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Notations: 
 : Planck constant 
c: velocity of the light 
-e: charge of electron 
m: mass of free electron 
mc: cyclotron mass 
m: mass of electron (in theory) 
c: cyclotron frequency 

))/(( cmeB cc   

B Bohr magneton ( ))2/( 0cmeB   

0: quantum fluxoid (0 = 
7100678.22/2 ec Gauss cm2) 

B: magnetic field 

l: magnetic length )/( eBcl   
T: Tesla (1 T = 104 Oe) 
Oe  unit of the magnetic field (= 

Gauss) 
F: the Fermi energy 
Se: extremal cross-sectional area of the 

Fermi surface in a plane normal to 
the magnetic field. 

________________________________________________________________________ 
Lev Davidovich Landau (Russian: Ле́в Дави́дович Ланда́у; January 22, 1908� April 1, 
1968) was a prominent Soviet physicist who made fundamental contributions to many 
areas of theoretical physics. His accomplishments include the independent co-discovery 
of the density matrix method in quantum mechanics (alongside John von Neumann), the 
quantum mechanical theory of diamagnetism, the theory of superfluidity, the theory of 
second-order phase transitions, the Ginzburg�Landau theory of superconductivity, the 
theory of Fermi liquid, the explanation of Landau damping in plasma physics, the Landau 
pole in quantum electrodynamics, and the two-component theory of neutrinos. He 
received the 1962 Nobel Prize in Physics for his development of a mathematical theory of 
superfluidity that accounts for the properties of liquid helium II at a temperature below 
2.17°K. 
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________________________________________________________________________ 
Lars Onsager (November 27, 1903 � October 5, 1976) was a Norwegian-born American 
physical chemist and theoretical physicist, winner of the 1968 Nobel Prize in Chemistry. 
He held the Gibbs Professorship of Theoretical Chemistry at Yale University. 

After World War II, Onsager researched new topics of interest. He proposed a 
theoretical explanation of the superfluid properties of liquid helium in 1949; two years 
later the physicist Richard Feynman independently proposed the same theory. He also 
worked on the theories of liquid crystals and the electrical properties of ice. While on a 
Fulbright scholarship to Cambridge University, he worked on the magnetic properties of 
metals. He developed important ideas on the quantization of magnetic flux in metals. He 
was awarded the Lorentz Medal in 1958 and the Nobel Prize in Chemistry in 1968. 



3

 

http://en.wikipedia.org/wiki/Lars_Onsager 

________________________________________________________________________ 
1. Introduction 

The de Haas-van Alphen (dHvA) effect is an oscillatory variation of the diamagnetic 
susceptibility as a function of a magnetic field strength (B). The method provides details 
of the extremal areas of a Fermi surface. The first experimental observation of this 
behavior was made by de Haas and van Alphen (1930). They have measured a 
magnetization M of semimetal bismuth (Bi) as a function of the magnetic field (B) in 
high fields at 14.2 K and found that the magnetic susceptibility M/B is a periodic function 
of the reciprocal of the magnetic field (1/B). This phenomenon is observed only at low 
temperatures and high magnetic fields. Similar oscillatory behavior has been also 
observed in magnetoresistance (so called the Shubnikov-de Haas effect). 

The dHvA phenomenon was explained by Landau1 as a direct consequence of the 
quantization of closed electronic orbits in a magnetic field and thus as a direct 
observational manifestation of a purely quantum mechanics. The phenomenon became of 
even greater interest and importance when Onsager2 pointed out that the change in 1/B
through a single period of oscillation was determined by the remarkably simple relation,  
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where P is the period (Gauss-1) of the dHvA oscillation in 1/B, F is the dHvA frequency 
(Gauss), and Se is any extremal cross-sectional area of the Fermi surface in a plane 
normal to the magnetic field. If the z axis is taken along the magnetic field, then the are of 
a Fermi surface cross section at height kz is S(kz) and the extremal areas Se are the values 
of S(kz) at the kz where 0/)( zz dkkdS . Thus maximum and minimum cross sections are 
among the extremal ones. Since altering the magnetic field direction brings different 
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extremal areas into play, all extremal areas of the Fermi surface can be mapped out. 
When there are two extremal cross-sectional area of the Fermi surface in a plane normal 
to the magnetic field and these two periods are nearly equal, a beat phenomenon of the 
two periods will be observed from which each period must be disentangled through the 
analysis of the Fourier transform. 

 
Fig.1 Fermi surface of the hole 

pocket for Bi. The 
magnetic field (denoted 
by arrows) is in the YZ 
plane. 

Fig.2 Fermi surface of the electron (a) pocket for 
Bi. The major axis of the ellipsoid is tilted by 
6.5º from the bisectrix axis. 

 

Experimentally the value of Se (cm-2) can be determined from more convenient form 
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where P is in unit of Gauss-1 and 0 (= 7100678.22/2 ec Gauss cm2) is the 
quantum fluxoid. 

The dHVA effect can be observed in very pure metals only at low temperatures and 
in strong magnetic fields that satisfy 

TkBcF    . (3) 

The first inequality means that the electron system is quantum-mechanically degenerate 
even though, as required by the second inequality, the magnetic field is sufficiently 
strong. On the other hand, the observation of dHvA oscillation is determined by 
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That is, for the observation of oscillations, the fluctuations  in an magnetic field 
should be small and the electron density should not be too high because the period 
depends on the ratio Fc  / . 

