
5 Ferromagnetism and exchange

Order, order, order!

Ferromagnetism and the Curie temperature were explained by Weiss in terms of
a huge internal ‘molecular field’ proportional to the magnetization. The theory
is applicable both to localized and delocalized electrons. No such magnetic field
really exists, but it is a useful way of approximating the effect of the interatomic
Coulomb interaction in quantum mechanics, which Heisenberg described by the
Hamiltonian H = −2J S1 · S2, where S1 and S2 are operators describing the localized
spins on two adjacent atoms. When J > 0, ferromagnetic exchange leads to fer-
romagnetic order in three dimensions. Spin waves are the low-energy excitations
of the exchange-coupled magnetic lattice. In the delocalized electron picture, a
ferromagnet has spontaneously spin-split energy bands. The density of ↑ and
↓ states is calculated using spin-dependent density functional theory. Important
physical phenomena associated with ferromagnetism are discussed in this chapter,
including magnetic anisotropy and, magnetoelastic, magneto-optic and magneto-
transport effects.

The characteristic feature of a ferromagnet is its spontaneous magnetization
Ms , which is due to alignment of the magnetic moments located on an atomic
lattice. The magnetization tends to lie along easy directions determined by
crystal structure, atomic-scale texture or sample shape. Heating above a critical
temperature known as the Curie point, which ranges from less than 1 K for
magnetically dilute salts to almost 1400 K for cobalt, leads to a reversible
collapse of the spontaneous magnetization. Although there is no reason in
principle why uniform ferromagnetic liquids should not exist, it seems that there
are none. Ferrofluids, while ferromagnetic and liquid, are actually colloidal
suspensions of solid ferromagnetic particles.

Important modifications of the electronic, thermal, elastic and optical prop-
erties are associated with magnetic order, whether ferromagnetic, or one of
the more complex multisublattice or noncollinear ordered magnetic structures
presented in the next chapter.
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5.1 Mean field theory

5.1.1 Molecular field theory

The first modern theory of ferromagnetism, and one that remains useful today,
was proposed by Pierre Weiss in 1906. Weiss’s original theory was based on
the classical paramagnetism of Langevin, but it was soon extended to the more
general Brillouin theory of localized magnetic moments. His idea was that
there is an internal ‘molecular field’ which is proportional to the magnetization
of the ferromagnet. If nW is the constant of proportionality, this adds to the
internal contribution of any externally applied field:

H i = nW M + H . (5.1)

H i has to be enormous to induce a spontaneous magnetization at room tem-
perature; the Weiss coefficient nW is approximately 100. The magnetization is
given by the Brillouin function (4.17) with M0 = nm0 = ngµBJ , where n is
the number of magnetic atoms per unit volume,

M = M0BJ (x), (5.2)

but now

x = µ0m0(nWM +H )/kBT . (5.3)

In zero external field, M is the spontaneous magnetization Ms so we have

Ms/M0 = BJ (x0), (5.4)

where x0 = µ0m0nWMs/kBT . Combining x0 with M0 = nm0, we find
Ms/M0 = (nkBT /µ0M

2
0nW )x0, which is conveniently written in terms of the

Curie constant C (4.16) as

Ms/M0 = [T (J + 1)/3JCnW ]x0. (5.5)

The simultaneous solution of (5.4) and (5.5) is found graphically as indicated in
Fig. 5.1. Otherwise the equations can be solved numerically. Results forMs/M0

versus T/TC are plotted in Fig. 5.2 for some values of J , including the clas-
sical limit J −→ ∞ where (5.4) is replaced by the Langevin function (4.21).
In the Brillouin theory, the magnetization approaches zero temperature with
horizontal slope, as required by thermodynamics (§2.5.4). Numerical values
of the reduced spontaneous magnetizationMs/M0 versus reduced temperature
T/TC are listed in Appendix G for different values of J . When S is the good
quantum number, J in these formulae is replaced by S. Theory and experiment
for nickel are compared in Fig. 5.3.

Weiss’s molecular field theory was the first mean field theory of a phase
transition. The moments are completely disordered at and above TC , where the
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Graphical solution of (5.4)
and (5.5) for J = 1

2 to find
the spontaneous
magnetization Ms when
T < TC . Equation (5.5) is
also plotted for T = TC and
T > TC . The effect of an
external field is to offset
(5.5), as shown by the
dotted line.
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Spontaneous
magnetization as a
function of temperature
calculated from molecular
field theory, based on the
Brillouin function for
different values of J . The
classical limit J = ∞ is
based on the Langevin
function.

2J + 1 energetically degenerateMJ levels are equally populated. The magnetic
entropy (4.25) then is R ln(2J + 1) per mole, where R = NAkB is the gas
constant, 8.315 J mol−1. Below TC , and especially just below, there is a specific
heat of magnetic origin, as energy is absorbed to disorder the moments when
the system is heated. A discontinuity in specific heat appears at TC .

On a plot of Ms/M0 versus x, the slope of (5.5) precisely at the Curie
temperature is equal to the slope at the origin of the Brillouin function. For
small x (4.19) BJ (x) ≈ [(J + 1)/3J ]x, hence there is a direct relation between
Curie constant and Curie temperature:

TC = nWC. (5.6)
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The spontaneous
magnetization for nickel,
together with the
theoretical curve for J = 1

2
from the molecular field
theory. Note that the
theoretical curve is scaled
to give correct values at
each end.

In practice, TC is used to determine nW . Taking gadolinium as an example:
TC = 292 K, J = S = 7/2; g = 2; n = 3.0 × 1028 m−3. Hence

C = µ0ng
2µ2
BJ (J + 1)/3kB (4.16)

is 4.9 K, and the Weiss coefficient works out as nW = 59.
The paramagnetic susceptibility above TC is obtained from (4.19), (5.3) and

(5.4) in the small-x limit. The result is the Curie–Weiss law

χ = C/(T − θp), (5.7)

where

 M

GL

Ms-M
s

T < T
C

T > TC

The Landau free energy for
a ferromagnet at
temperatures close to the
Curie temperature. There
are two energy minima at
±Ms for T < T C , but a
single minimum at M = 0
for T > T C .

