de Haas-van Alphen effect

Notations:

h: Planck constant B: magnetic field

c velocity of the light I magnetic length (/ =+/ch/eB)

-e: charge of electron T: Tesla (1 T = 10* Oe)

- mass of free electron Oe unit of the magnetic field (=

me: cyclotron mass Gauss)

m: mass of electron (in theory) P the Fermi encrgy

We- cyclotron frequency Se: extremal cross-sectional area of the

(@, = eB/(m,c)) Fermi surface in a plane normal to
UB Bohr magneton (u, = eh/(2m,c)) the magnetic field.
Dy: quantum fluxoid (@ =

27hc/2e = 2.0678x 107 Gauss cm?)

Lev Davidovich Landau (Russian: JIeB JlaBiinoBua Jlannay; January 22, 1908— April 1,
1968) was a prominent Soviet physicist who made fundamental contributions to many
areas of theoretical physics. His accomplishments include the independent co-discovery
of the density matrix method in quantum mechanics (alongside John von Neumann), the
quantum mechanical theory of diamagnetism, the theory of superfluidity, the theory of
second-order phase transitions, the Ginzburg—Landau theory of superconductivity, the
theory of Fermi liquid, the explanation of Landau damping in plasma physics, the Landau
pole in quantum electrodynamics, and the two-component theory of neutrinos. He
received the 1962 Nobel Prize in Physics for his development of a mathematical theory of
superfluidity that accounts for the properties of liquid helium II at a temperature below
2.17°K.



http://en.wikipedia.org/wiki/Lev_Landau

Lars Onsager (November 27, 1903 — October 5, 1976) was a Norwegian-born American
physical chemist and theoretical physicist, winner of the 1968 Nobel Prize in Chemistry.
He held the Gibbs Professorship of Theoretical Chemistry at Yale University.

After World War II, Onsager researched new topics of interest. He proposed a
theoretical explanation of the superfluid properties of liquid helium in 1949; two years
later the physicist Richard Feynman independently proposed the same theory. He also
worked on the theories of liquid crystals and the electrical properties of ice. While on a
Fulbright scholarship to Cambridge University, he worked on the magnetic properties of
metals. He developed important ideas on the quantization of magnetic flux in metals. He
was awarded the Lorentz Medal in 1958 and the Nobel Prize in Chemistry in 1968.
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1. Introduction

The de Haas-van Alphen (dHvA) effect is an oscillatory variation of the diamagnetic
susceptibility as a function of a magnetic field strength (B). The method provides details
of the extremal areas of a Fermi surface. The first experimental observation of this
behavior was made by de Haas and van Alphen (1930). They have measured a
magnetization M of semimetal bismuth (Bi) as a function of the magnetic field (B) in
high fields at 14.2 K and found that the magnetic susceptibility M/B is a periodic function
of the reciprocal of the magnetic field (1/B). This phenomenon is observed only at low
temperatures and high magnetic fields. Similar oscillatory behavior has been also
observed in magnetoresistance (so called the Shubnikov-de Haas effect).

The dHvA phenomenon was explained by Landau' as a direct consequence of the
quantization of closed electronic orbits in a magnetic field and thus as a direct
observational manifestation of a purely quantum mechanics. The phenomenon became of
even greater interest and importance when Onsager” pointed out that the change in 1/B
through a single period of oscillation was determined by the remarkably simple relation,
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where P is the period (Gauss™) of the dHVA oscillation in 1/B, F is the dHvA frequency
(Gauss), and S, is any extremal cross-sectional area of the Fermi surface in a plane
normal to the magnetic field. If the z axis is taken along the magnetic field, then the are of
a Fermi surface cross section at height 4, is S(k,) and the extremal areas S, are the values
of S(k,) at the k, where dS(k_)/dk_ =0. Thus maximum and minimum cross sections are

among the extremal ones. Since altering the magnetic field direction brings different



extremal areas into play, all extremal areas of the Fermi surface can be mapped out.
When there are two extremal cross-sectional area of the Fermi surface in a plane normal
to the magnetic field and these two periods are nearly equal, a beat phenomenon of the
two periods will be observed from which each period must be disentangled through the
analysis of the Fourier transform.

Fig.1 Fermi surface of the hole Fig.2 Fermi surface of the electron (a) pocket for

pocket for Bi. The Bi. The major axis of the ellipsoid is tilted by
magnetic field (denoted 6.5° from the bisectrix axis.

by arrows) is in the YZ

plane.

Experimentally the value of S, (cm™) can be determined from more convenient form

2
22 2 L6 54500%107 (Gauss” em?)P(Gauss) [em?]  (2)
heP @, P

where P is in unit of Gauss” and @ (= 27hc/2e =2.0678x107 Gauss cm’) is the
quantum fluxoid.

The dHVA effect can be observed in very pure metals only at low temperatures and
in strong magnetic fields that satisfy

&p >>haw, >>k,T. (3)
The first inequality means that the electron system is quantum-mechanically degenerate

even though, as required by the second inequality, the magnetic field is sufficiently
strong. On the other hand, the observation of dHVA oscillation is determined by
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That is, for the observation of oscillations, the fluctuations AH in an magnetic field
should be small and the electron density should not be too high because the period
depends on the ratio 7w, /¢, .

2. Fermi surface of Bi*!°

2.1 Energy dispersion relation

Bismuth is a typical semimetal. The model of the band structure of Bi consists of a set
of three equivalent electron ellipsoids at the L point and a single hole ellipsoid at the T
point (see the Brillouin zone in Sec 2.2). In one of the electron ellipsoids (a-pocket), the
energy E is related to the momentum p in the absence of a magnetic field by

E 1
E(l+—)=——p-m*"'.p, 5
( E) o p (5)

G m

(Lax model’ or ellipsoidal non-parabolic model) where Eg is the energy gap to the next
lower band and m* is the effective mass tensor in units of the free electron mass mg. The
effective mass tensor m,* is of the form

m 0 0
m*=| 0 m, m,|, (6)

0 m, m,

where 1, 2, and 3 refer to the binary (X), the bisectrix (Y), and the trigonal (Z) axes,
respectively. The other two electron ellipsoids (b and ¢ pockets) are obtained by rotations
of £120° about the trigonal axis, respectively. The effective mass tensors my* for the b
pocket and m.* for the c pocket are given by

my +3m, + \/g(ml _ mz) + \/§m4
4 B 4 2
m, *=|+ \/g(ml —my) 3m, +m, —my 7)
< 4 4 2
+ —\/gm“ “M m,
2 2

For the holes, the energy momentum relationship in the absence of a magnetic field is
taken to be



E,—E=—p.
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where Ej is the energy of the top of the hole band relative to the bottom of the electron
band and the effective mass tensor M* for the hole pocket is

M 0 0
M*=| 0 M, 0
0 0 M,

)

The Fermi surface consists of one hole ellipsoid of revolution and three electron
ellipsoids. One electron ellipsoid has its major axis tilted by a small positive angle (=

6.5°) from the bisectrix direction..

Table I Bi band parameters used by Takano and Kawamura®
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2.2

Brillouin zone and Fermi surface of Bi

The Brillouin zone and the Fermi surface of Bi are shown here.
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Fig.4 Fermi surface of bismuth: binary axis (X), bisectrix (Y), and trigonal (2). a, b, ¢
are the electron pocket (Fermi surfaces) and /4 is the hole pocket.