2. Fermi surface of Bi3-10 
2.1 Energy dispersion relation 

Bismuth is a typical semimetal. The model of the band structure of Bi consists of a set 
of three equivalent electron ellipsoids at the L point and a single hole ellipsoid at the T
point (see the Brillouin zone in Sec 2.2). In one of the electron ellipsoids (a-pocket), the 
energy E is related to the momentum p in the absence of a magnetic field by 
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(Lax model5 or ellipsoidal non-parabolic model) where EG is the energy gap to the next 
lower band and m* is the effective mass tensor in units of the free electron mass m0. The 
effective mass tensor ma* is of the form 
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where 1, 2, and 3 refer to the binary (X), the bisectrix (Y), and the trigonal (Z) axes, 
respectively. The other two electron ellipsoids (b and c pockets) are obtained by rotations 
of ±120º about the trigonal axis, respectively. The effective mass tensors mb* for the b 
pocket and mc* for the c pocket are given by 
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For the holes, the energy momentum relationship in the absence of a magnetic field is 
taken to be 
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where E0 is the energy of the top of the hole band relative to the bottom of the electron 
band and the effective mass tensor M* for the hole pocket is 


















3

1

00

00

00

*

M

M

M

M . (9) 

The Fermi surface consists of one hole ellipsoid of revolution and three electron 
ellipsoids. One electron ellipsoid has its major axis tilted by a small positive angle (= 
6.5º) from the bisectrix direction.. 

Table I Bi band parameters used by Takano and Kawamura8 

 

2.2 Brillouin zone and Fermi surface of Bi 
The Brillouin zone and the Fermi surface of Bi are shown here. 
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Fig.3 Brillouin zone of bismuth3-10 
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Fig.4 Fermi surface of bismuth: binary axis (X), bisectrix (Y), and trigonal (Z). a, b, c
are the electron pocket (Fermi surfaces) and h is the hole pocket. 

3. Techniques for the measurement of dHvA 
There are two major techniques to measure the dHvA oscillations: (1) field 

modulation method using a lock-in amplifier. (2) torque method. Because of the Fermi 
surface in Bi is so small, the dHvA effect can be observed in quite small fields as low as 
100 Oe at 0.3 K) and at fairly high temperatures up to 20 or 30 K at fields of a few kOe). 
It is in fact the metal in which the dHvA effect was first discovered and have probably 
been more studied ever since than any other metal. 

3.1 Field modulation method 
The system consists of a detecting coil, a compensation coil, and a filed modulation 

coil. The static magnetic field B (superconducting magnet or ion core magnet) is 
modulated by a small AC field h0cost ( is a angular frequency) generated by the field 
modulation coil. The direction of the AC filed is parallel to that of a static magnetic field 
B. The voltage induced in the pick-up coil is given by 
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where Bh  . The signal obtained from the pick-up coil was phase sensitively detected 
at the first harmonic or second harmonic modes with a lock-in amplifier. The DC signal 

is proportional to 
h

M
h

  for the first-harmonic mode and 

2

2
2

h

M
h

 for the second-

harmonic mode. These signals are periodic in 1/B. The Fourier analysis leads to the 
dHvA frequency F (or the dHvA period P = 1/F).  
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Fig.5 The block diagram of the apparatus for the measurement of the dHvA effect by 
means of the field modulation method.10 

3.2 Torque method 
When an external magnetic field is applied to the sample, there is a torque on the 

sample, given BVM , where M  is the component of M perpendicular to B and V is the 
volume. Using this method, the absolute value of the magnetization can be exactly 
determined. Note that the torque is equal to zero when the direction of the magnetic filed 
is parallel to the symmetric direction of the sample. 
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Fig.6 The block diagram of the apparatus for measuring the dHvA effect by Torque de 
Haas method.9 

4. Results of dHvA effect in Bi 
4.1 Result from the modulation method (Suzuki.9) 

We show typical examples of the dHvA effect in Bi and the Fourier spectra for the  
dH vH periods. 

Fig.2 Fermi surface of the electron (a) pocket for Bi. The major axis of the ellipsoid is 
tilted by 6.5º from the bisectrix axis. 

(a)  (b) 
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Fig.7 The dHvA effect of Bi in the YZ plane. T = 1.5 K. This signal corresponds to the 
first harmonics ( hM  / ). 
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Fig.8 The dHvA effect of Bi in the YZ plane. T = 1.5 K. The signal corresponds to the 
second harmonics ( 22 / hM  ). 

4.2 Result of torque de Haas (Suzuki9) 
We show typical examples of the torque de Haas in Bi.  

 

Fig.9 Angular dependence of the torque de Has in the YZ plane. The torque is zero at 
the symmetry axes (Y and Z). B = 15 kOe. T = 4.2 K. 
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Fig.10 The torque de Haas in the YZ plane. T = 1.5 K. 

 
Fig.11 The Fourier spectrum of the dHvA oscillation. The magnetic field is oriented s in 

the YZ plane. The Z axis corresponds to 0º. The branches A, B, and C correspond 
to the a-, b-, and c-electron pockets, respectively. The branch E corresponds to the 
frequency mixing due to the quantum oscillation of the Fermi energy (see Sec.5). 
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Fig.12 The Fourier spectrum of the dHvA oscillation. The magnetic field is oriented to 

make -36º from the Z axis in the YZ plane. The branches A, B, and C correspond 
to the a-, b-, and c-electron pockets, respectively. 

 

Fig.13 The angular dependence of the dHvA frequencies in the YZ plane. The branches 
A, B, and C correspond to the a-, b-, and c-electron pockets, respectively. The 
dHvA frequency FF is approximately equal to F3A, and FD and FE coincide with 
FA + FBC. Note that the b- and c- pockets separate into two branches in the range 
of the field angles from -48º to -70º, and this might be a result of the fact that the 
direction of magnetic field does not exactly lie in the YZ plane. Note that the 
frequency of -oscillation is denoted as F where a means A, BC, D, E, 2A or 3A. 