θp = TC = µ0nWng
2µ2
BJ (J + 1)/3kB. (5.8)

The Curie constant C is often written in terms of the effective moment meff as
C = µ0nm

2
eff /3kB , where meff = g

�
J (J + 1)µB. In this theory, the param-

agnetic Curie temperature θp is equal to the Curie temperature TC , which is the
point where the susceptibility diverges.

5.1.2 Landau theory

An approach that is equivalent to molecular field theory close to TC , whereM
is small and aligned with any field externalH �, is to expand the free energy GL
in even powers of M . Only even powers are permitted in the series, because
time reversal symmetry requires that the energy is unchanged on reversing the
magnetization, GL(M) = GL(−M) in the absence of the external field:

GL = AM2 + BM4 + · · · − µ0H
�M. (5.9)

The coefficients A and B depend on temperature. There is a difference between
the Landau free energy GL = f (M,T ) − µ0H

�M and the Gibbs free energy
G(H �, T ) = F (M,T ) − µ0H

�M (§2.5.4), whereM is expressed as a function
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Arrott Belov plots to
determine TC for
gadolinium. The
experimentally measured
magnetization is σ = M d,
where d is the density,
rather than M . (Data
courtesy of M. Venkatesan.)

of the variables H �, T via the equation of state M = M(H �, T ); GL is the
energy of the state whenM is forced to adopt a particular value, as if it were an
external constraint.GL is minimized in a local energy minimum with that value
ofM , which makes the approach useful for treating problems of hysteresis.

Lev Landau 1908–1968.

For T < TC , energy minima at M = ±Ms imply A < 0 and B > 0. For
T > TC an energy minimum atM = 0 implies A > 0 and B > 0. It follows that
A must change sign at TC . It has the form a(T − TC), where a is a constant
independent of temperature, a > 0. The equilibrium magnetization minimizes
GL with respect toM; ∂GL/∂M = 0 implies

2AM + 4BM3 = µ0H
�. (5.10)

Close to TC , in zero field,M2
s = −A/2B, hence

Ms ≈
�
a/2B(TC − T )

1
2 , (5.11)

as shown in Fig. 5.2. Ignoring the demagnetizing field, the Curie–Weiss sus-
ceptibilityM/H � is given by (5.10) as µ0/2A;

χ ≈ (µ0/2a)(T − TC)−1. (5.12)

When the system is at a temperature exactly equal to TC , A = 0 and (5.10) gives
the critical isotherm

M = (µ0/4B)1/3H �1/3, (5.13)

whereas in the vicinity of TC (5.10) gives

M2 = (µ0/4B)H �/M − (a/2B)(T − TC). (5.14)

This last equation is the basis of Arrott–Belov plots used for precise determination
of the Curie temperature. TheM(H ) curves at different temperatures are plotted



133 5.1 Mean field theory

Table 5.1. The critical exponents of a mean
field ferromagnet

Specific heat Cm ∼ |TC − T |α α = 0
Magnetization Ms ∼ (TC − T )β β = 1

2

Susceptibility χ ∼ (T − TC)−γ γ = 1
Critical isotherm Ms ∼ H 1/δ δ = 3

asM2 versusH �/M , and the isotherm that extrapolates to zero is the one at TC
(Fig. 5.4).

The magnetic specific heat Cm can also be calculated from Landau theory
using Cm = −T (∂2GL/∂T

2). Results from (5.9) and (5.14) are Cm = T a2/2B
when T = T −

C and Cm = 0 when T = T +
C . There is a stepwise discontinuity

at TC , with no magnetic specific heat above the transition whereM = 0.
The Landau theory can be adapted to any continuous or discontinuous phase

transition. M is the order parameter for the ferromagnet, H � is the conjugate

field and the relation between them is the generalized susceptibility χ . Whatever
the interpretation of these parameters in different physical systems, the power
laws describing their variations with T near TC are exactly the same. The
same powers are obtained from Landau theory and from Weiss’s molecular
field theory. This can be verified by expanding the Brillouin function to order
x3 (4.19), which gives an expression equivalent to (5.9). Both are mean field
theories of ferromagnetism. Other terms may be added to the free energy to
include additional fields such as pressure or stress. It is remarkable how many
relations can be established between different measurable physical quantities
from an expansion of the free energy in powers of the order parameter.

The power law variations of the physical properties in the vicinity of TC are
summarized in Table 5.1. The values of the static critical exponents α,β, γ , δ

are common to all mean field theories.

Theory
Experimental data
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Experimentally, the properties of ferromagnets do show power law behaviour
in (T − TC) provided measurements are made sufficiently close to the Curie
point, but the critical exponents are somewhat different from those predicted by
mean field theory. For example, ferromagnets usually show a λ-type anomaly
in their specific heat at TC , rather than a stepwise discontinuity. The divergence
is described by a critical exponent α ≈ 0.1, rather than zero. The residual
magnetic specific heat above TC is witness to the persistence of short-range
order, which is not predicted by the theory. Above TC , the susceptibility follows
a power law χ ∼ (T − TC)−γ , where γ is about 1.3, whereas in mean field
theory γ is 1 (the Curie–Weiss law). The critcal exponents α,β, γ , δ for nickel,
for example, are 0.10, 0.42, 1.32 and 4.5, respectively. We return to this topic
at the end of Chapter 6.

