥ 0. Now applying Kato’s lemma [8, Lemma

332] we infer that R(U∗(t)) is closed in X∗ for all t ≥ 0. This together with the

closed graph theorem of Banach [15, page 205] implies that R(U(t)) is closed

in X for all t ≥ 0.

Assume now that U(t0) ∈ Φ−(X), then β(U(t0)) < ∞ and α(U(t0)) = ∞ (if

α(U(t0)) < ∞ the proof is contained in (i)). It follows from the first part of

the statement (ii) that β(U(t)) < ∞ for all t ≥ 0. Again using Kato’s lemma
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[8, Lemma 332] we see that R(U(t)) is closed inX for all t ≥ 0 which completes

the proof of (ii).

Now if U(t0)∈ Φ(X), then α(U(t0)) <∞ and β(U(t0)) <∞. It follows from

the discussion above that R(U(t)) is closed in X for all t ≥ 0. This ends the

proof of Proposition 2.2.

Proof of Theorem 2.1. The proof follows immediately from Proposition

2.2 and [7, Theorem 16.3.6].

3. An extension of some results by Cuthbert. Throughout this section X
denotes a Banach space and (U(t))t≥0 designates a strongly continuous semi-

group with infinitesimal generator A.

As mentioned in the introduction, this section is motivated by Cuthbert’s

work [2] dealing with C0-semigroups which have the property of being near the

identity, in the sense that, for some positive value of t > 0, U(t)−I ∈�(X). We

discuss the possibility of extending Cuthbert’s results to other operator ideals

of �(X). To this purpose, we introduce the concept of Fredholm perturbations

(see [1, 4, 12]).

Definition 3.1. We say that an operator F ∈ �(X) is a Fredholm pertur-

bation if A+ F ∈ Φ(X) whenever A ∈ Φ(X). The operator F is called an up-

per (resp., lower) semi-Fredholm perturbation if F+A∈ Φ+(X) (resp., F+A∈
Φ−(X)) whenever A∈ Φ+(X) (resp., A∈ Φ−(X)).

The sets of Fredholm, upper semi-Fredholm, and lower semi-Fredholm per-

turbations are denoted by �(X), �+(X), and �−(X), respectively. These sets of

operators were introduced and investigated in [4] (see also [12]). In particular,

it is proved that �+(X) and �(X) are closed two-sided ideals of �(X) while

�−(X) is a closed subset of �(X).
Our main objective here is to show that Cuthbert’s results remain valid if

we replace �(X) by any closed two-sided ideal contained in �(X).
In the following, �(X) denotes an arbitrary nonzero closed two-sided ideal of

�(X) satisfying

�(X)⊆�(X). (3.1)

Remark 3.2. (1) It is worth noticing that, in general, the structure ideal of

�(X) is extremely complicated. Most of the results on ideal structure deal with

the well-known closed ideals which have arisen from applied work with opera-

tors. We can quote, for example, compact operators, weakly compact operators,

strictly singular operators, strictly cosingular operators, upper semi-Fredholm

perturbations, and Fredholm perturbations. In general, we have

�(X)⊆�(X)⊆�+(X)⊆�(X),

�(X)⊆ C�(X)⊆�−(X)⊆�(X),
(3.2)
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where �(X) and C�(X) denote, respectively, the ideals of �(X) consisting of

strictly singular and strictly cosingular operators on X. The inclusion �(X)⊆
�+(X) is due to Kato (cf. [8]) while C�(X)⊆�−(X) was proved by Vladimirskĭı

[13].

(2) If X is isomorphic to an Lp space with 1≤ p ≤∞ or to C(Ξ) where Ξ is a

compact Hausdorff space, then we have

�(X)⊆�(X)=�+(X)= C�(X)=�−(X)=�(X) (3.3)

(cf. [9, equations (2.9) and (2.10)]).