4.3 Result of dHvA effect in Bi (Bhargrava7) 
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Table II The summary of results of dHvA effect in Bi.7 

 
1: binary, 2: bisectrix, 3: trigonal 

 
Fig.14 The angular dependence of electron dHvA period P in the XY plane for Bi. The 

solid line is a fit assuming an ellipsoidal Fermi surface and using the measured 
values of periods in the crystal axis and a tilt angle of 6.5º.7 

 
Fig.15 The angular dependence of electron dHvA periods in the YZ plane. The tilt angle 

measured is 6.50±0.25º. The shaded area shows the region where electron periods 
were never reported. The solid line is a fit using an ellipsoidal Fermi surface.7 
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5. Change of Fermi energy as a function of magnetic field 
The dimension of the Fermi surface of Bi is very small compared with that of 

ordinary metals. Therefore the quantum number of the Landau level at the Fermi energy 
has a small value even at a low magnetic field. The Fermi energy varies with a magnetic 
field in a quasi oscillatory way, since the Landau level intervals of the hole and electrons 
are generally different to each other. The Fermi energy is determined from the charge 
neutrality condition that )()()()( BNBNBNBN c

e
b
e

a
eh  . The field dependence of the 

Fermi energy in Bi is shown below when B is parallel to the binary, bisectrix, and 
trigonal axes, respectively. 

We note that the dHvA frequency mixing has been observed in Bi by Suzuki et al.10. 
The Fermi energy changes at magnetic fields where the Landau level crosses the Fermi 
energy, so that the Fermi energy shows a pseudo periodic variation with the field. This 
variation is remarkable even at low magnetic field in Bi. The observed frequency mixing 
is due to this effect. 

(a) B // the binary axis (X) 

 
Fig.16 The magnetic field dependence of the Fermi energy (B //X, T = 0 K). The dotted 

and solid lines correspond to the Landau levels of the electron and hole, 
respectively. The curve of EF vs B exhibits kinks at the fields where the Landau 
levels cross the Fermi energy. BCn±: theLandau level of the electron b- and c
pockets with the quantum number n and the spin up (+) (down (-)) -state. hn±: 
theLandau level of the hole pockets with the quantum number n and the spin up 

(+) (down (-)) -state. )
2

1

2

1
(),(  sc nnE   , where s is a spin-splitting 

factor defined in Sec.6.4, and  = ±1. The expression of E(n, )will be discussed 
later. The ground Landau level is described by either Baraff6 model (denoted B) 
or Lax5 model (denoted by L).  
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(b) B // the bisectrix (Y) 

 
Fig.17 The magnetic field dependence of the Fermi energy (T = 0 K). Magnetic field is 

along the Y axis (bisectrix).9,10 

(c) B //the trigonal axis (Z) 

 
Fig.18 The magnetic field dependence of the Fermi energy (T = 0 K). Magnetic field is 

along the Z axis (trigonal).9,10 

7. Motion of free electron in the presence of magnetic field 
The energy of free electron is given by 

2
2
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)( kk

m
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
 , 

where m is the mass of electrons. The k space contours of constant energy are spheres 
and for a given k an electron has a group velocity given by 
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The equation of motion of an electron in a magnetic field is given by 
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This means that the change in the vector k is normal to the direction of B and is also 
normal to v (normal to the energy surface). Thus k must be confined to the orbit in the 
plane normal to B. Since 

dt

d
k

r
vv kk  )/1(  . 

we have the equation of motion for electron as 

Brrk  )( 0c

e
 , (13) 

where r0 [=(x0, y0)] is the position vector of the center of the orbit (guiding center). For 
simplicity we assume that r0 = 0. 

Brk 
c

e
. 

 
Suppose that the magnetic field is directed along the z axis. The position vector r and the 
wavevector k are in the same plane normal to the direction of the magnetic field B. 

B

r

k
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Fig.19 The position vector r and the wavevector k of free electron, in the 2D 
plane normal to the direction of the magnetic field B (along the z axis). 

rr
c

eB
k

2

1
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 . l is the magnetic length. 

8. Analysis 
When a magnetic field B is applied along the z axis, the electron motion in this 

direction is unaffected by this field, but in the (x, y) plane the Lorentz force induces a 
circular motion of the electrons. The Lorentz force causes a representative point in k
space to rotate in the (kx, ky) plane with frequency 

mc

eB
c   

where -e is the charge of electron. This frequency, which is known as the cyclotron 
frequency, is independent of k, so the whole system of the representative points rotate 
about an axis through the origin of k space and parallel to B. 

Analytically we get 
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In the complex plane, we have the relation, 
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This means that the magnitude of the position vector r of the electron is related to that of 
the wave vector k =(kx, ky) by a scaling factor 

eB

c
l


 2 .  

The phase of the position vector is different from that of the wave vector by �/2. l is so-
called magnetic length. 
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Fig.20 The orbital motion of electron in the presence of B (B is directed out of 
page) in the k-space is similar to that in the r-space but scaled by the 
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factor  and through /2.12 Note that the directions of the x axis and y axis 
are the same as those of kx axis and ky axis, respectively. 

9. Onsager theory: Semiclassical quantization of orbits in a magnetic field:  
The Onsager-Lifshitz idea2,11 was based on a simple semi-classical treatment of how 

electrons move in a magnetic field, using the Bohr-Sommerfeld condition to quantized 
the motion. The Lagrangian of the electron in the presence of electric and magnetic field
is given by 

)
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qmL  , (16) 

where m and q are the mass and charge of the particle. 
Canonical momentum: 
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Mechanical momentum: 
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The Hamiltonian: 
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The Hamiltonian formalism uses A and , and not E and B, directly. The result is that the 
description of the particle depends on the gauge chosen. 