The other place where significant deviations from the mean field theory are
found is at low temperatures, where the spin-wave excitations discussed later
in the chapter are important.
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Table 5.2. Dimensionless susceptibility of some
metals at 298 K (units: 10−6)

Li 14 Sc 263 Cu −10 Ce 1778
K 6 Y 121 Zn −16 Nd 3433
Be −24 Ti 182 Au −34 Eu 15570
Ca 22 Nb 237 Al 21 Gd 476300
Ba 7 Mo 123 Sn −29 Dy 68400

Pd 805 Bi −164 Tm 17710
Pt 279

5.1.3 Stoner criterion

The starting point for a discussion of ferromagnetism in metals is the band
paramagnetism introduced in §3.2.6. The Pauli susceptibility is a small, positive
quantity, practically independent of temperature because delocalized electrons
obey Fermi–Dirac statistics; only the small fraction of them with energy close
to εF are able to respond to a change in temperature or magnetic field.

In the three-dimensional free-electron model, the density of states D(ε)
(states m−3 J−1) varies as

√
ε (3.39), and the ↑ and ↓ bands shift by ∓ µ0HµB

in the field as shown in Fig. 3.7. The resulting susceptibility (3.43) can be
written

χP = µ0µ
2
BD(εF ), (5.15)

where D(εF ) is the density of states at the Fermi level for both spins, which is
double the density of states for one spin D↑,↓(εF ). The Pauli susceptibility is
approximately 10−5 for many metals, but it approaches 10−3 for the 4d metal
Pd (Table 5.2). Narrower bands tend to have higher susceptibility, because the
density of states at εF scales as the inverse of the bandwidth. When the density
of states is high enough, it becomes energetically favourable for the bands to
split, and the metal becomes spontaneously ferromagnetic.

Stoner applied Weiss’s molecular field idea to the free-electron gas.
Assuming the linear variation of internal field with magnetization has a
coefficient nS :

H i = nSM + H, (5.16)

the Pauli susceptibility in the internal field is χP = M/(nSM +H ). Hence,
the response to the field H

χ = M/H = χP /(1 − nSχP ) (5.17)

is a susceptibility that is enhanced when nSχP < 1 and diverges when
nSχP = 1. Stoner expressed this condition in terms of the local density of
states at the Fermi level, D(εF ). Writing the exchange energy (in J m−3) −
1
2µ0H

iM = − 1
2µ0nSM

2 as −(I/4)(n↑ − n↓)2/n, where M = (n↑ − n↓)µB
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and n is the number of atoms per unit volume, it follows from (5.15) that
nSχP = ID(εF )/2n. The metal becomes spontaneously ferromagnetic when
the susceptibility diverges spontaneously; in other words when

IN ↑,↓(εF ) > 1, (5.18)

where N↑,↓(ε) = D(ε)/2n is the density of states per atom for each spin state.
This is the famous Stoner criterion. The Stoner exchange parameter I is roughly
1 eV for the 3d ferromagnets, and nS � 103 for spontaneous band splitting.
The exchange parameter has to be comparable to the width of the band for
spontaneous splitting to be observed. Ferromagnetic metals have narrow bands
and a peak in the density of states N (ε) at or near εF . The data in Fig. 5.5 show
that only Fe, Co and Ni meet the Stoner criterion. Pd comes close.

5.2 Exchange interactions

The origin of the effective field H i is the exchange interaction, which reflects
the Coulomb repulsion of two nearby electrons, usually on neighbouring atoms,
acting in conjunction with the Pauli principle, which forbids the two electrons
to enter the same quantum state. Electrons cannot be in the same place if
they have the same spin. There is an energy difference between the ↑i↑j
and ↑i↓j configurations of the spins of neighbouring atoms i, j . Interatomic
exchange in insulators is usually one or two orders of magnitude weaker than
the ferromagnetic intra-atomic exchange between electrons on the same atom,
which leads to Hund’s first rule.

As stated in §4.1, the Pauli principle forbids more than one electron to enter
a quantum state, denoted by a particular set of quantum numbers. Electrons are
indistinguishable, so exchange of two electrons must give the same electron
density |�(1, 2)|2 = |�(2, 1)|2. Since electrons are fermions, the only solution
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is for the total wave function of the two electrons to be antisymmetric

�(1, 2) = −�(2, 1). (5.19)

The total wave function � is the product of functions of space and spin coor-
dinates φ(r1, r2) and χ (s1, s2).

S = 0

↑ ↓

↑ ↑
S = 1

The spatially symmetric
and antisymmetric wave
functions for the H2

molecule.

The simple example of the hydrogen molecule H2 with two atoms each having
an electron in a hydrogenic 1s-orbital ψ i(r i) gives an idea of the physics of
exchange. Schrödinger’s equation is H(r1, r2)�(r1, r2) = ε�(r1, r2) where,
neglecting the interactions between the electrons,

�
− �2

2m

�
∂2

∂r2
1

+ ∂2

∂r2
2

	
− e2

4π�0

�
1

r1
+ 1

r2

	�
�(r1, r2) = ε�(r1, r2).

(5.20)

There are two molecular orbits, a spatially symmetric bonding orbital φs , with
electronic charge piled up between the atoms, and a spatially antisymmetric
antibonding orbital φa having a nodal plane with no charge midway between
them. Chemical bonds which involve hybridized wave functions of electrons
of neighbouring atoms are generally classified in this way:

φs = (1/
√

2)(ψ1 + ψ2) φa = (1/
√

2)(ψ1 − ψ2). (5.21)

ψ1 and ψ2 are the spatial components of the individual wave functions of
electrons 1 and 2 respectively. The wave functions ψ1(r1) and ψ2(r2) are the
solutions of Schrödinger’s equation for each individual atom.

The symmetric and antisymmetric spin functions are the spin triplet and spin

singlet states:
S = 1; MS = 1, 0,−1
χ s = |↑1,↑2
; (1/

√
2)[|↑1,↓2
 + |↓1,↑2
]; |↓1,↓2


S = 0; MS = 0
χa = (1/

√
2)[↑1,↓2
 − |↓1,↑2
]

According to (5.19), the symmetric space function must multiply the anti-
symmetric spin function, and vice versa. Hence the total antisymmetric wave
functions are

�I = φs(1, 2)χa(1, 2),

�II = φa(1, 2)χ s(1, 2).