A Banach space X is said to be an h-space if each closed infinite-dimensional

subspace of X contains a complemented subspace isomorphic to X [14]. Any

Banach space isomorphic to an h-space; c, c0 and lp (1≤ p <∞) are h-spaces.

In [14, Theorem 6.2], Whitley proved that, if X is an h-space, then �(X) is the

greatest proper ideal of �(X). This, together with (3.2), implies that

�(X)⊆�+(X)=�(X)=�(X), �(X)⊆�−(X)⊆�(X)=�(X). (3.4)

We denote by � the set

�= {t > 0 such that U(t)−I ∈ �(X)
}
. (3.5)

It should be noted that for a given C0-semigroup, the set � can be empty.

Remark 3.3. Note that, under assumption (3.1), if � �= ∅, then the C0-

semigroup (U(t))t≥0 can be embedded in a C0-group on X. (It suffices to write

U(t0) = I+[U(t0)− I] for some to ∈ � and to apply Theorem 2.1.) This state-

ment improves [2, Theorem 1].

Observe that the relation

(
U(t)−I)(U(s)−I)= (U(t+s)−I)−(U(s)−I)−(U(t)−I), (3.6)

implies that

s ∈ �, t ∈ � �⇒ s+t ∈ �, s ∈ �, t ∉ � �⇒ s+t ∉ �. (3.7)

It follows from these relations that � is the intersection of an additive subgroup

of real number with the positive real line. Therefore, � may be in one of the

following forms:

(i) �= ]0,∞[;
(ii) �= {nx, for some x > 0; and n= 1,2, . . .};

(iii) � is a dense subset of ]0,∞[ with empty interior.
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The following examples taken from [2] show that all the three types of sets

may occur, the above classification of �-sets is not empty; and sets of type

(ii) can arise from semigroups having bounded or unbounded infinitesimal

generators.

Examples 3.4. Take X = l1, the Banach space of absolutely convergent se-

quences. As mentioned above (see Remark 3.2(1)), �(X) is the sole closed two-

sided proper ideal of �(X), that is, �(X)=�(X).
(1) Let (U(t))t≥0 be the C0-semigroup given by U(t) = I for all t ≥ 0.

Clearly, for all t > 0, U(t)−I ∈�(X). Accordingly, �= ]0,∞[ and A= 0.

(2) (a) Assume that U(t) = diag{eit,e−it ,eit,e−it , . . .} for all t ≥ 0. In this

case, we have �= {2nπ, n= 1,2,3, . . .} andA= diag{i,−i,i,−i, . . .},
the infinitesimal generator of (U(t))t≥0, is bounded.

(b) Suppose now that U(t) = diag{eit,e2it ,e3it ,e4it , . . .} for all t ≥ 0.

Here, we have also � = {2nπ, n = 1,2,3, . . .} but A = diag{i,2i,3i,
4i, . . .}, the infinitesimal generator of (U(t))t≥0, is unbounded.

(3) The C0-semigroup (U(t))t≥0 with U(t)= diag{eit,e2!it ,e3!it , . . . ,en!it , . . .}
provides an example of �-set of type (iii).

In the next theorem, we derive some relationships between the type of �-sets

and the structure of the semigroup. In particular, we show that � has the first

form if and only if A is a Fredholm perturbation. If � takes the third form, then

A is necessarily unbounded.

Theorem 3.5. Assume that condition (3.1) is satisfied. Then the following

statements are equivalent:

(i) �= ]0,+∞[;
(ii) A is a Fredholm perturbation;

(iii) λR(λ,A)−I is a Fredholm perturbation for some (in fact for all) λ >ω.

This result extends [2, Theorem 2] to large classes of operators which con-

tain properly the set of compact operators.

Proof of Theorem 3.5. (i)⇒(ii). The first step in the proof of this impli-

cation consists in showing that (i) implies that A is bounded. The proof of this

implication is similar to that of [2, Theorem 2]. Details are omitted.