We assume that the orbits in a magnetic field are quantized by the Bohr-Sommerfeld 
relation 

ApApkvπ
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e

c

q
m   . (20) 

and 

 2)(  ndlp . (21) 

where q = -e (e>0) is the charge of electron, n is an integer, and  is the phase correction: 
 = 1/2 for free electron. 
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Note we assume r0 = 0. Then we get 
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where 

  )( lr d =2 (area enclosed within the orbit) n (geometrical result) 

and  is the magnetic flux contained within the orbit in real space, nB A .  
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Fig.21 In this figure, we mean that lr dd  . The area of triangle OAB is equal to 
2/lr d . 

sinrdrd nlr   = n ABOC   = [2 area of OAB ] n  

where 

OC = r, AB =  sin)sin( drdr   

Then we have 

  )( lr d =2 (area enclosed within the orbit) n 
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On the other hand, 
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by the Stokes theorem. Then we have 
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It follows that the orbit of an electron is quantized in such a way that the flux through it is 
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where 0 is a quantum fluxoid and is given by 
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Note that -2e corresponds to the charge of the Cooper pair (it will be discussed in the 
superconductivity). 

((Note)) 

From p.217 (The development of the band theory of solids. 
L. Hoddeson et al, Out of Crystal maze (Oxford University Press, 1992). 

As Shoenberg�s former research student Brian Pippard recalls, Shoenberg and 
Onsager shared an office during the latter�s visiting year at Cambridge. But even after 
Onsager had written his paper, at least for a year or two, Cambridge physicists tended to 
give it little importance. Pippard recalls: 

There was not a lovely lot of algebraic quantities and integrals which you could 
evaluate [in this paper] because Onsager was talking in geometrical terms -  and I think 
David [Shoenberg] was disappointed to see �so little� coming out and failed to realize 
that Onsager had provided the complete clue. So nothing happened. The paper was 
published and nobody in Cambridge took any notice. They went on measuring the de 
Haas-van Alphen effect and fitting it with ellipsoidal shapes [in which the relation 
between energy and wave vector is assumed to be quadratic. 

That was the situation at the end of 1952. 
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9. Physical meaning for the quantization of the magnetic flux 

v

2F0n+g
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Fig.22 Quantization of the magnetic flux inside the orbit of electron (the real 
space). The number of the magnetic flux inside the orbit is only an integer. 

According to the Onsager theory, the magnetic flux inside the orbit of electron is 
quantized as 
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where )(rnS  is the area of the electron orbit, and n is an integer. Using the relation 
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it is found that the area )(knS of the orbit of electron in the k-space (normal to B) is

related to the area Sn(r) through 

)(
2

)()(
1

)(
22

2

4


 n
c

eB

c

Be
BS

Bl
S nnn


rrk . 

implying that )(knS  is also quantized for the fixed magnetic field B. 
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10. Definition of the magnetic length l  
When the magnetic field B is applied to the z axis (normal to the plane), what is the 

area A where the quantum flux 20 penetrates? 
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In other words, l is the radius of the circle inside which the quantum fluxoid 0 passes 
through.  

11. Physical meaning of the Onsager relation 
We consider the Landau tubes whose cross sections by plane perpendicular to the 

direction of the magnetic field has the same area for the n-th Landau tube, 
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and are bounded by the curves of constant energy ( 2
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m
k

m z


 ) at the height kz in 

the k-space. The energy at kz of the Landau tube is given by 
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where c is the cyclotron angular frequency, 

mc

eB
c  . 
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Fig.23 Landau tube in the k-space. It is represented by the value of kn (= k). The 
bottom and top parts of the Landau tube intersects with the Fermi surface. 
The magnetic field is directed along the z axis.  

Here we show how to draw the Landau tubes: 

(1) We choose the quantum number n (the integer) such 

)
2

1
(

2
2

2

 nk
m c


 

where k  (=kn) n is the in-plane wavenumber. 

(2) The energy of the cylinder (so-called Landau tube) at the point denoted by n and kz is
given by 

2
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2
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2

1
(),( zcz k

m
nkn


  

The intersection of the constant-kz plane with the Fermi surface ( = F) forms a cross 
section (circle with the radius kn). The Landau tube can be constructed such that the top 
and the bottom are parts of the cylinder as shown in Fig. 
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The radius of the Landau tube denoted by the quantum number increases with 
increasing the magnetic field.  

(a) (b) 

  

(c) (d) 

  

(e) (f) 
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(g) 

 

Fig.24 Landau tubes with the fixed n. The magnetic field is increased from (a) to 
(g) 

The level density will have a sharp peak whenever  is equal to the energy of an extremal 
orbit, satisfying the quantization condition. The reason for this is as follows. The above 
figures depict the Landau tube with the same n for different B. As the magnetic field B 
increases, the area of the Landau tube increases. The number of the states D()d is 
proportional to the area of the portion of Landau tube contained between the constant-
energy energy surfaces  and  + d. The area of such a portion is not extremal in (a) to 
(f). The area of the portion as shown in (g) becomes extremal when there is an extremal 
orbit of energy  on the Landau tube. Evidently, the area of the portion of the tube is 
enhanced as a result of the very slow energy variation of the level along the tube near the 
given orbit. 
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Fig.25 The number of the states D()d which is proportional to the area of the portion of 
Landau tube contained between the constant energy surfaces  and  + d. The 
region shaded by green. 