3. Techniques for the measurement of dHvA

There are two major techniques to measure the dHvA oscillations: (1) field
modulation method using a lock-in amplifier. (2) torque method. Because of the Fermi
surface in Bi is so small, the dHVA effect can be observed in quite small fields as low as
100 Oe at 0.3 K) and at fairly high temperatures up to 20 or 30 K at fields of a few kOe).
It is in fact the metal in which the dHVA effect was first discovered and have probably
been more studied ever since than any other metal.

3.1 Field modulation method

The system consists of a detecting coil, a compensation coil, and a filed modulation
coil. The static magnetic field B (superconducting magnet or ion core magnet) is
modulated by a small AC field hocosar (@ is a angular frequency) generated by the field
modulation coil. The direction of the AC filed is parallel to that of a static magnetic field
B. The voltage induced in the pick-up coil is given by

2

M
e (10)

Voc a){h%—ﬂzsin(a)t) + %hz sin(2art)

where s << B . The signal obtained from the pick-up coil was phase sensitively detected

at the first harmonic or second harmonic modes with a lock-in amplifier. The DC signal
2

for the second-

is proportional to a)haa—]\;ll for the first-harmonic mode and wh’ 8h2

harmonic mode. These signals are periodic in 1/B. The Fourier analysis leads to the
dHvA frequency F (or the dHVA period P = 1/F).
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Fig.5 The block diagram of the apparatus for the measurement of the dHvA effect by
means of the field modulation method. "’

3.2 Torque method
When an external magnetic field is applied to the sample, there is a torque on the
sample, given M BV , where M is the component of M perpendicular to B and V' is the

volume. Using this method, the absolute value of the magnetization can be exactly
determined. Note that the torque is equal to zero when the direction of the magnetic filed
is parallel to the symmetric direction of the sample.
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Fig.6 The block diagram of the apparatus for measuring the dHvA effect by Torque de
Haas method.’

4. Results of dHVA effect in Bi
4.1 Result from the modulation method (Suzuki'g)

We show typical examples of the dHvVA effect in Bi and the Fourier spectra for the
dH vH periods.

Fig.2 Fermi surface of the electron (a) pocket for Bi. The major axis of the ellipsoid is
tilted by 6.5° from the bisectrix axis.

(a) (b)
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Fig.7 The dHVA effect of Bi in the YZ plane. 7= 1.5 K. This signal corresponds to the
first harmonics (OM /0h).
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Fig.8 The dHVA effect of Bi in the YZ plane. 7= 1.5 K. The signal corresponds to the
second harmonics (0*M/oh*).

4.2 Result of torque de Haas (Suzuki’)
We show typical examples of the torque de Haas in Bi.
TORWUE DHVA
YZ PLANE

H=15k0e
T=42K

VA A

ANGLE

Fig.9 Angular dependence of the torque de Has in the YZ plane. The torque is zero at
the symmetry axes (Y and Z). B=15kOe. T=4.2 K.
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Fig.10 The torque de Haas in the YZ plane. 7= 1.5 K.
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Fig.11 The Fourier spectrum of the dHVA oscillation. The magnetic field is oriented s in
the YZ plane. The Z axis corresponds to 0°. The branches A, B, and C correspond
to the a-, b-, and c-electron pockets, respectively. The branch E corresponds to the
frequency mixing due to the quantum oscillation of the Fermi energy (see Sec.5).
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Fig.12 The Fourier spectrum of the dHVA oscillation. The magnetic field is oriented to
make -36° from the Z axis in the YZ plane. The branches A, B, and C correspond
to the a-, b-, and c-electron pockets, respectively.
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Fig.13 The angular dependence of the dHVA frequencies in the YZ plane. The branches
A, B, and C correspond to the a-, b-, and c-electron pockets, respectively. The
dHvA frequency Fr is approximately equal to F3a, and Fp and Fr coincide with
Fa + Fgc. Note that the b- and c- pockets separate into two branches in the range
of the field angles from -48° to -70°, and this might be a result of the fact that the
direction of magnetic field does not exactly lie in the YZ plane. Note that the
frequency of a-oscillation is denoted as F, where a means 4, BC, D, E, 24 or 3A4.

4.3 Result of dHvVA effect in Bi (Bhargrava’)

14



Table 11 The summary of results of dHVA effect in B1

Electrons Holes
Area in
108 e
Perimds in 1078 Gt ellipsnidal Feriods in~ Area in
Axes Crystal axis  Ellipsoidal axis axiz 0% Gt 12 em*
1 053005 055 =003 18.0 045 0,02 21.2
7.20£0.05
z B.I0£0.05 8.35 £0.05 1.1 045 =002 21.2
417005
3 1.17£0.03 0605 0,03 147 1.575£0.005 6.1
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Fig.14 The angular dependence of electron dHVA period P in the XY plane for Bi. The

solid line is a fit assuming an ellipsoidal Fermi surface and using the measured
values of periods in the crystal axis and a tilt angle of 6.5°.
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Fig.15 The angular dependence of electron dHVA periods in the YZ plane. The tilt angle
measured is 6.5040.25°. The shaded area shows the region where electron periods
were never reported. The solid line is a fit using an ellipsoidal Fermi surface.’
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5. Change of Fermi energy as a function of magnetic field

The dimension of the Fermi surface of Bi is very small compared with that of
ordinary metals. Therefore the quantum number of the Landau level at the Fermi energy
has a small value even at a low magnetic field. The Fermi energy varies with a magnetic
field in a quasi oscillatory way, since the Landau level intervals of the hole and electrons
are generally different to each other. The Fermi energy is determined from the charge

neutrality condition that N,(B)= N%(B)+ N’(B)+ N‘(B). The field dependence of the

Fermi energy in Bi is shown below when B is parallel to the binary, bisectrix, and
trigonal axes, respectively.

We note that the dHVA frequency mixing has been observed in Bi by Suzuki et a
The Fermi energy changes at magnetic fields where the Landau level crosses the Fermi
energy, so that the Fermi energy shows a pseudo periodic variation with the field. This
variation is remarkable even at low magnetic field in Bi. The observed frequency mixing
is due to this effect.