Next, since A is bounded, then U(t) is uniformly continuous for t ≥ 0 (see

[7]). Hence, for all ε > 0 there exists δ > 0 such that

∥∥U(t)−I∥∥< ε for t < δ. (3.8)

Accordingly, for any t < δ, we have

∥∥∥∥1
t

∫ t
0
U(s)ds−I

∥∥∥∥=
∥∥∥∥1
t

∫ t
0

(
U(s)−I)ds

∥∥∥∥≤ 1
t

∫ t
0

∥∥U(s)−I∥∥ds < ε. (3.9)



REMARKS ON EMBEDDABLE SEMIGROUPS IN GROUPS . . . 1427

Hence, for ε small enough,
∫ t
0 U(s)ds is invertible for all t < δ. Moreover, using

the identity

U(t)−I =A
∫ t

0
U(s)ds, (3.10)

together with the fact that A and U(t) commute, we infer that

A=
[∫ t

0
U(s)ds

]−1(
U(t)−I). (3.11)

Since �(X) is an ideal, we infer that A∈ �(X).
(ii)⇒(i). Assume thatA∈ �(X). Using again identity (3.10) and the ideal struc-

ture of �(X) we see that U(t)−I ∈ �(X) for all t ≥ 0.

(ii)⇒(iii). This follows from the identity λR(λ,A)−I =AR(λ,A) and the ideal

structure of �(X).
(iii)⇒(ii). Assume that λR(λ,A)−I ∈ �(X) for all λ >ω. Note that the identity

λR(λ,A)−I =AR(λ,A) and (3.11) lead to

R(λ,A)
(
U(t)−I)= (λR(λ,A)−I)

∫ t
0
U(s)ds ∀t ≥ 0. (3.12)

Writing (3.12) in the form

λR(λ,A)
(
U(t)−I)−(U(t)−I)+(U(t)−I)

= λ(λR(λ,A)−I)
∫ t

0
U(s)ds ∀t ≥ 0,

(3.13)

we infer that

U(t)−I = (λR(λ,A)−I)[U(t)−I+λ
∫ t

0
U(s)ds

]
. (3.14)

Next, using the fact that [U(t)−I+λ∫ t0 U(s)ds]∈�(X), we get that U(t)−I ∈
�(X) for all t ≥ 0, that is, �= ]0,∞[. This achieves the proof.

The next result asserts that if the �-set is in the form (iii), then the infin-

itesimal generator of (U(t))t≥0 is necessarily unbounded. It generalizes [2,

Theorem 3].

Proposition 3.6. Assume that condition (3.1) holds true. If � is a dense

subset of ]0,∞[ with no interior points, then A is unbounded.

Proof. Assume, for contradiction, that A is bounded. Then, proceeding as

in the proof of the implication (i)⇒(ii) in Theorem 3.5 we see that if t < δ and

t ∈ �, then A ∈ �(X). So, by Theorem 3.5, we get � = ]0,∞[. This contradicts

the hypothesis.
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Remark 3.7. (1) Notice that if �(X) is a nonzero closed two-sided ideal of

�(X) satisfying (3.1), then it follows from [4, Proposition 4, page 70] that

�0(X)⊆ �(X)⊆�(X), (3.15)

where �0(X) stands for the ideal of finite rank operators on X. This shows that

�0(X) is the minimal ideal (in the sense of the inclusion) in �(X) for which the

results of this section are valid. Evidently, ifX has the approximation property,

then we have �0(X)=�(X).
(2) Even though the description of the ideal structure of �(X) is a complex

task, there exist some Banach spaces X for which �(X) has only one proper

nonzero closed two-sided ideal. The first result in this direction was estab-

lished by Calkin (cf. [4]). He proved that if X is a separable Hilbert space, then