When the two electrons are in a spin triplet state, there can be no chance of
finding them at the same point of space. Electrons with parallel spins avoid
each other. But if the electrons are in the spin singlet state, with antiparallel
spins, there is some probability of finding them in the same place, because the
spatial part of the wave function is symmetric under exchange of the electrons.
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The energies of the two states can be evaluated from the Hamiltonian
H(r1, r2) in (5.20):

εI,II =
�

φ∗
s,a(r1, r2)H(r1, r2)φs,a(r1, r2)dr3

1 dr3
2 .

For the hydrogen molecule, εI is lower than εII . In other words, the bonding
orbital/spin singlet state lies below the antibonding orbital/spin triplet state
because of the spatial constraint on the triplet. Setting the exchange integral
J = (εI − εII )/2, we can write the energy in the form

EII

EI

2

Singlet 

Triplet

Splitting of the spin singlet
and spin triplet states for
the H2 molecule. The
exchange integral J is
negative, so the singlet is
lower.

ε = −2(J /�2)s1 · s2, (5.22)

where the product s1 · s2 is 1
2 [(s1 + s2)2 − s2

1 − s2
2]. According to whether the

spin quantum number S = s1 + s2 is 0 or 1, the eigenvalues are − 3
4 �2 or + 1

4�2.
The energy splitting between the singlet state �I and the triplet state �II is
2J . Here J is the exchange integral

J =
�

ψ∗
1(r �)ψ∗

2(r)H(r, r �)ψ1(r)ψ2(r �)dr3d3r �.

In the H2 molecule, the spin singlet state is lower, so the integral is negative. In
an atom, however, the orbitals are orthogonal and J is positive.

Heisenberg generalized (5.22) to many-electron atomic spins S1 and S2,
writing his famous Hamiltonian

H = −2J Ŝ1 · Ŝ2, (5.23)

where Ŝ1 and Ŝ2 are dimensionless spin operators, like the Pauli spin matrices in
(3.17). The �2 has been absorbed into the exchange constant J , which has units
of energy. From now on we will adopt this convention, in order to avoid writing
� everywhere. We also drop the hat on the spin operators, Ŝi . The exchange
integral J then has dimensions of energy, and it is often expressed in kelvins
by dividing it by kB , Boltzmann’s constant. J > 0 indicates a ferromagnetic

interaction, which tends to align the two spins parallel; J < 0 indicates an
antiferromagnetic interaction, which tends to align the two spins antiparallel.

When there is a lattice, the Hamiltonian1 is generalized to a sum over all
pairs of atoms on lattice sites i, j :

H = −2
�

i>j

Jij Si · Sj . (5.24)

This is simplified to a sum with a single exchange constant J if only nearest-
neighbour interactions count. The interatomic exchange coupling described by
the Heisenberg Hamiltonian can only be ferromagnetic or antiferromagnetic.

The Heisenberg exchange constant J can be related to the Weiss constant
nW of the molecular field theory. Suppose that a moment gµBSi interacts with
an effective field Hi = nWM = nWngµBS, and that in the Heisenberg model

1 Other conventions exist, omitting the 2 and/or counting each pair in the sum twice.
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only the nearest neighours of Si interact appreciably with it. Then the site
Hamiltonian is

Hi = −2


�

j

J Sj


 · Si ≈ −µ0H

igµBSi. (5.25)

The molecular field approximation amounts to averaging out the local correla-
tions between Si and Sj . If Z is the number of nearest neighbours in the sum,
then J =µ0nWng

2µ2
B/2Z. Hence, from (5.8)

Junjiro Kanamori, 1930–.

TC = 2ZJ S(S + 1)

3kB
. (5.26)

Taking the example of gadolinium again, whereTC = 292 K, S = 7/2, Z = 12,
we find J /kB = 2.3 K.

The Heisenberg Hamiltonian (5.23) indicates that exchange interactions
couple the atomic spins. It can be applied directly to the 3d elements, where the
crystal field ensures that spin is a good quantum number, and to the rare-earth
ions Eu2+ and Gd3+, which have no orbital moment. However, J is the good
quantum number for the other rare-earths, so S must be projected onto J , as
explained below. Ions with a J = 0 ground-state multiplet, Sm2+ and Eu3+,
cannot order magnetically despite their large spin quantum number, S = 3.

Generally, the energy of any electronic system is lowered as the wave func-
tions spread out. This follows from the uncertainty principle p x ≈ �. When
many more-or-less delocalized electrons are present in different orbitals, the
calculation of exchange is a delicate matter. Orbital degeneracy, absent in the
H2 molecule, opens the possibility that triplet states may be lower in energy than
singlets. The energies involved are only ≈1 meV, compared with bandwidths
of order 1–10 eV. Competing exchange interactions may coexist with different
signs of coupling. It is therefore best to describe exchange phenomenologically,
and determine the exchange interactions experimentally.

U

(a)

(b)

The antiferromagnetic
superexchange interaction.
Two neighbouring sites
with singly occupied
orbitals are shown with (a)
parallel or (b) antiparallel
spin alignment. Hopping is
forbidden by the Pauli
principle in the parallel
case. There is an energy
gain due to virtual hopping
in the antiparallel case.

5.2.1 Exchange in insulators

Superexchange The electrons in insulators are localized. Oxides are a good
example. There is little direct 3d–3d overlap in transition-metal oxides, but
the 3d-orbitals are hybridized with the oxygen 2p-orbitals; φ3d = αψ3d +
βψ2p with |α|2 + |β|2 = 1. The oxygen bridges transmit a ‘superexchange’
interaction, which can be described by the Heisenberg Hamiltonian.