110

(a) B // the binary axis (X)

EF  FERMI ENERGY 55
(meV) Hnammv/./ £
26 B !.I ' : : #H I'."':A
25 ~ . h
24 .'.I P

MAGNETIC FIELD(kOe)

Fig.16 The magnetic field dependence of the Fermi energy (B //X, T = 0 K). The dotted
and solid lines correspond to the Landau levels of the electron and hole,
respectively. The curve of Er vs B exhibits kinks at the fields where the Landau
levels cross the Fermi energy. BCn+: the Landau level of the electron - and ¢
pockets with the quantum number n and the spin up (+) (down (-)) -state. hn+:
the Landau level of the hole pockets with the quantum number » and the spin up

(+) (down (-)) -state. E(n,o0) :ha)c(n+%+%vsa), where v is a spin-splitting

factor defined in Sec.6.4, and o= *1. The expression of E(n, o)will be discussed
later. The ground Landau level is described by either Baraff® model (denoted B)
or Lax’ model (denoted by L).
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Fig.17 The magnetic field dependence of the Fermi energy (7' = 0 K). Magnetic field is
along the Y axis (bisectrix).”'
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Fig.18 The magnetic field dependence of the Fermi eﬁérgy (T = 0 K). Magnetic field is
along the Z axis (trigonal).”'*

7 Motion of free electron in the presence of magnetic field
The energy of free electron is given by

hZ
E(k)=—K’,
2m

where m is the mass of electrons. The k space contours of constant energy are spheres
and for a given k an electron has a group velocity given by

1
Vi = ViE(K). (11)

The equation of motion of an electron in a magnetic field is given by

dk_ e . (12)
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This means that the change in the vector k is normal to the direction of B and is also
normal to v (normal to the energy surface). Thus & must be confined to the orbit in the
plane normal to B. Since

v=v, =(1/h)V,¢, 2%.

we have the equation of motion for electron as
e
hk=——(r—r)xB, (13)
c

where ry [=(xo, y0)] is the position vector of the center of the orbit (guiding center). For
simplicity we assume that ry = 0.

k=—ir><B.
ch

Suppose that the magnetic field is directed along the z axis. The position vector r and the
wavevector k are in the same plane normal to the direction of the magnetic field B.

18



Fig.19 The position vector » and the wavevector k of free electron, in the 2D
plane normal to the direction of the magnetic field B (along the z axis).

k=—r= %2’” . [ is the magnetic length.

8. Analysis

When a magnetic field B is applied along the z axis, the electron motion in this
direction is unaffected by this field, but in the (x, y) plane the Lorentz force induces a
circular motion of the electrons. The Lorentz force causes a representative point in k
space to rotate in the (ky, ky) plane with frequency

_eB
mc

(0)

c

where -e is the charge of electron. This frequency, which is known as the cyclotron
frequency, is independent of k, so the whole system of the representative points rotate
about an axis through the origin of k space and parallel to B.

Analytically we get
ch ch
x=—=%k, ,y=—--k_, 14
eB Y eB (14)
In the complex plane, we have the relation,
e _ﬂ ) k ik _12 —im/2 k ik 15
X ly_eBe (x+l y)_ e (x+l y)' ( )

This means that the magnitude of the position vector r of the electron is related to that of
the wave vector k =(k, ky) by a scaling factor

_¢h

=7=—
g eB

The phase of the position vector is different from that of the wave vector by —7/2. / is so-
called magnetic length.

19



Fig.20 The orbital motion of electron in the presence of B (B is directed out of
page) in the k-space is similar to that in the r-space but scaled by the

20



factor 7 and through 772.'* Note that the directions of the x axis and y axis
are the same as those of &y axis and £y axis, respectively.

9. Onsager theory: Semiclassical quantization of orbits in a magnetic field:
The Onsager-Lifshitz idea™'' was based on a simple semi-classical treatment of how
electrons move in a magnetic field, using the Bohr-Sommerfeld condition to quantized

the motion. The Lagrangian of the electron in the presence of electric and magnetic field
is given by

Lzlmvz—q(¢—lv-A), (16)
2 c

where m and ¢ are the mass and charge of the particle.
Canonical momentum:

p=g—]‘::mv+%A. (17)

Mechanical momentum:

n’zmv:p—gA. (18)
c

The Hamiltonian:
_ _ q _1 2 _ 1 q 2
H=pv-L=(mv+=A)-v—-L=—mv +qp=—(p——A) +q¢. (19)
c 2 2m c

The Hamiltonian formalism uses 4 and ¢, and not E and B, directly. The result is that the
description of the particle depends on the gauge chosen.

We assume that the orbits in a magnetic field are quantized by the Bohr-Sommerfeld
relation

g=mv=hk=p-TLA4=p+S4. (20)
C C

and
§p-dl =(n+y)2an. 1)

where g = -e (e>0) is the charge of electron, » is an integer, and y is the phase correction:
y=1/2 for free electron.

21



jSP-dl=§hk-d1—§§A-d1=(n+y)2ﬂh. (22)

Note we assume ry = 0. Then we get

§hk-dl=—E§r><B-dl=EB-§>(rxdl)=EB-2An:£CD. 27)
c c c c
where
ﬁ(r x dl) =2 (area enclosed within the orbit) n (geometrical result)

and @ is the magnetic flux contained within the orbit in real space, ® =B - 4n.

Fig.21 In this figure, we mean that dr =dl . The area of triangle OAB is equal to
lrxdi|/2.

rxdl=nrdrsind = n OC- AB = [2 area of AOAB | n
where

OC=r, AB = drsin(rx — 0) =drsin€
Then we have

it;(r x dl)=2 (area enclosed within the orbit) n

22



On the other hand,
~SfA-dl=-S§(VxA)-da=-§B-da=- (28)
c c c c
by the Stokes theorem. Then we have

fp- dl——CD——(D——d) (n+7y)27h. (29)
C

It follows that the orbit of an electron is quantized in such a way that the flux through it is
27hc .
Q (r)=(m+y)——=20,(n+y) (Onsager relation), (30)
e

where @ is a quantum fluxoid and is given by

| 2me e 5 0678x107 Gauss em’. 31)
2e 2e

Note that -2e corresponds to the charge of the Cooper pair (it will be discussed in the
superconductivity).

((Note))

From p.217 (The development of the band theory of solids.
L. Hoddeson et al, Out of Crystal maze (Oxford University Press, 1992).

As Shoenberg’s former research student Brian Pippard recalls, Shoenberg and
Onsager shared an office during the latter’s visiting year at Cambridge. But even after
Onsager had written his paper, at least for a year or two, Cambridge physicists tended to
give it little importance. Pippard recalls:

There was not a lovely lot of algebraic quantities and integrals which you could
evaluate [in this paper] because Onsager was talking in geometrical terms - and I think
David [Shoenberg] was disappointed to see “so little” coming out and failed to realize
that Onsager had provided the complete clue. So nothing happened. The paper was
published and nobody in Cambridge took any notice. They went on measuring the de
Haas-van Alphen effect and fitting it with ellipsoidal shapes [in which the relation
between energy and wave vector is assumed to be quadratic.

That was the situation at the end of 1952.
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9. Physical meaning for the quantization of the magnetic flux

2®0p(n+y)

Fig.22 Quantization of the magnetic flux inside the orbit of electron (the real
space). The number of the magnetic flux inside the orbit is only an integer.

According to the Onsager theory, the magnetic flux inside the orbit of electron is
quantized as

®,(r) = BS,(r) = (n + 1) 22 = 200, (n + 7)
e

where S, (r) is the area of the electron orbit, and # is an integer. Using the relation

kzér:ir,

ch 0?

it is found that the area S (k)of the orbit of electron in the k-space (normal to B) is
related to the area Sy(r) through

1 ’B 27eB
S, (k)= B_z“BS"(r) =ﬁq)n(”) = e (n+y).

implying that S, (k) is also quantized for the fixed magnetic field B.
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10. Definition of the magnetic length /
When the magnetic field B is applied to the z axis (normal to the plane), what is the
area A where the quantum flux 2 @, penetrates?

_ 2mhc

20, = BS(r)
e

Then we get
mhe )
S(ry=——=nl".
(r) o8

where

o
eB’

In other words, [ is the radius of the circle inside which the quantum fluxoid @) passes
through.