12. Extremal orbit contributing to the dHvA signal 
From the above discussion, we notice that the extremal value of the area of the cross-

section of the Fermi surface, ),( zF kA  , at the actual Fermi level F, at the slice kz, where 
kz is the component of the wave vector along the direction of magnetic field B. The 
extremal cross section is defined by 

0
),(





z

zF

k

kA 

at kz = k0. 
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Fig.26 Extremal orbits 1 and 2. ),( zF kA  has a local maximum for the orbit 1 and 
has a local minimum for the orbit 2. 

13. Landau tubes with the quantum number n 
Here we draw a series of Landau tubes with different quantum number n for each 

fixed magnetic field B. We start with the relation given by 

)
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1
(

2
2

2

 nk
m

E cz 
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where 

mc

eB
c  . 

For simplicity, we assume that ħ = 1, m = 1. Then we get 

)
2

1
(

2

1 2  nkE cz   

For a fixed n (0 or positive integer) and a fixed E,  

)12(2  nEk cz   

The Landau tube consists of the cylinder with a radius 

cn nkk )12(   

and the length of cylinder 

)12(2  nEk cz   

We choose; E = 12. c is changed as a parameter, where ħ = 1 and m = 1.. In the quantum 
limit, there is only one state with n = 0 inside the Fermi surface. The Mathematica 
program is shown in the APPENDIX. We show the Landau tubes of quantized magnetic 
levels (n) at fixed values of c . 

(a) c  = 0.5, 1, 1.5, and 2.0 
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(b) c  = 2.5, 3, 3.5, and 4.0 
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(c) c  = 4.5, 5, 5.5, and 6.0 
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(d) c  = 6.5, 7, 7.5, 8.0 
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Fig.27 

The last figure shows the quantum limit where only the Landau tube with n = 0 exists 
inside the Fermi surface. 

14. Fundamentals of the Landau levels 
We now consider the case when kz = 0. 
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Fig.29 

This regular periodic motion introduces a new quantization of the energy levels 
(Landau levels) in the (kx, ky) plane, corresponding to those of a harmonic oscillator with 
frequency c and energy 

2
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1
(  k

m
ncn


 , (12) 

where k  is the magnitude of the in-plane wave vector and the quantum number n takes 

integer values 0, 1, 2, 3,�... c  is the cyclotron angular frequency and is defined by 

mc

eB
c  . 

Each Landau ring is associated with an area of k space. The area Sn is the area of the orbit 
n with the radius nkk   
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Thus in a magnetic field the area of the orbit in k space is quantized. Note that 
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c
l


2 . 

l is given by 
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556.256
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l   [m] 

in the SI units.  
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Fig.30 Quantization scheme for free electrons. Electron states are denoted by 
points in the k space in the absence and presence of external magnetic 
field B. The states on each circle are degenerate. (a) When B = 0, there is 
one state per area (2/L)2. L2 is the area of the system. (b) When B ≠ 0, the 
electron energy is quantized into Landau levels. Each circle represents a 
Landau level with energy )2/1(  nE cn  . 

15. Density of states using the magnetic length 
We consider the density of states for the 2D system  

kdk
L

dDo 


 2
)2(

)(
2

2

  

where the electron spin is neglected. The energy dispersion relation is given by 
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with 

  dkk
m

d
2  
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Then we get 

  
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which is constant. Note that we neglect the electron spin, since only the orbital motion is 
concerned. 

Now we calculate the number of states between the adjacent energy levels n and n+1. 
Since 

   nn 1 (which is independent of the quantum number n) 

 

Fig.31 In a magnetic field the points in the (kx, ky) plane may be viewed as 
restricted circles 

Then the number of states is calculated as 
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where 
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16. Derivation of the dHvA frequency 

(1) The use of the Onsager�s relation 
In the dHvA we need the area of the orbit in the k-space. We define Sn(r) as an area 

enclosed by the orbit in the real space (r) and Sn(k) as an are enclosed by the orbit in the 
k-space. Then we have a relation
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In the Fermi surface experiments we may be interested in the increment  for which 
two successive orbits, n and n+1, have the same area in the k-space on the Fermi surface. 
Suppose that )(kS  is the Fermi surface in the momentum space. Then we have 
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or 
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The dHVA frequency F is related to the area of the Fermi surface. 
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What is a typical value of B which is experimentally observed? 
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For Au,  

)(kS =4.8 x 1016 cm-2 for the belly orbit of Au. 
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 (in units of G) 

where B0 is in the units of T. When B = 5 T (which means B0 = 5), we have 

97.4B  G (= Oe). 

(2) The use of Landau level 
Suppose that n-th Landau level exists just below the Fermi energy. The total number 

of states below the Fermi energy is 
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where S(k) is the 2D extremal cross section of the Fermi surface, normal to B, and  is 
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or 
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This result is the same as that derived from the Onsager relation. 

17. Another method for the derivation: cyclotron frequency 
Note that the formula for  can also be derived from the correspondence principle. The 

frequency for motion along a closed orbit is 
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where c is defined as 
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In the semiclassical limit, one should obtain equidistant levels with a separation 
equal to c . Hence 

)/(

2

2

2 





















Sc

eB

S
c

eB

cm

eB

c
c




 , (21) 

 
or 
 

cc

eBS




 

12





. (22) 



43

or 

c

n

c

eBS




 

12)(



 k

or 

)(
2

)(
12

)( 



 n

c

eB
n

c

eB
S c

c
n





k  

18.  Quantum mechanics 
18.1 Landau gauge, symmetric gauge, and gauge transformation 
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In the presence of the magnetic field B (constant), we can choose the vector potential as 
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rBA  (symmetric gauge). (24) 

Here we define a gauge transformation between the vector potentials A and A�, 

 AA' , 

where Bxy
2

1
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1
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the new vector potential 'A  is obtained as 

)0,,0(' BxA  (Landau gauge). (26) 

The corresponding gauge transformation for the wave functions, 
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with q = -e (e>0). 
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18.2 Operators in quantum mechanics 
We begin by the relation 
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Similarly we have 
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Since A commute with r�  (A is a function of r� ), 
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When B = (0,0,B) or Bz = B, 
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where l is called as a magnetic length and it is a cyclotron radius for the ground state 
Landau level: eBc /2   . 