�(X) is the unique proper nonzero closed two-sided ideal of �(X). An exten-

sion of this result was obtained by Gohberg et al. [4]. They proved the same

result for X = lp , 1 ≤ p <∞, and X = c0. In [6], Herman establishes the same

result for a large class of Banach spaces, namely Banach spaces which have

perfectly homogeneous block bases and satisfy (+) (for the definition and the

meaning of the symbol (+)we refer to [6]). (Evidently, the spaces lp , 1≤ p <∞,

and c0 belong to this class.) Thus, if X has perfectly homogeneous block bases

which satisfy (+), then

�(X)=�+(X)=�−(X)=�(X). (3.16)

Consequently, for this class of spaces the results of this section use the ideal

of compact operators and coincide with those obtained in [2]. Hence, for such

spaces the Cuthbert results are optimal.

4. Further extensions. Let X be a Banach space. An operator R ∈ �(X) is

called a Riesz operator if λ−R ∈ Φ(X) for all scalars λ ≠ 0. Let �(X) denote

the class of all Riesz operators. For further discussions concerning this family

of operators, we refer to [1, 12] and the references therein. For our purpose,

we recall that Riesz operators satisfy the Riesz-Schauder theory of compact

operators, �(X) is not an ideal of �(X) [1], and �(X) is the largest ideal con-

tained in �(X) [12]. Hence the sets �(X), �(X), C�(X), �+(X), and �−(X) are

also contained in �(X).
Let A∈�(X). The Fredholm region of A is defined as {λ∈ C; λ−A∈ Φ(X)}

and denoted by ΦA. Next, let Φ0
A := {λ∈ ΦA : i(λ−A)= 0} and define the set

σb(A) := C\ρb(A), (4.1)

where

ρb(A) := {λ∈ Φ0
A such that all scalars near λ are in ρ(A)

}
. (4.2)

Following [5, 11], σb(·) is called the Browder essential spectrum.
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We say that an operator F ∈�(X) is polynomially compact (see [3]) if there

is a nonzero complex polynomial p(z) such that the operator p(F) is compact.

We designate by P�(X) the set of polynomially compact operators on X. Let

F ∈ P�(X), the nonzero polynomial p(z) of least degree and leading coeffi-

cient 1 such that p(F) is compact will be called the minimal polynomial of F .

We denote by Ξ(X) the subset of P�(X) defined by

Ξ(X) :=
{
F ∈ P�(X) such that the minimal polynomial of F

p(z)=
p∑
r=0

arzr satisfies p(−1) �= 0

}
.

(4.3)

We first prove the following lemma which is required in the sequel.

Lemma 4.1. If F ∈ Ξ(X), then I+F ∈ Φ(X) and i(I+F)= 0.

Proof. Since p(F)∈ Ξ(X) (p(·) denotes the minimal polynomial of F ), then

σb(p(F))= {0}. By hypothesis p(−1) �= 0, then p(−1) ∉ σb(p(F)). Next, mak-

ing use of the spectral mapping theorem for the Browder essential spectrum

[5, Theorem 4] we conclude that −1 ∉ σb(F), that is, −1∈ ρb(F). This ends the

proof.

The developments below are mainly suggested by the fact that, in general,

the sets �(X) and Ξ(X) do not coincide. Indeed, if p(z) = (z−λ1)n1 ···(z−
λk)nk is the minimal polynomial of F ∈ Ξ(X), then, by the structure theorem of

Gilfeather [3, Theorem 1], the spectrum of F consists of countably many points

with {λ1, . . . ,λk} as only possible limit points and such that all but possibly

{λ1, . . . ,λk} are eigenvalues with finite-dimensional generalized eigenspaces.

This, together with the fact that the operators belonging to �(X) satisfy the

Riesz-Schauder theory of compact operators (see above), implies that �(X) �=
Ξ(X). Thus the next result improves Proposition 3.6.

Proposition 4.2. Let (U(t))t≥0 be a C0-semigroup on X. If

{
t > 0 such that U(t)−I ∈ Ξ(X)} �= ∅, (4.4)

then (U(t))t≥0 can be embedded in a C0-group on X.