11. Physical meaning of the Onsager relation
We consider the Landau tubes whose cross sections by plane perpendicular to the
direction of the magnetic field has the same area for the n-th Landau tube,

2meB 1
S, (k)= ?(” +§) .

2 2
and are bounded by the curves of constant energy (h—kz2 = .
2m 2m

k,’) at the height k, in
the k-space. The energy at k, of the Landau tube is given by

hZ

=2
2m ©

e(n,k,)=(n+ %)ha)c +

where @, is the cyclotron angular frequency,

_eB
mc

c
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Fig.23 Landau tube in the k-space. It is represented by the value of k, (= k). The
bottom and top parts of the Landau tube intersects with the Fermi surface.
The magnetic field is directed along the z axis.

Here we show how to draw the Landau tubes:

(1) We choose the quantum number 7 (the integer) such

h o, 1
—k’=h -
2m @.(n 2)

where k, (=ky) n is the in-plane wavenumber.

(2) The energy of the cylinder (so-called Landau tube) at the point denoted by » and £, is
given by

g(nk)—ha)(n+l)+ik2
T 20 2m Y

The intersection of the constant-k, plane with the Fermi surface (¢ = &) forms a cross
section (circle with the radius k,). The Landau tube can be constructed such that the top
and the bottom are parts of the cylinder as shown in Fig.
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The radius of the Landau tube denoted by the quantum number increases with
increasing the magnetic field.

(a) (b)

(c) (d)

(e)
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(2

Fig.24 Landau tubes with the fixed n. The magnetic field is increased from (a) to
(2

The level density will have a sharp peak whenever ¢ is equal to the energy of an extremal
orbit, satisfying the quantization condition. The reason for this is as follows. The above
figures depict the Landau tube with the same » for different B. As the magnetic field B
increases, the area of the Landau tube increases. The number of the states D(&)de is
proportional to the area of the portion of Landau tube contained between the constant-
energy energy surfaces ¢ and ¢ + de. The area of such a portion is not extremal in (a) to
(f). The area of the portion as shown in (g) becomes extremal when there is an extremal
orbit of energy ¢ on the Landau tube. Evidently, the area of the portion of the tube is
enhanced as a result of the very slow energy variation of the level along the tube near the
given orbit.
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o 1

e+de

~1 =

Fig.25 The number of the states D(&)de which is proportional to the area of the portion of
Landau tube contained between the constant energy surfaces € and ¢ + de. The
region shaded by green.

12. Extremal orbit contributing to the dHvA signal
From the above discussion, we notice that the extremal value of the area of the cross-

section of the Fermi surface, A(&,,k.), at the actual Fermi level &, at the slice k,, where

k, is the component of the wave vector along the direction of magnetic field B. The
extremal cross section is defined by

OA(&r,k,) _
ok

0

at k, = k.
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Fig.26 Extremal orbits 1 and 2. A(¢,.,k,) has a local maximum for the orbit 1 and
has a local minimum for the orbit 2.

13.  Landau tubes with the quantum number »

Here we draw a series of Landau tubes with different quantum number n for each
fixed magnetic field B. We start with the relation given by

/R 1
E=—Fk +ho(n+-)
2m 2
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where

For simplicity, we assume that # =1, m = 1. Then we get

E:lk22+a)c(n+l)
2 2

For a fixed n (0 or positive integer) and a fixed E,

k=%\2E - (2n+1)

The Landau tube consists of the cylinder with a radius

k, =k, ={2n+Daw,

and the length of cylinder

<\J2E-w,(2n+1)

k.

We choose; £ = 12. @, is changed as a parameter, where # = 1 and m = 1.. In the quantum
limit, there is only one state with n = 0 inside the Fermi surface. The Mathematica
program is shown in the APPENDIX. We show the Landau tubes of quantized magnetic
levels (n) at fixed values of 7w, .

(a) ho, =0.5,1,1.5,and 2.0
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E=12
fi,=0.5

(b) ho, =2.5,3,3.5,and 4.0
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E=12
fiw,=3.

E=12 §
hw,=3.5 ™

(©) hw,=4.5,5,5.5,and 6.0
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E=12

=172
fiw,=4.5 E=12

A, =5.

E=12
Aw,=5.5

d) e, =65,7,7.5,8.0
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E=12
e, =6.5

E=12
fiw,.=7.

E=12
e =T1.5 E=12

fiw,=8.

Fig.27

The last figure shows the quantum limit where only the Landau tube with n = 0 exists
inside the Fermi surface.

14. Fundamentals of the Landau levels
We now consider the case when &, = 0.
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B=0 B+0

Fig.29

This regular periodic motion introduces a new quantization of the energy levels
(Landau levels) in the (kx, k) plane, corresponding to those of a harmonic oscillator with

frequency @, and energy

2

g, =ho,(n+—=)= h—kj, (12)
2 m

where k, is the magnitude of the in-plane wave vector and the quantum number # takes

integer values 0, 1, 2, 3,...... @, is the cyclotron angular frequency and is defined by

eB
mc

c

Each Landau ring is associated with an area of k space. The area S, is the area of the orbit
n with the radius &k, =k,
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(13)

2 1
:é—z(n+5) .

1
>

(n+

27eB
fic

S, (k)= k,’ =

SIS SIS I00E SIS SIS SIS

E .

fic

=

Thus in a magnetic field the area of the orbit in & space is quantized. Note that

[ is given by
in the SI units.
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Fig.30

15.

o« T, En
P TTININ
AR SRR\
S o o° e ¢ 32
o...o .o 01.2 P ]
IS X Py nx % e )
00°...o : ® 900 !
e b y e
..0.:0:....0..0...0 .o..
RN o..“.. o Sy
.o.o..“..o.o.
eSS

Quantization scheme for free electrons. Electron states are denoted by
points in the k space in the absence and presence of external magnetic
field B. The states on each circle are degenerate. (a) When B = 0, there is
one state per area (277L)°. L* is the area of the system. (b) When B # 0, the
electron energy is quantized into Landau levels. Each circle represents a
Landau level with energy E, =hw,(n+1/2).

Density of states using the magnetic length

We consider the density of states for the 2D system

D (¢)de =

2

2 rkdk

(27)*

where the electron spin is neglected. The energy dispersion relation is given by

/R
g =—Fk",
1 2m 1
with
2
a’e;“l:h—kldkl
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Then we get

r m
Do(é‘sg)dgl :(27)2272'?616]_,
or
2 2
D, (¢)= L pY mL

Qry K 24k

which is constant. Note that we neglect the electron spin, since only the orbital motion is
concerned.