Here we define the operators X�  and Y�  for the guiding-center coordinates. 
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The commutation relation is given by 
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When the uncertainties X and Y are defined by  22 �)( XX  and  22 �)( YY , 
respectively, we have the uncertainty relation, 
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The Hamiltonian H� is given by 
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We define the creation and annihilation operators, 
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When Naa ���  , the Hamiltonian is described by 

)
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We thus find the energy levels for the free electrons in a homogeneous magnetic field- 
also known as Landau levels. 

18.3 Schrödinger equation (Landau gauge) 
We consider the Hamiltonian given by 
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The guiding-center coordinates are 

yyy p
l

xB
c

e
p

l
x

l
xX �)��(����

222


  , xp

l
yY ���

2


 ,  (44) 

 

The Hamiltonian H�  commutes with yp�  and zp�  

0]�,�[ ypH  and 0]�,�[ zpH  

The Hamiltonian H�  also commutes with X� : 0]�,�[ XH . 
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Schrödinger equation 
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We assume the periodic boundary condition along the y axis. 
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Then we have 
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0   n . 

Finally we get a differential equation for )( . 

)(])(12[)(" 2
0   n  = 0. 

The solution of this differential equation is 
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with 

yy kk
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c



0 , 
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c
  , 

ykx 2
0

0
0   




The coordinate x0 is the center of orbits. Suppose that the size of the system along the x 
axis is Lx. The coordinate x0 should satisfy the condition, 0<x0<Lx. Since the energy of 
the system is independent of x0, this state is degenerate. 

xy Lkx  2
0

0
00 




, (51) 

or 
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Thus the degeneracy is given by the number of allowed ky values for the system. 

00
22 22222 







BA

eB

c
AALL

g yx

 
, (52) 

where 

7
0 100678.2

2
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e

c
 Gauss cm2. 

The energy dispersion is plotted as a function of kz for each Landau level with the index n. 
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k
nknE z

cz 2
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1
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22
   . (53) 

18.4 Physical meaning of the distance l 
The wavefunction is given by 
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2
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
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When n = 0 (the ground state),  
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  eHe nn

where 
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l

x
 , 
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we have 


l

x
1

 . 

Using this relation, we have 
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When 
2

l
 , this function can be rewritten as the normal distribution function, 

2

2
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0
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1
)( 




x

n ex


  , 

where 
2

l
  is the standard deviation. 

2

2
2 l
  is the variance. 

 

Fig.31 Plot of 
2

2

1
)(

2

0
l

x

n exl


 


  (ground state wave function) as a function of 

x/l, which is a Gaussian distribution function. 
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Here we note 
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x
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19. Another method 
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The first and second terms of this Hamiltonian are that of the simple harmonics along the 
x axis. 
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This Hamiltonian H� commutes with yp�  and zp� . Thus the wave function can be 

described by the form, 

)()(),,( zkyki
n

zyexzyx   .

20. The Zeeman splitting of the Landau level 
Here we consider the effect of the spin magnetic moment on the Landau level. 

 

Fig.32 Spin angular momentum S and spin magnetic moment s for free 
electron. 2/σS  . )/2( Sμ Bs  . cmeB 02/  (Bohr magnetron). 

The spin magnetic moment s is given by s =  σS )2/()/( BB gg    , where 

)2/( 0cmeB   (Bohr magneton). The factor g is called the Landé-g factor and is equal 

to g =2.0023 for free electrons. In the presence of magnetic field B along the z axis, the 
Zeeman energy is given by 
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

2

1
)

2
(

2 0

 Bμ , (54) 

where 0/ mgmcs   and  = ±1. Thus we have the splitting of the Landau level in the 

presence of magnetic field as 

)
2

1

2

1
(),(  sc nnE   . (55) 

where s is much smaller than 1 for Bi. 

21. Numerical calculations using Mathematica 5.2 
21.1. Energy dispersion of the Landau level 

We consider the energy dispersion of the Landau level with the quantum number n as 
a function of kz. 
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B=0
O

Fig.33 Energy dispersion of the Landau levels with n and kz for a 3D electron gas 
in the presence of a magnetic field along the z axis. 

21.2. Plot of the Landau wave function as a function of , where 0 = 0. 

(a)  
Plot of the wave function 

)()!2()( 2/2/1 2

 
n

n
n Hen 

where n = 0, 1, 2,... 
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(b) 

Plot of 
2

)(n  where n = 0, 1, 2, ..., 
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(b) 

Fig.34 Plot of (a) )(n  and (b) 
2

)(n  with 0 = 0 as a function of . n = 0, 

1, �,and 6. 