Figure 5.6 shows a typical superexchange bond. In the case of a singly
occupied 3d-orbital or a half-filled d shell (Fe3+, Mn2+), configuration (b) is
lower in energy than configuration (a) because both electrons in an oxygen
2p-orbital can then spread out into unoccupied 3d-orbitals. The superexchange
interaction J involves simultaneous virtual transfer of two electrons with the
instantaneous formation of a 3dn+12p5 excited state; the interaction is of order
−2t2/U , where t is the p–d transfer integral and U is the on-site 3d Coulomb
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3d(Mn)3d(Mn) 2p(O)

(a)

(b)

Figure 5.6

A typical superexchange
bond. Configuration (b) is
lower in energy than
configuration (a).

interaction. The transfer integral is of order 0.1 eV and the on-site Coulomb
interaction is in the range 3–5 eV. J depends sensitively on the interatomic
separation, but also on the M–O–M bond angle, varying as cos2 θ12.

John B. Goodenough, 1922–.
The occupancy and orbital degeneracy of the 3d states is the critical factor in

determining the strength and sign of superexchange. There are many possible
cases to consider and the results were summarized in the Goodenough–Kanamori

rules. The rules were reformulated by Anderson, in a simpler way that makes it
unnecessary to consider the oxygen.

(i) When two cations have lobes of singly occupied 3d-orbitals which
point towards each other giving large overlap and hopping integrals, the
exchange is strong and antiferromagnetic (J < 0). This is the usual case,
for 120–180◦ M–O–M bonds.

Overlapping d-orbitals
characterized by (a)
nonzero and (b) zero
overlap integrals. Dark and
light shading denotes
positive and negative sign
of the wave function.

(ii) When two cations have an overlap integral between singly occupied 3d-
orbitals which is zero by symmetry, the exchange is ferromagnetic and
relatively weak. This is the case for ∼90◦ M–O–M bonds.

(iii) When two cations have an overlap between singly occupied 3d orbitals
and empty or doubly occupied orbitals of the same type, the exchange is
also ferromagnetic, and relatively weak.

Superexchange is more commonly antiferromagnetic than ferromagnetic,
because the overlap integrals are more likely to be large than zero.

S1 S2

Canted antiferromagnetism
due to the
Dzyaloshinski–Moriya
interaction.

Antisymmetric exchange A few materials with low symmetry exhibit a
weak antisymmetric coupling, the Dzyaloshinski–Moriya interaction. This is rep-
resented by the Hamiltonian

H = −D · (Si × Sj ), (5.27)

where D is a vector which lies along a high-symmetry axis, so the tendency
is to couple the two spins perpendicularly. This is a higher-order effect, ocur-
ring between ions already coupled by superexchange; |D/J | ≈ 10−2. In an
antiferromagnet, the spins may be canted away from the antiferromagnetic
axis by about 1◦. Antisymmetric exchange is the reason why antiferromag-
nets with a uniaxial crystal structure such as MnF2, MnCO3 and αFe2O3 may
exhibit a weak ferromagnetic moment. In the older literature the term parasitic
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ferromagnetism is encountered for this kind of intrinsic weak ferromagnetism,
because it was thought to be due to ferromagnetic impurities. A moment only
appears when the antiferromagnetic axis is perpendicular to the crystallographic
axis of symmetry, along which D is constrained to lie. It disappears when the
axes are parallel.

Biquadratic exchange This is another weak, higher-order effect which is
sometimes detectable for the rare-earths. It is represented by the Hamiltonian

H = −B(Si · Sj )
2. (5.28)

5.2.2 Exchange in metals

The principal exchange mechanism in ferromagnetic and antiferromagnetic
metals involves overlap of the partly localized atomic orbitals of adjacent
atoms. Other exchange mechanisms involve the interaction of purely delocal-
ized electrons or of localized and delocalized electrons in the metal.

 g(r )

r

1

0

The exchange hole: the
normalized probability of
finding two electrons with
the same spin a distance r
apart.

Direct exchange In 3d metals, the electrons are described by extended wave
functions and a spin-polarized local density of states. It is usually more appro-
priate to describe them by the one-electron d wave functions of §4.4.2, rather
than the free-electron waves of §3.2.5. In the tight-binding model the overlap
of the one-electron wave functions is small and the electrons remain mostly
localized on the atoms. The model Hamiltonian is

H =
�

ij

tij c
†
i cj ,

where the sum represents the conduction band in terms of the electron creation
and annihilation operators2 c† and c. Usually only nearest-neighbour interac-
tions are important and the interatomic transfer integral tij = t. The bandwidth
in the tight-binding model isW = 2Zt, whereZ is the number of nearest neigh-
bours. In 3d metals t ≈ 0.1 eV and Z = 8 − 12, so the d bands are a few eV
wide. Exchange in a roughly half-filled band is antiferromagnetic, because the
energy gain associated with letting the wave functions expand onto neighbour-
ing sites is only achieved when the neighbours are antiparallel, leaving empty
↑ orbitals on the neighbouring sites to transfer into. Nearly filled or nearly
empty bands tend to be ferromagnetic (Fig. 5.7) because electrons can then hop
into empty states with the same spin. This helps to explain why chromium and
manganese are antiferromagnetic, but iron, cobalt and nickel are ferromagnetic.

Bandwidth is the enemy of exchange. As t becomes large, the electrons are
delocalized regardless of their spin. The alkali metals, for example, are Pauli

2 cj is an operator that destroys an electron on site j , while c†i is an operator that creates an

electron on site i. The product c†i cj therefore transfers an electron from site j to site i.
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Electron delocalization in d
bands which are half-full,
almost empty or almost
full.

paramagnets described by a free-electron model with one electron per atom.
The early 3d metals scandium, titanium and vanadium are not ferromagnetic
because t is too big. Scandium comes close. If it were possible to dilate the
lattice to reduce t a little, scandium would become ferromagnetic.