Now we calculate the number of states between the adjacent energy levels &, and &+1.
Since

Ag, =¢,, —¢&, =ho (which is independent of the quantum number )

Fig.31 In a magnetic field the points in the (kx, ky) plane may be viewed as
restricted circles

Then the number of states is calculated as

mL’ Ap. = mL’ hep. = mL’ heB _ eBL’
2 - -

b= Die)Ae, = 22T 2 me 2ahe

=pB.

where
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el?

p= 27he
and
po<h
eB’

16. Derivation of the dHvA frequency

0} The use of the Onsager’s relation

In the dHVA we need the area of the orbit in the k-space. We define S,(r) as an area
enclosed by the orbit in the real space (r) and Sy(k) as an are enclosed by the orbit in the
k-space. Then we have a relation

Sn(r)=(—"’hj S, (k) =1'S, (k). (14)
eB
and
S (k)= (n+ y)—z”eB . (15)
fic

In the Fermi surface experiments we may be interested in the increment AB for which
two successive orbits, n and n+1, have the same area in the k-space on the Fermi surface.
Suppose that S(k) is the Fermi surface in the momentum space. Then we have

Sn(k)=Sn+l(k):S(k)7

or
(n+ )R, =(n+1+ ) °B,, = 5(K).
hc hc
or
S(k) 2 S(k) 2
2 = n+ )=, 2 n+1+ )=, 16
n (n+7) o B (n 7) o (16)
or
1 1 Qe
S(K)(— ——) =", 17
()(Bn Z 1) » (17)
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or

M=
S(k)y F

The dHVA frequency F is related to the area of the Fermi surface.

F= Eg(k)
2e

What is a typical value of AB which is experimentally observed?

|AB| _ 2re

B> heS(k) (18)

1
A(—)| =
)
For Au,

S(k)=4.8 x 10'® cm™ for the belly orbit of Au.

B? =0.198872[B,(T)]’ (in units of G)

A8 = hf;sz)

where By is in the units of T. When B =5 T (which means By = 5), we have
[AB|=4.97 G (= Oe).

) The use of Landau level
Suppose that n-th Landau level exists just below the Fermi energy. The total number
of states below the Fermi energy is

2

(27)’

npB = S(k),

where S(k) is the 2D extremal cross section of the Fermi surface, normal to B, and p is

el?

Ay

Then we get

e 1
n—B=—3S(k
ch 2 (k)
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or

1 27e

n
B heS(k)

Similarly we get

2e
heS (k)

=(n+1)

n+l
Then we have

sy L1 ame 1
B B. B  heSk) F

n+l n

This result is the same as that derived from the Onsager relation.

17. Another method for the derivation: cyclotron frequency
Note that the formula for can also be derived from the correspondence principle. The
frequency for motion along a closed orbit is

o, =L (19)

2
m.c
where @, is defined as

2
m, = h—a—S , (20)
27 0&

In the semiclassical limit, one should obtain equidistant levels with a separation Ag
equal to 7w, . Hence

As = hao, = heB _ hzeB _ 2meB ’ @1)
me h oS ch(0S/0¢)
27 O¢
or
N _ 27zeBL. 22)
de ch ho,
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or

oS, (k) 2meB 1

oe ch ho,
or
S =281 40 ney)=2B sy
ch ho, ch
18. Quantum mechanics

18.1 Landau gauge, symmetric gauge, and gauge transformation
1 q . 1 e,
H=——(p-"A) +qp=-—(p+—A) —ep. (23)
2m c 2m c

In the presence of the magnetic field B (constant), we can choose the vector potential as

e, e, e
A= %(B Xr) = % 0 0 B|= %(—By,Bx,O) (symmetric gauge). (24)
X y z

Here we define a gauge transformation between the vector potentials 4 and 4°,

A'=A+Vy,

where y = %Bxy. Since

V= %B(y,x,O) , (25)

the new vector potential A' is obtained as
A'=(0,Bx,0) (Landau gauge). (26)

The corresponding gauge transformation for the wave functions,

—ieB
i )y (r), (27)

v (1) = exp( Ly (r) = exp(
ch

with g = -e (e>0).
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18.2 Operators in quantum mechanics
We begin by the relation

A

. e
n=p+—A.
C
c

eh OA, eh 04, eh

=S S5 S
ic ox ic oy ic
or
A A eh
5 :_B 5
7.7,] ic °
where
614’\3’ _a_z%\xz Bz'
ox 0y
Similarly we have
(2,.21="8. ad [2.2]1=-"B
ic ic

Since A commute with 7 (A4 is a function of r),

[x,z]1=[%p,)=ih, [y,7,]1=[y.p,1=ih,

A A A A

~ a e ~ e € A
[ﬂ-x’ﬂ-y]:[px—i_;Ax’py—i_;Ay]: [px’Ay]_

e
~[p., A
c[py N

9

A A

[2,7.]=[Z2,p.]1=ih.

A A A A e e
[xsﬂ-y] [xspy+ZAy]:09 [y97[x]:[y’px+ZAx]:0’

When B =(0,0,B) or B,= B,

A A ehB A A
[ﬂ-xaﬂ-y] =

ic

Note that

44

; [7,,7.]1=0, [7..7.]

(28)

(29)

(30)

€2))

(32)

(33)



where / is called as a magnetic length and it is a cyclotron radius for the ground state
Landau level: ¢*> =cfi/eB.

Here we define the operators X and Y for the guiding-center coordinates.
A /2
7 Y =y+ ?75 . (34)

The commutation relation is given by

2 12 12 2 4

A A . ] A . A A A .
[X,Y]:[x—;ﬂ'y,y'F;ﬂ'x]:—;[ﬂ'x,X]—;[ﬂ'y,y]-i-h—z[ﬂ'x,ﬂ'y]:llz,
R R EE A AR
[ﬂ-an]z[ﬂ-xax_%”y]=[7Z-xax]_[ﬂ-x>;ﬂ-y]=0a

2 2
[frx,Y]=[frx,y+%ﬁx]=[ﬁx,ﬁ]+[frx,%ﬁx]=o. (35)

When the uncertainties AX and AY are defined by (AX)* =< X?> and (AY) =< Y2 >,
respectively, we have the uncertainty relation,

(AX)(AY) > (1/4)‘<[)2,?]>2 —(1/4)*,

or
(AX)(AY) > (1/2)*.

The Hamiltonian H is given by

1§1=L(f)+fA)2 =i(frx2 T2, (36)
2m c 2m

We define the creation and annihilation operators,

R PP . P
a=———~(7,-irx,), a’'=——(x, +izx,), 37),(38
ﬁh(x V) \/Eh( V) (37),(38)
or
R ~ s . h

Ao=——(a+a"), A= (G -d), (39)

S NGY
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£2 . . A = gz . . 62 ] hz

[a,a"] =2—hz[7tx —iZ,, A +if,]= h—zi[ﬂ'x,ﬂ'x] :?i(_lg_Z =1,
2 2 : 2 2 hz At A hz At A
. 7, :2—%[(a+a ) —(a —a) ]=€—2(aa +a a)=€—2(2a a+l),
Thus we have
H= n (a*a+ l) =haw (04 + l) (40)
C ml? 2 ‘ 27
where
h? h? heB
ha)c = 2 = = .
ml”  m(ch/eB) mc
When 4*a = N, the Hamiltonian is described by
A ~ 1
tha)C(N—i-E). (41)

We thus find the energy levels for the free electrons in a homogeneous magnetic field-
also known as Landau levels.