21.3 Mathematica program 
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Landau level

Clear"Global`"; x :
—


D, x &; y :

—


D, y 

e B x

c
 &;

z :
—


D, z &;

f 
1

2 m
Nestx, x, y, z, 2  Nesty, x, y, z, 2 

Nestz, x, y, z, 2  E1 x, y, z  Simplify;

rule1    Exp ky 2   kz 3 1 &;
rule2   

e B

— c
, ky  

e B

c —
0, E1 

e B —

m c
n 

1

2


—2 kz2

2 m
;

vchangeEq_, _, x_, z_, f_ :

Eq . D x, x, n_  Nest 1

Df, z D, z & ,  z, n,
 x   z, x  f;

f1  f . rule1  Simplify; seq1  vchangef1, , x, ,



  FullSimplify;

seq2  seq1 . rule2  FullSimplify;

rule3    h Exp1

2
  02 & ;

seq3  seq2 . rule3  FullSimplify

B e 
 kz z 1

2
02 y 0 B e

c —
— 2 n h  2   0 h  h

m
 0

DSolveseq3, h,   Simplify, n  0, n  Integers &

h 

C1 HermiteHn,   0  C2 Hypergeometric1F1 n
2
,
1
2
,   02

 

22. General form of the oscillatory magnetization (Lifshitz-Kosevich) 
The expression of the oscillatory magnetization is derived by Lifshitz and 

Kosevich11as 
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, (56) 
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where the sum over e extends all extremal cross-sectional are of the Fermi surface, the 
phase +/4 if zpS  / >0 (minimum) and -/4 if zpS  / <0 (maximum), m0 is a mass of 

free electron, and   /)2/1( Smc . The term )/cos( 0mmc arises from the Zeeman 

splitting of spins. The magnetization oscillations are periodic in 1/B. The period is 
 

ecS

e

B

2
)

1
(  , (57) 

The influence of electron scattering is not taken into account in the derivation given 
above. Its effect is easily estimated. A proper account of the influence of collisions gives 
rise to an additional factor. If the mean time between collisions is , the corresponding 
uncertainty in electron energies /  is equivalent to a temperature, so-called Dingle 
temperature 

)
2

exp()
2

exp(
22

Be

cmTk

Be

cm cdBc







 , (58) 

where Td is the Dingle temperature and is defined by 

B
d k

T


 . 

23. Simple model to understand the dHvA effect13,16

Consider the figure showing Landau levels associated with successive values of n = 0, 
1, 2, �, s The upper green line represents the Fermi level F. The levels below F are 
filled, those above are empty. Since F is much larger than the level-separation c , the 

number n = s of occupied levels is very large. Let us assume that the magnetic field is 
increased slightly. The level separation will increase, and one of the lower levels will 
eventually cross the Fermi level. The resulting distribution of levels is similar to the 
original one except that the number of filled levels below F is now n = s-1, instead of n = 
s. Since n is large, this difference is essentially negligible, so that one expects the new 
state to be equivalent to the original one. This implies a periodic dependence of the 
magnetization. 
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Fig.35 Schematic energy diagram of a 2D free electron gas in the absence and presence 
of B. At B = 0, the states below F are occupied. The energy levels are split into 
the Landau levels with (a) n = 0, 1, 2,�, and s for a specified field and (b) n = 0, 
1, 2,�, and s-1 for another specified field. The total energy of the electrons is the 
same as in the absence of a magnetic field. 

((Mathematica)) Schematic energy diagram as a function of 1/B 
This figure shows the schematic diagram of the location of each Landau levels as a 

function of cF  / . When scF  /  (integer), there are s Landau levels below the 

Fermi level F. 

Clear"Global`";
F1x_, n_, i_ :

Whichx  n, 0, n b x  n  1,
i

n
, x  n  1, 0;

Plot
EvaluateTableF1x, n, i, n, 1, 30, i, 1, n,x, 0, 31,
PlotStyle  TableThickness0.007, Hue0.1 j,j, 0, 10, PlotRange  0, 31, 0, 1  
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Fig.36 Schematic diagram for the separation of the Landau level as a function of 1/B. 
The x axis is s = N/(B). The y axis is equal to the energy normalized by the 
Fermi energy F. The number of the Landau levels below F is equal to s at x = s. 

24. Derivation of the oscillatory behavior in a 2D model. 
The energy level of each Landau level is given by )2/1( nc , where n = 0, 1, 

2, �.. Each on of the Landau level is degenerate and contains B states. We now 
consider several cases. 

(A) The n = 0, 1, 2, �, s-1 states are occupied. n = s state is empty. 
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Fig.26  scF   . BsN  .

The total energy is constant, 
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(B) The case where the n = s state is not filled. 
We now consider the case when c  decreases. This corresponds to the decrease of 

B. 

(i) 2/c  , where  is the energy difference defined by the figure below. 

 

Fig.37 

(ii) cc   2/  
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Fig.38    cF s , with c 0 . 

The n = 0, 1, 2, �, (s-1) levels are occupied and the n = s level is not filled. The total 
number of electrons is N. The energy due to the partially occupied n = s state is 

)
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1
()(  sBsN c  . Then the total energy is 
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, (60) 
where 

)1(  sBNBs  , and cFc ss   )1(  . 

Here we introduce  as 

BsN   . 

The parameter  satisfies the inequality 

B 0 , 

for 
N

s

BN

s )1(1 



. The parameter  denotes the number of electrons partially 

occupied in the n = s state  



62

The parameter Bs   is the total number of electrons occupied in the n = 0, 1, 2,�, 

s-1 states for 
N

s

BN

s )1(1 



. 

(iii) The n = 0, 1, 2, �, s states are occupied. n = s+1 state is empty. 

 
Fig.39 

In this case we have 
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25. Total energy vs B 
We now discuss the total energy as a function of B. 

The total energy has a local minimum at 
)1(

)
2

1
(






ss

sN
B


. 