The sign of the direct exchange depends principally on band occupancy,
and then on the interatomic spacing, with ferromagnetic exchange favoured at
larger spacing. The exchange is greatest just after the critical condition for the
appearance of magnetism,U/W > (U/W )crit, whereU is the on-site Coulomb
interaction, andW is the bandwidth.

s–d model Coupling of the spins s of the conduction electrons with core
spins S in a metal is generally represented by a Hamiltonian including the term

−Jsd� |ψ |2 S · s, (5.29)

where � is the volume of the core d shell and |ψ |2 is the s-electron probability
density. The s–d coupling is an on-site interaction, so the coupling constant is
large, Jsd ≈ 1 eV. This interaction may lead to long-range ferromagnetic cou-
pling between the core spins, regardless of whether Jsd is positive or negative.
The host conduction band is supposed to be uniformly spin-polarized parallel
or antiparallel to the core spins.

RKKY interaction The ‘s–d’ model applies as well to rare-earths, where the
core spins are not 3d, but 4f . The localized moments in the 4f shell interact
via electrons in the 5d/6s conduction band. The on-site interaction between a
core spin S and a conduction electron spin s is −Jsf S · s, where Jsf ≈ 0.2 eV.
Ruderman, Kittel, Kasuya and Yosida showed that a single magnetic impurity
actually creates a nonuniform, oscillating spin polarization in the conduction
band which falls off as r−3. This spin polarization is related to the Friedel
oscillations of charge density around the impurity which have wavelength
π/kF . It leads to long-range oscillatory coupling between core spins. For free
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The RKKY function F (ξ).
Note that F (ξ) becomes
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electrons, the polarization is proportional to the RKKY function

F (ξ ) = (sin ξ − ξ cos ξ )/ξ4,

where ξ = 2kF r , kF being the Fermi wavevector (Fig. 5.8). This oscillating spin
polarization results from the different potential seen by the ↑ and ↓ conduction
electrons at the local moment site. The first zero of F (ξ ) is at ξ = 4.5. The
effective coupling between two localized spins is

Jeff ≈
9πJ 2

sf ν
2F (ξ )

64EF
, (5.30)

where ν is the number of conduction electrons per atom and EF is the
Fermi energy. Since the Fermi wavevector is about 0.1 nm−1 (Table 3.3),
the sign of Jeff fluctuates on a scale of nanometres. When only ferromag-
netic nearest-neighbour coupling is important, the Curie temperature can be
deduced from (5.26). The RKKY interaction in the low-electron-density limit
is equivalent to the s–d model with ferromagnetic coupling. Analogous oscilla-
tory exchange is found in ferromagnetic multilayers with nonmagnetic spacer
layers.

Among the rare-earth metals, only gadolinium has S as a good quantum
number. The others have J as their quantum number, yet the exchange inter-
action couples spins. We therefore need to project S onto J when calculating
the exchange coupling, whether direct or indirect. Since L + 2S = g J and
J = L + S, S = (g − 1) J . This introduces a factor (g − 1)2J (J + 1) into the
exchange coupling. The factor is squared, because the spin enters the exchange
interaction between two rare-earths twice. The effective coupling is

JRKKY = GJeff .

where G = (g − 1)2J (J + 1) is the de Gennes factor. Magnetic ordering tem-
peratures for any series of rare-earth metals or compounds with the same
conduction-band structure and similar lattice spacings should scale with G,
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(a) Curie temperatures of
ferromagnetic RNi2
compounds; (b) a plot of
TC versus the de Gennes
factor G .

and show a maximum for gadolinium. The de Gennes factor was included in
Table 4.10. Figure 5.9 displays data for the Curie temperature of a series of fer-
romagnetic RNi2 compounds. When plotted versusG, the data follow a straight
line. The nickel in this series of intermetallic compounds is nonmagnetic.

Double exchange This interaction arises between 3d ions which have both
localized and delocalized d electrons. Unlike ferromagnetic superexchange,
mixed valence configurations are required for double exchange, as they are in
any metal, but unlike a normal metal, the number of configurations is restricted
to just two. In copper, for example, with its one electron in a broad 4s band,
the instantaneous atomic configurations are s0, s1 and s2. Electronic correla-
tions are weak in broad bands, so the three configurations will appear with
probabilities of 1

4 , 1
2 and 1

4 . By contrast, a double-exchange material, such as
the manganite (La0.7Ca0.3)MnO3, has both Mn4+and Mn3+ ions (d3 and d4)
present on octahedral sites. The two Mn valence states are imposed by the
charge states of the other ions in the compound, La3+, Ca2+ and O2−. The d3

core electrons for both octahedrally coordinated ions are localized in a narrow
t
↑
2g band, but the fourth d electron inhabits a broader e↑g band, hybridized with

oxygen, where it can hop from one d3 core to another, Fig. 5.10. The config-
urations d3

i d
4
j and d4

i d
3
j on adjacent sites i and j are practically degenerate.

On each site, there is strong on-site Hund’s rule exchange coupling JH ≈ 2
eV between t2g and eg electrons. Electrons can hop freely if the core spins are
parallel, but when they are antiparallel there is a large energy barrier due to the
Hund’s rule interaction. If the quantization axes of adjacent sites are misaligned

by an angle θ , the eigenvector of a ↑ electron in the rotated frame is

����
cos θ/2
sin θ/2

����
(3.24). The transfer integral t therefore varies as cos(θ/2). Double exchange is
ferromagnetic because the transfer is zero when the ions on adjacent sites are
antiparallel, θ = π .
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The Anderson impurity
model. Local density of
states for a magnetic
impurity in a metal. On the
left is shown the case
where there is no mixing of
the wave functions of the
impurity level with the
conduction electrons, on
the right is the result of
such hybridization.

Another common double-exchange pair is Fe3+ and Fe2+, which are d5 and
d6 ions respectively. The d5 configuration is a half-filled ↑ shell, and the sixth
d electron occupies the bottom of a t↓2g band when the ion is octahedrally
coordinated by oxygen where it can hop directly from one d5 core to another.