18.3 Schrodinger equation (Landau gauge)
We consider the Hamiltonian given by

Jis =L[,3j +(p, +<BR + 5., (42)
2m c
~ ~ N A e .
T.=D,, 7,=p,+—Bx, (43)
. C

The guiding-center coordinates are
2 2 2 2
5 A . . . PSR R
Ch =il B =-Th,  T=jelpl @
e
The Hamiltonian A commutes with p, and p,

[H,p,1=0 and [H,p.]=0

The Hamiltonian A also commutes with X : [FI X 1=0.
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Hn.k,.k.)=E,|n.k,.k.)
and

Py|nk, k. )= nk |n.k, . k. ) and p.|nk .k )="hk|nk,.k.)

(y|p,|nke, e )y = he (y|nk k), (z|py|nak, k) = nk,(y|n K, k)
or

h o h o

7§<y nk, k) =nk,(y|nk, k), 7§<Z nk,.k.) =k (z|n.k,.k.)
Schrédinger equation

1 ho ho e h o

_[(__)2 + (__ + _Bx)2 + (T_)z]l//(xayaz) = 5‘//(X,yaz) 5 (45)

2m i Ox ioy c i oy

vxy,2) =" g, (46)

x=2, with p= T =1/§ T =

p h he ( mc
chk ch
= L= —k, =1k,

S =F eB eB "’ 7
We assume the periodic boundary condition along the y axis.

w(x,y+L,,z)=w(xy,2), (47)
or

o — 1 ’
or

k,=Q@r/L,)n, (ny: integers), (48)

Then we have
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(&) =[(E - &) +——(-2mE, + I*k.)Y(E)
ehB
We put

27 2
E, =ha)c(n+l)+ Pk,
2 2m

(Landau level), (49)

or

2eBh (n+ %) ,

2mE, =h’k.’ +2mha,(n + %) =k’ +

¢" () =1 -&) - 2n+DI(S).

Finally we get a differential equation for ¢(&).

¢"(&)+[2n+1-(& - &) 1H(E) = 0.

The solution of this differential equation is

(£-£&)°

8, =Wr2"ny e 2 H(E-E), (50)

with

ch
& = —ky =lk,,

eB
-2
eB
X, =i=£§0 =0k,
,B J

The coordinate x is the center of orbits. Suppose that the size of the system along the x
axis is Lx. The coordinate xy should satisfy the condition, 0<x(<Ly. Since the energy of
the system is independent of xo, this state is degenerate.

0<x0=%:€§0=£2ky<Lx, (51)

or
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Ck, =", <L,

or

LL,
n, < ol .

Thus the degeneracy is given by the number of allowed k, values for the system.

LL, 4 A B4 _O©

T 2w, b 20, 20, (52)
ﬂ'i
eB
where
O, = 27¢ _ 5 0678x10” Gauss cm’.

2e

The energy dispersion is plotted as a function of k, for each Landau level with the index #.

27 2
E(n,kz)zha)c(n+%)+h2];; . (53)

18.4 Physical meaning of the distance /
The wavefunction is given by

(&-&)

4,5 =Wr2'n) e 2 H(E-E)

When n = 0 (the ground state),

2

& &
3,0 (E)=(E[0)=7""e 2 H,_(&)=r""e 2
where
Hn:O (f) =1.

Since
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we have
1
)=
Using this relation, we have

b0 () = (x[0) = ——e¢ *"

or

2

G0 (x)
’ | \/_ [
When o =——, this function can be rewritten as the normal distribution function,

V2

x2

)
e 20

2 1
¢n=0(x)| :\/ZO' >

I . . o .
where o = —— is the standard deviation. o* = E is the variance.

V2

R . .
n:O(x)|2 = ﬁe " (ground state wave function) as a function of

Fig.31 Plot of /|¢

x/l, which is a Gaussian distribution function.
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Here we note

x'—x"

/

(£]¢7) = 8(E=¢") = 6C—) = 15(x=x") = U{x ")

1
4)=719)

19. Another method

2
A=+ A =[5+ A+ 56 A+ A B,
2m c 2m c c
P-A+Ap=p A +pA+pA+Ap +Ap, +APp.
=[p,.A]1+[p,, 4, 1+[p.,A.]+2A-p
h

=ZV-A+2A-p
l

Then we have

2
H:L[ﬁ%e—zAuf(zv-AuA-p)]
2m c c i

2
:L(ﬁ2+e—2A2+?—hv.A+kA~ﬁ)
2m c ic c

Since V-A=0,
~ 1 ., & ., 2e . 1 ., B> ., eB..
H=—pP +5A"+—A-p)=—7p + X +—xp,,
2m(p 2 ) 2 P 2mc? mc Py
where
2 2p2
fzzﬂ’ ha)c: hzzhe;B’ ma)czzeBz ,
eB mt mc mc
7~ 1 AD ezBZ A2 AA 1 A D m0)2 AD AA
H=—1p + X+oxp =—p +—x"+wxp,.
2mp 2mc? Py 2 Py

The first and second terms of this Hamiltonian are that of the simple harmonics along the
X axis.
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This Hamiltonian A commutes with p, and p_. Thus the wave function can be
described by the form,

v (x,7,2) = 4, (0",

20. The Zeeman splitting of the Landau level
Here we consider the effect of the spin magnetic moment on the Landau level.

Fig.32 Spin angular momentum § and spin magnetic moment u for free
electron.S=%6/2. pn,=—2u,S/h). u, =eh/2myc (Bohr magnetron).

The spin magnetic moment g is given by & = —gu,(S/h)=—-(gu,/2)e, where
My =eh/(2myc) (Bohr magneton). The factor g is called the Landé-g factor and is equal

to g =2.0023 for free electrons. In the presence of magnetic field B along the z axis, the
Zeeman energy is given by

. B=E oy M8 Ly o, (54)
2 my, 2 2

where v, = gm_/m, and o = £1. Thus we have the splitting of the Landau level in the
presence of magnetic field as

E(n,a)zhwc(n+%+%vsa). (55)

where v, 1s much smaller than 1 for Bi.

21. Numerical calculations using Mathematica 5.2
21.1. Energy dispersion of the Landau level

We consider the energy dispersion of the Landau level with the quantum number 7 as
a function of k.
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e(n,k;)

Fig.33 Energy dispersion of the Landau levels with n and k, for a 3D electron gas
in the presence of a magnetic field along the z axis.

21.2. Plot of the Landau wave function as a function of &, where & = 0.

(@)

Plot of the wave function

0,(&)=Nm2"ny "2 2H (&)

wheren=20, 1, 2,...
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Plot of |(on (§)|2 where n=0,1, 2, ...,
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(b)

Fig.34 Plot of (a) ¢,(£) and (b)
1, ...,and 6.