Proof. By hypothesis, there exists t0 such that U(t0)− I ∈ Ξ(X). Since

U(t0) = I+[U(t0)− I], the use of Lemma 4.1 implies that U(t0) ∈ Φ(X). Now,

the result follows from Theorem 2.1.

Due to some technical difficulties, we do not know whether or not Theorem

3.5 is valid for perturbations belonging to Ξ(X). So, we discuss this result for

a subset of Ξ(X) consisting of power compact operators, that is,

�(X) := {F ∈�(X) such that Fn ∈�(X) for some integer n≥ 1
}
. (4.5)
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Our principal motivation here rely on the fact that, for some classes of Ba-

nach spaces, we have �(X) ⊆ �(X). In particular, if X is isomorphic to an

Lp space with 1 ≤ p ≤ ∞ or to C(Ω) where Ω is a metric compact Hausdorff

space, then �(X) = �(X) (cf. (3.3)). Moreover, by [10, Theorem 1], we have

�(X)�(X) ⊆ �(X). These conclusions are also valid if X is an lp space with

1 ≤ p < ∞ and c0 [6]. Note also that if X has the Dunford-Pettis property (a

Banach space X is said to have the Dunford-Pettis property if for every Banach

space Y every weakly compact operator T : X → Y takes weakly compact sets

in X into relatively norm compact sets of Y ), then 	(X)	(X) ⊆ �(X) where

	(X) stands for the set of weakly compact operators. However, although the

inclusion �(X) ⊆ �(X) is valid for arbitrary Banach spaces (use the Ruston

characterization of Riesz operators [1]), in general, we have �(X) ≠ �(X). In

the light of these observations, we project to extend Theorem 3.5 to semi-

groups (U(t))t≥0 for which there exists t0 > 0 such that U(t0)−I ∈�(X). Evi-

dently, since �(X)⊆ Ξ(X), Proposition 4.2 holds also true for power compact

perturbations. More precisely, we have the following theorem.

Theorem 4.3. Let (U(t))t≥0 be a C0-semigroup on X with type ω and let A
denote its infinitesimal generator. Define the set � by

�= {t ≥ 0 such that U(t)−I ∈�(X)
}
. (4.6)

Then, the following items are equivalent:

(i) �= ]0,+∞[;
(ii) A∈�(X);

(iii) [λR(λ,A)−I]∈�(X) for some (in fact for all) λ >ω.

Proof. We try to imitate the procedure in the proof of Theorem 3.5. Let

us first observe that if U(t)− I ∈ �(X), then there exists m ≥ 1 such that

(U(t)− I)m ∈ �(X). Using the spectral mapping theorem (see, e.g., [15, page

227]), one sees that that spectrum of U(t)−I is either finite or a countable set

accumulating only at zero. Moreover,

σ
(
U(t)−I)= σ(U(t))−1. (4.7)

This means that, apart possibly from the point 1, σ(U(t)) = {eηt : η ∈
Pσ(A)} (Pσ(A) stands for the point spectrum of A) and, for any ε > 0, the

set {λ ∈ σ(U(t)) : |λ− 1| > ε} is finite for all t > 0. Then arguing as in the

proof of [2, Theorem 2], we conclude that (i) implies that A ∈ �(X). Further-

more, similar arguments as in the proof of Theorem 3.5 [(i)⇒(ii)] imply that

A=
[∫ t

0
U(s)ds

]−1(
U(t)−I)= (U(t)−I)[

∫ t
0
U(s)ds

]−1

(4.8)

which leads to A∈�(X).
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The remainder of the proof is verbatim that of Theorem 3.5. It suffices to

use the fact that U(t)− I and [
∫ t
0 U(s)ds]−1 (resp., A and R(λ,A)) commute.

We close this section by noticing that Proposition 3.6 is also valid for power

compact perturbations. The proof uses Theorem 4.3.
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