5.3 Band magnetism

5.3.1 Magnetic impurities in nonmagnetic metals

The above discussion of exchange between localized moments and conduction
electrons in a metal begs the question of whether a magnetic impurity can really
retain its moment when diluted in a nonmagnetic matrix. Does a single atom
of cobalt, for example, still have a moment when it is diluted in copper? The
magnetic impurity problem engrossed the magnetism community in the 1960s
and 1970s. The 3d electrons of cobalt will hybridize with the 4s electrons of
copper, broadening the local atomic level into a Lorentzian-like feature in the
density of states. Figure 5.11 shows the energy level of a singly occupied d
orbital before hybridization, with the doubly occupied orbital higher in energy
by the on-site Coulomb repulsion energy U . Hybridization with the conduction
band states broadens the impurity level, giving it a width i.Anderson showed
that a moment, albeit one reduced by hybridization, is stable provided U >
 i. Further broadening of the local density of states destroys the moment
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completely. The broadening is more effective for p-metals than for s-metals,
because more electrons are available to hybridize with the impurity d-orbitals.
Cobalt keeps its moment in copper, but loses it in aluminium.

The number of unpaired impurity electrons N = N↑ −N↓ is

N = ν(ε+
F ) − ν(ε−

F ), (5.31)

where ε±
F = εF ± 1

2NU and ν(ε), is the integral of the impurity density of
states,

� ε

o
Ni(ε�)dε�. Expanding this expression as a power series for small

N , we find N = NUNi(εF ) + 1
24 (NU )3N ��(εF ), where the second deriva-

tive N ��
i (ε) = d2Ni(ε)/dε2 is negative. Hence N2 = [24(1 − UNi(εF ))/N ��

i

(εF )U 3]. A moment will form spontaneously at the impurity provided

UNi(εF ) > 1. (5.32)

Since Ni(εF ) is approximately 1/ i , we find the Anderson criterionU �  i
for magnetism of the impurity. It may be compared with the Stoner criterion for
ferromagnetism (5.18). Strong correlations favour magnetism, strong mixing
destroys it. If Ni(εF ) varies smoothly with some parameter x such as pressure
or concentration, then the magnetic moment on the impurity just below the
critical value xc where it disappears will vary as (x − xc) 1

2 .

P. W. Anderson 1923–.

P P0
c

Destruction of an impurity
magnetic moment at a
critical pressure Pc in the
Anderson model.

The existence of a moment on an atomic site in an alloy may depend sensi-
tively on the local environment. For example, Fe carries a moment when dilute
in Mo, but not in Nb. The Fe–Nb hybridization is more effective than Fe–Mo
hybridization at broadening the local iron density of states. Iron impurities in
Nb1−xMox alloys are nonmagnetic when surrounded by less than seven Mo
atoms and magnetic when there are seven or more Mo nearest neighbours.
In alloys with x � 0.6, magnetic and nonmagnetic iron impurities coexist on
different sites with different atomic environments. The model where magnetic
moments in alloys are governed by the local chemical environment is known
as the Jaccarino–Walker model.

(a)

(b)

r

r

Co Pd

Mn

Cu

(a) A giant moment and
(b) a Kondo singlet
showing local spin
polarization of the host
conduction band.

Granted a local moment, the s–d Hamiltonian, also known as the Kondo
Hamiltonian when Jsd is negative, is written as

H =
�

i,j

tij c
†
i cj −

�

k,l

Jsd Sk · sl . (5.33)

Possible consequences of the interaction between the magnetic impurity
and the conduction electrons are the formation of a giant moment when the
s–d exchange is ferromagnetic, Jsd > 0, or the Kondo effect when the s–d
exchange is antiferromagnetic, Jsd < 0. The giant moment is due to a cloud
of positively polarized electron density surrounding the impurity site. When
the paramagnetic susceptibility of the host (5.17) is enhanced beyond the Pauli
susceptibility expected from the bare density of states yet not quite sufficiently
to meet the Stoner criterion, the dressed local moment can be very large.
Cobalt impurities in a palladium host have associated moments of several tens
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Table 5.3. Kondo temperatures (in kelvin). The host
metal is indicated in bold type.

Cr Mn Fe Co Ni

Cu 1.0 0.01 25 2000 5000
Ag .02 .04 3
Au 0.01 0.01 0.3 200
Zn 3 1.0 90
Al 1200 530 5000

From D. L. Wohlleben and B. R. Coles in Magnetism 5, (H. Suhl,
editor), New York: Academic Press, 1973.
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Experimental signs of the
Kondo effect: (a) inverse
susceptibility of a Kondo
alloy and (b) the
temperature dependence
of the resistivity.

of Bohr magnetons. There is a threshold beyond which the entire matrix turns
ferromagnetic; for Co in Pd, the threshold is only 1.5 at% (see Fig. 10.13(c)).

UeF

Singly occupied level

Doubly occupied level

Kondo scattering. A singlet
state is formed between
the impurity spin and the
conduction electrons.

When the exchange coupling between the impurity moment and the conduc-
tion electrons Jsd is negative, there is a possibility of forming a nonmagnetic
spin singlet state from the impurity and the surrounding cloud of negatively
polarized conduction electrons. A good example is iron in copper. The suscep-
tibility is ambiguous; it shows Curie–Weiss temperature dependence (5.7) with
negative θp above a certain temperature TK , known as the Kondo temperature,
but it becomes temperature-independent below TK , when the impurity forms a
nonmagnetic singlet state with the conduction electrons of the host, Fig. 5.12.
According to the system, the Kondo temperature can lie anywhere in the range
1–1000 K. Some values are given in Table 5.3. Another symptom of the Kondo
effect is a shallow minimum in the resistivity near TK , because the Kondo
singlets provide an additional channel for scattering conduction electrons. The
Kondo temperature is

TK ≈ ( i/kB) exp[ i/2Jsd]

and the excess resistivity due to the Kondo scattering varies loga-
rithmically with temperature; it is proportional to (J 2

sd/ i)S(S + 1)[1 +
(2Jsd/ i) ln( i/kBT )].