$,(S )|2 with & = 0 as a function of & n =0,

21.3 Mathematica program
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Landau level

h h e BXx
Clear["Global «"]; nX := — D[#, X] &; ny := (7 D[#, y] + #) &;
i 1 (o]

h
nz 1= —D[#, z] &,
1
f =
1
om (Nest[nX, ¥[x, y, z], 2] + Nest[ny, ¥[X, y, 2], 2] +
m
Nest[rnz, ¥[x, y, z], 2]) =E1¥y[x, y, z] // Slmpllfy;

rulel = {y » (Exp[i ky #2 + 1 kz #3] ¢[#1] &) };

rule2 = /3-“, ky->-1, £o0,

vchange[Eq , ¥ , x_, z_ =

1 n? kz?
(n+—)+ };
2 2m

D[#, z]&), viz1, 0|,

I

1
Eq /- {PI/Ix], (X, n_}]» "eSt[(ﬁ

U[X]»y[z], x> f};

fi=Ff/. rulel// Simplify; seql = vchange[fl, o, X, &, %] // FullSimplify;
seq2 =seql //. rule2 // FullSimplify;
-1
- - _ 2 .
rule3 = {¢-> [h[#] Exp[ - (- €0) ] &)},
seq3 = seq2 /. rule3 // FullSimplify

nkzzw (-€0)2_jy o |BE
Bee " h(2nh[&] +2 (-£+E0) W [E] +h7[&])
m

DSolve[seq3, h[&], £] // Simplify[#, {n> 0, n e Integers}] &

[{nrer~
. . n 1 2
C[1] HermiteH[n, & - £0] + C[2] Hypergeometr1c1|=1[—§, > (E-£0) H}
s General form of the oscillatory magnetization (Lifshitz-Kosevich)

The expression of the oscillatory magnetization is derived by Lifshitz and
Kosevich''as

-1/2

V2T (en/c)? <  [0%S] 27°Tem, . . cS,
M =- exp(— <)sin
7'*B"? Ze: ‘lop?], p( ehB ) (ehB
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where the sum over e extends all extremal cross-sectional are of the Fermi surface, the
phase +7/4 if 0S/0p.>0 (minimum) and -7/4 if 0S/0p. <0 (maximum), my is a mass of

free electron, and m, = (1/27)0S/0s . The term cos(mm,_/m,) arises from the Zeeman
splitting of spins. The magnetization oscillations are periodic in 1/B. The period is

2eh
eSS

e

A(%) _ (57)

The influence of electron scattering is not taken into account in the derivation given
above. Its effect is easily estimated. A proper account of the influence of collisions gives
rise to an additional factor. If the mean time between collisions is 7, the corresponding
uncertainty in electron energies %/7 is equivalent to a temperature, so-called Dingle
temperature

27zzcmc) — exp(— 27k, T cm,

) 58
etB ehB ) (58)

exp(—
where Tj is the Dingle temperature and is defined by

ro
kyt

23.  Simple model to understand the dHvA effect''®

Consider the figure showing Landau levels associated with successive values of n =0,
1, 2, ..., s The upper green line represents the Fermi level &. The levels below & are
filled, those above are empty. Since & 1s much larger than the level-separation 7@, , the

number n = s of occupied levels is very large. Let us assume that the magnetic field is
increased slightly. The level separation will increase, and one of the lower levels will
eventually cross the Fermi level. The resulting distribution of levels is similar to the
original one except that the number of filled levels below & is now n = s-1, instead of n =
s. Since n is large, this difference is essentially negligible, so that one expects the new
state to be equivalent to the original one. This implies a periodic dependence of the
magnetization.
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n=s-1 n=g-1

n=1 n=1

n=0 h=0

Fig.35 Schematic energy diagram of a 2D free electron gas in the absence and presence
of B. At B = 0, the states below & are occupied. The energy levels are split into
the Landau levels with (a) n =0, 1, 2,..., and s for a specified field and (b) n = 0,
1, 2,..., and s-1 for another specified field. The total energy of the electrons is the
same as in the absence of a magnetic field.

((Mathematica)) Schematic energy diagram as a function of 1/B
This figure shows the schematic diagram of the location of each Landau levels as a
function of ¢, /hw,. When &, /hw, =s (integer), there are s Landau levels below the

Fermi level &.

Clear["Global «"];
Fi[x , n_, 1] :=

i
Which[x<n, 0, nsx<n+1, —, x>n+1, 0];
n
Plot[
Evaluate[Table[F1[x, n, i], {n, 1, 30}, {i, 1, n}]1],
{x, 0, 31},

PlotStyle -» Table[{Thickness[0.007], Hue[0.1 7]},
{j, 0, 10}], PlotRange - {{0, 31}, {0, 1}}]
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Fig.36 Schematic diagram for the separation of the Landau level as a function of 1/B.
The x axis is s = N/(pB). The y axis is equal to the energy normalized by the
Fermi energy &r. The number of the Landau levels below & is equal to s at x = s.

24.  Derivation of the oscillatory behavior in a 2D model.
The energy level of each Landau level is given by e, (n+1/2), where n = 0, 1,

2, ..... Each on of the Landau level is degenerate and contains pB states. We now
consider several cases.

(A) Then=0,1,2,...,s-1states are occupied. n = s state is empty.

=5

n=1

n=0
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Fig.26 &p=hw.s. N=pBs.

The total energy is constant,

= 1 1 1 1 1
U=U,=)Y pB(n+ E)ha)c = ha)ch[Es(s -+ Es] = ha)chEsz = EgFN. (59)

n=0

(B)  The case where the n = s state is not filled.
We now consider the case when 7w, decreases. This corresponds to the decrease of
B.

(1) e <hwm,/2,where ¢is the energy difference defined by the figure below.

&

=
n=s-1

Fig.37

(11) ho,/2<e<ho,
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£ n== &

n=s-1

11
—

{1

n=0

Fig.38 &r=shw,+¢,with 0<e<haw,.

The n=0, 1, 2, ..., (s-1) levels are occupied and the n = s level is not filled. The total
number of electrons is N. The energy due to the partially occupied n = s state is

(N - pBs)ho, (s + %) . Then the total energy is

< 1 1 1
U-U,= Z/OB(I%LE)FI@ —EEFN+(N—sz)ha)C(S+E)

n=0
1 1 1
= ha)chESZ —EgFN+(N—sz)ha)c(s +5)

) (60)
where

pPBs <N < pB(s +1), and sho, <&, =(s+Dho,.
Here we introduce A as

A=N-pBs.
The parameter A satisfies the inequality

0<A<pB,

ps 1 _plst)

for . The parameter A denotes the number of electrons partially

occupied in the n = s state
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The parameter i = pBs is the total number of electrons occupied in the n =0, 1, 2,...

s-1 states for ﬁ<l<M.

N
(i) Then=0,1,2, ..., s states are occupied. n = s+1 state is empty.

F 1

n=5

n=s-1

n=1

n=0
¥

Fig.39
In this case we have
Ep=ho.(s+1).

N=pB(s+1).

s 1 1 1
U=U, =Y pB(n +E)ha)c = ha)ch[Es(s +1) +5(s +1)]

n=0

1 1
=hw,pB—(s+1)’ ==&, N
(,p 2( ) 2 F

25.  Total energy vs B
We now discuss the total energy as a function of B.

N(s+ l)
The total energy has a local minimum at B = -2
ps(s+1)
((Proof))
Since
hao, =B oM g =2y,B,
m.c 2m.c
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the total energy is expressed by
U-U, = ha)ch%sz —%eFN +(N - pBs)ha,(s +%)

=y, pB’s’ —%gFN + 11, BN (25 +1) — 1, pB*s(25 +1)

- —%gFN+IuBBN(2S +1)— p,pB’s(s +1) = f(B)

f'(B)=p;NQ2s+1)=2u,pBs(s +1)=0.