((Proof)) 
Since 

BB
cm

e

cm

eB
B

cc
c  2)

2
(2 


 , 



63

the total energy is expressed by 
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We also show that the total energy )(Bf  becomes zero at 

N

s

B




1
 and 

N
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B

)1(1 
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((Proof)) 
We note that U - U0=0 at 

scF   , and BsN  . 

Then 
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or 
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


, 
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or 

])1)[((
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2

2
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The solution of f(B) = 0 is 

N

s

B




1
 and 

N

s

B

)1(1 
 . 

23. Magnetization M vs B 
The magnetization M is given by 
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26. Mathematica 
In this numerical calculation we use n = 10, B = 1, and  = 1. for simplicity. 
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Fig.40 The plot of U-U0 vs 1/B (the detail). 
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Fig.41 Plot of U-U0 vs B. 
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Fig.42 Plot of U-U0 and M as a function of 1/B. 
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Fig. 43 Plot of  vs 1/B (red) and  vs 1/B (blue). 

27. Conclusion 
The physics on the dHvA effect of metals (in particular, bismuth) has been presented 

with the aid of Mathematica 5.2.  
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ü

de Haas van Alphen effect 

Clear"Global`";
U  

1

2
s s  1 B  B2  N1 s 

1

2
B B 

1

2
N1 EF .

EF  B
N1


; eq1  DU, B; Solveeq1  0, B;

U1x_, s_  U . B 
1

x
 Simplify;

U2  U1x, s x2  N12  PowerExpand  Simplify;

SolveU2  0, x  Simplify;

max1  U1x, s . x 
s 1  s 

N1 s 
1

2
   Simplify;

rule1  N1  10,   1, B  1;
Hx_, s_, N1_, _ :

UnitStepx 
s 

N1
  UnitStepx 

1  s 

N1
;

U2  U1x, s Hx, s, N1, ; U4  U2 . x  1y;
M  x2 DU2, x  Simplify; NN1  N1   B s;

NN2x_, s_  NN1 . B  1x  Simplify;

NN3 

NN2x, s UnitStepx 
s 

N1
  UnitStepx 

1  s 

N1
 ;

NN4 
s 

x
UnitStepx 

s 

N1
  UnitStepx 

1  s 

N1
 ;
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Free energy as a function of x = 1/B

p11  PlotEvaluateTableU2 . rule1, s, 0, 20,x, 0.1, 1,
PlotStyle  TableHue0. i, Thick, i, 0, 10,
PlotRange  0, 1, 2, 7, Background  Gray,

AxesLabel  "x1B", "F"

0.2 0.4 0.6 0.8 1.0
x=1B

-2

0

2

4

6

F

p111  PlotEvaluateTableU4 . rule1, s, 0, 20,y, 0.1, 10,
PlotStyle  TableRed, Thick, i, 0, 10,
PlotRange  0, 10, 0, 7, Background  Gray,

AxesLabel  "B", "F"  
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Magnetization as a function of 1/B

p11  PlotEvaluateTableU2 . rule1, s, 0, 20,x, 0.1, 1,
PlotStyle  TableHue0. i, Thick, i, 0, 10,
PlotRange  0, 1, 2, 7, Background  Gray;

p12  PlotEvaluateTableM . rule1, s, 0, 20,x, 0.1, 1,
PlotStyle  TableGreen, Thick, i, 0, 20,
PlotRange  0, 1, 7, 7, Background  Gray,

PlotPoints  200, Exclusions  None;
g1 

GraphicsTextStyle"F", Black, 12, 0.13, 6.5,
TextStyle"M", Black, 12, 0.13, 2;

Showp11, p12, g1, PlotRange  All  
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F

M
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b11  PlotEvaluateTableNN3 . rule1, s, 0, 20,x, 0.1, 2,
PlotStyle  TableBlue, Thick, i, 0, 20,
Background  Gray, AxesLabel  "x1B", "N'",
Exclusions  None;

b22  PlotEvaluateTableNN4 . rule1, s, 0, 20,x, 0.1, 2,
PlotStyle  TableRed, Thick, i, 0, 20,
Background  Gray, AxesLabel  "x1B", "N'",
Exclusions  None;

Showb22, b11
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APPENDIX 2  How to draw the dHvA tubes using Mathematica 

Clear"Global`";
dHvAA1_, E1_ : ModuleN1, N1 

2 E1

A1
 1  2; rn1_ : 2 n1  1 A1 ;

kz1n2_ : 2 E1  2 n2  1 A1 ;

f1 

Graphics3DGreen, Opacity0.25, TableCylinder0, 0, kz1n, 0, 0, kz1n, rn,n, 0, N1 , ViewPoint  1, 1, 0.4, Boxed  False;
f2  Graphics3DRed, Thick, Arrow0, 0, 2 E1 , 0, 0, 1.6 2 E1 ,

TextStyle"B" , Black, 15, 0, 0, 1.2 2 E1 ,
TextStyle"E"  ToStringE1, Black, 15, 1.5 2 E1 , 0, 0,
TextStyle"—c"  ToStringA1, Black, 15, 1.5 2 E1 , 0, 1;

Showf1, f2, PlotRange  All;
pt2  EvaluateTabledHvAA1, 12, A1, 3, 8, 1;
ShowGraphicsGridPartitionpt2, 3

 

APPENDIX-III 
Units related to this section 

[e2] = erg cm    

[erg]= [G2.cm3] 

[emu] = [erg/G] 

Since 

[e2] = erg cm = G2cm4,  

we have 
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[e] = G cm2 

We note that 

[emu]=
G

erg
= 3

32

cmG
G

cmG




______________________________________________________________________ 

(1) The units of 
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e
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(2) The units of  
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(3) The units of the length l 
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