N(s+ l)
Then f(B) has a local maximum at B = — 2 ,
ps(s+1)
or
1 _ps(s+l)
BTN,

We also show that the total energy f(B) becomes zero at

1 _(s+Dp
B N

1
B

((Proof))
We note that U - Uy=0 at

&p=hws, and N =pBs.

Then
& =haw.s :e—hSB :ﬂs3=2,ugﬁ.
m.c m.c o)
N2
f(B)=—py—+ 1,BN(2s + 1) — p1,pB’s(s +1),
Yo,
or

f(B)= —%[szzs(s +1) = NpB(2s +1)+ N*],
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or

2

(B =11, plBs(s + 1)~ B2s +1) + 5]
p p
= 1y p(sB~)[(s + B~
p p

The solution of B) =0 is

_(s+Dp

1
B N

lzm and
B N

23. Magnetization M vs B
The magnetization M is given by

_OU _ _OBOU _ ,0U _ , N'u, OF

= _— X ,
OB ox Ox ox p Ox
where
1
xX=—,
B
F——s(s+1)p—2i+£(2s+1)l—1
N*x* N x
oF Pl p 1
=2s(s+ ) — - 25+ D) —,
ox ( )Nzx3 N( ))c2
2 2 2
M:xzMa—F:M[2s(s+l)p—zl—£(2s+l)].
P Ox o, N x N
M=0 at
x_2s(s+1)£
2s+1 N

26. Mathematica
In this numerical calculation we use n = 10, g5 = 1, and p = 1. for simplicity.
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Fig.40 The plot of U-Uj vs 1/B (the detail).

Fig.41 Plot of U-U, vs B.

65



Fig.42 Plot of U-U, and M as a function of 1/B.

Fig. 43 Plot of ¢ vs 1/B (red) and A vs 1/B (blue).

2 Conclusion
The physics on the dHVA effect of metals (in particular, bismuth) has been presented
with the aid of Mathematica 5.2.
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de Haas van Alphen effect

Clear["Global «"];

1 2 1 1
U=-—s (s+1) uBpB”+N1 (S+—)uBB——N1EF/.
2 2 2

N1
(EF -» uB— ); eql =D[U, B]; Solve[eql == 0, B];
Jo)

1
Ul[x , s ]=U/.B-— //Simplify;

X
U2 = U1[x, s] x*p/ N1% // PowerExpand // Simplify;
Solve[U2 == 0, x] // Simplify;

s(1+s)p

max1 = U1[x, s] /. {x 5 } /7 simplify;

N1 (5+—1)

2
rulel = {N1-10, p>1, uB->1};
H([x , s, N1 , o] :=

i s p i (1+s) o
Un1tStep[x-—] - Un1tStep[x - —11;
N1 N1

U2 =U1[x, s]H[X, s, N1, p],;U4=U2/. {x->1/VY},;
M =x?D[U2, x] // Simplify; NN1 = N1-pBs;
NN2[x , s ] =NN1/.B->1/x// Simplify;

NN3 =
] Sp . (1+s)p
NN2[x, S] (UnltStep [x - — ] _ UnitStep [x = ] ) .
N1 N1
Sp i sp . (1+s) p
NN4 = — (UnltStep[x - — | -UnitStep [x - —_— ] ) :
X N1 N1
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Free energy as a function of x = 1/B

pll = Plot [Evaluate[Table[U2 /. rulel, {s, 0, 20}]],
{x, 0.1, 1},
PlotStyle -» Table[{Hue[0. 1], Thick}, {i, 06, 10}],
PlotRange -» {{0, 1}, {-2, 7}}, Background - Gray,
AxesLabel » {"x=1/B", "F"}]

pl1l = Plot [Evaluate[Table[U4 /. rulel, {s, 0, 20}]],
{y, 0.1, 10},
PlotStyle -» Table[{Red, Thick}, {i, 0, 10}],
PlotRange -» {{0, 10}, {0, 7}}, Background - Gray,
AxesLabel » {"B", "F"}]

69



Magnetization as a function of 1/B

pl1l = Plot [Evaluate[Table[U2 /. rulel, {s, 0, 20}]],
{x, 0.1, 1},
PlotStyle - Table[{Hue[0. i], Thick}, {i, 0, 10}],
PlotRange » {{0, 1}, {-2, 7}}, Background - Gray];
pl2 = Plot [Evaluate[Table[M /. rulel, {s, 0, 20}]],
{x, 0.1, 1},
PlotStyle - Table[{Green, Thick}, {i, 0, 20}],
PlotRange -» {{0, 1}, {-7, 7}}, Background - Gray,
PlotPoints » 200, Exclusions - None];
gl =
Graphics]|
{Text [Style["F", Black, 12], {0.13, 6.5}],
Text [Style["M", Black, 12], {0.13, -2}1}1;
Show[pl1l, p12, g1, PlotRange - All]
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b1l = Plot[Evaluate[Table[NN3 /. rulel, {s, 0, 20}]],
{x, 0.1, 2},
PlotStyle -» Table[{Blue, Thick}, {i, 0, 20}],
Background - Gray, AxesLabel -» {"x=1/B", "N'"},
Exclusions - None];

b22 - Plot [Evaluate[Table[NN4 /. rulel, {s, 0, 20}]],
{x, 0.1, 2},
PlotStyle -» Table[{Red, Thick}, {i, 0, 20}],
Background - Gray, AxesLabel -» {"x=1/B", "N'"},
Exclusions - None];

Show[b22, b11]
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APPENDIX 2 How to draw the dHVA tubes using Mathematica

Clear["Global %"7];
2E1

dHVA[A1 , E1 ] := Module[{Nl}, N1 = (— —1]/ 2; r[ni_ ] :=V (2n1+1) A1 ;
Al

kzi[nz_ ] :=V2E1- (2n2+1) A1 ;

f1-=

Graphics3D[{Green, Opacity[0.25], Table[Cylinder[{{0, 0, -kz1[n]}, {0, O, kzi[n]}}, r[nl],
{n, ©, N1}] }, ViewPoint -» {1, 1, 0.4}, Boxed - False];

f2 - Graphicsso[{Red, Thick, Arrow[{{o, o, w/ﬁ}, {0, 0, 1.6 «/E}}],
Text[Style["B" , Black, 15], {o, o, 1.2@}],
Text[Style[“E:" <> ToString[E1], Black, 15], {1.5 V2E1, o, 0}],
Text[style["hwc=" <> ToString[A1], Black, 15], {1.5\/2?, 0, —1}]}];
Show[f1l, f2, PlotRange - All] ] ;

pt2 = Evaluate[Table[dHVA[A1l, 12], {A1, 3, 8, 1}11;
Show[GraphicsGrid [Partition[pt2, 3]]]
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APPENDIX-III
Units related to this section

[ez] =ergcm
[erg]= [Gz.cm3]
[emu] = [erg/G]
Since
[ez] =ergcm= G’em’,

we have
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[e]=G cm’

We note that

erg _ G*-cm’
G G

=G-cm

[emu]=

(1

)

3)

(4)

The units of £
fic

(1

fic G-cm?

The units of p

el )=

1
S

The units of the length /
n
(=4 = em,
[°( ; B)]

The units of @

B G*-cm?

2 3 2 3
G -cm G -cm

[0,(=—)] =
m

c
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c erg(s® /em*)(cm/ s) - erg-s CGreem’es

1
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