Jun Kondo 1930–.
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Densities of states for some
metallic elements in the
paramagnetic state.
Calculations by courtesy of
Chaitania Das.

5.3.2 Ferromagnetic metals

The calculated densities of states for some paramagnetic metals are illustrated
in Fig. 5.13. A highly structured 3d-band is superposed on a much broader band
of 4s character. The structure of the d-bands reflects the crystal-field splitting
of the t2g- and eg-bands in 8-fold or 12-fold coordination (Fig. 4.12) in the
body-centred cubic (bcc) or face-centred cubic (fcc) structures, as well as the
bonding/antibonding splitting between the states near the bottom or the top of
the bands, and singularities that appear when the bands cross the boundary of
the Brillouin zone.
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Density of states,  (e)
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Strong ferromagnet
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eF

eF

Schematic densities of
states for a strong and a
weak ferromagnet. The
3d↑-band is full for the
strong ferromagnet.

The band diagrams show the dispersion relations ε(k) of the five d-bands
along different directions in k-space in the first Brillouin zone. The Brillouin
zone is a primitive unit cell of reciprocal space defined by the Wigner–Seitz
procedure, which involves forming the perpendicular bisector planes of the
vectors from the origin to neighbouring reciprocal lattice points. The example
of iron metal is illustrated in Fig. 5.14. The spin-up and spin-down bands
are shown on separate panels. The broad parabolic free-electron-like s-bands,
starting at −4 V are barely spin polarized; they hybridize with the d states
between −3 and 2 eV for spin-down. The flatter, spin-up d-bands are filled.
Two spin-down d bands lie mainly above Fermi level.

In the Stoner picture of metallic ferromagnetism, the bands split sponta-
neously provided the criterion (5.18) is satisfied. If the splitting is sufficient
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(Calculations courtesy of
Chaitania Das.)

to push the ↑ d-subband completely below εF we have a strong ferromagnet,
otherwise we have a weak ferromagnet. Among the ferromagnetic elements, Fe
is a weak ferromagnet, but Co and Ni are strong (despite their atomic moments
being less than that of iron). In each case there are approximately 0.6 electrons
at the bottom of an unsplit sp-band. The 3d levels lie above the bottom of the
4s-band thanks to the term in the Schrödinger equation for the multielectron
atom (4.7) which is identified with orbital kinetic energy. The spin moments of
Ni and Co are 0.6 µB and 1.6 µB , respectively. Co has a residual unquenched
orbital moment of 0.14 µB . But that of the other ferromagnets is smaller. Iron
would have a spin moment of 2.6 µB if it were a strong ferromagnet. In fact,
its moment is 2.2 µB . The calculated spin-split densities of states for Fe, Co
and Ni are shown in Fig. 5.15.

Edmund Stoner,
1899–1968.

The different filling of ↑ and ↓ bands leads to different Fermi surfaces for ↑
and ↓ electrons. They are illustrated for Fe, Co and Ni in Fig. 5.16. The majority
spin surfaces for Co and Ni are quite small and roughly spherical because they
contain only electrons with predominantly 4s character, whereas Fe has a larger
↑ Fermi surface. All three have large ↓ Fermi surfaces.

Table 5.4 summarizes the most important properties of the ferromagnetic 3d
metals.

Stoner calculated the magnetization as a function of temperature in the free-
electron model. His calculation gave an unrealistically high Curie point, kBTC ≈
εF because the only effect of temperature he considered was the smearing of
the Fermi–Dirac occupancy function (3.45) which decreases the density of
states near εF when kBTC ≈ εF . There should be no band splitting and no
moment above TC. The temperature dependence of the susceptibility above
TC is that given by (3.46). However, in most metallic ferromagnets, TC is at
least an order of magnitude less than predicted by the Stoner theory, and there
is a substantial Curie–Weiss-like variation of the susceptibility above TC . On-
site electronic correlations sustain an atomic-scale moment which does not
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Densities of states for some
elements in the
ferromagnetic state. Fe is a
weak ferromagnet, Co and
Ni are strong. Results for
γ Fe with different lattice
parameters illustrate the
sensitivity of the Fe
moment to lattice
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dense-packed structure.
(Calculations courtesy of
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Figure 5.16

The Fermi surfaces of Fe, Co
and Ni for ↑ and ↓
electrons.
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Table 5.4. Intrinsic properties of the ferromagnetic 3d elements at room temperature

TC d σ s Ms Js m (spin/orbit) N↑,↓(εF ) I K1 λs Dsw
(K) (kg m−3) (A m2 kg−1) (kA m−1) (T) (µB ) (eV−1) (eV) (J m−3) (10−6) g (10−40 J m2)

Fe 1044 7874 217 1710 2.15 2.17 (2.09/0.08) 1.54 0.93 48 −7 2.08 4.5
Co 1360(ε) 8920 162(ε) 1440 1.81 1.71 (1.57/0.14) 1.72 0.99 410 −60 2.17 8.0
Ni 628 8902 54.8 488 0.61 0.58 (0.53/0.05) 2.02 1.01 −5 −35 2.18 6.3

Table 5.5. Moments in metallic ferromagnets

meff m0 T
C

Ni Strong ferromagnet 1.0 0.6 628
ZrZn2 Weak itinerant ferromagnet 1.8 0.2 25
CrO2 Half-metal 2.4 2.0 396

disappear at TC , but becomes disordered in much the same way as it does for
the local-moment paramagnet (§4.3) or ferromagnet (§5.1.1). The moment is
progressively destroyed by thermal fluctuations when T � TC .

Whenever a local moment is disordered but stable in temperature, the effec-
tive moment meff deduced from the susceptibility aboveTC using (5.7) should be
consistent with the zero-temperature ferromagnetic moment m0 in the sense of
Table 5.5. For metals with nonintegral numbers of unpaired electrons per atom,
we can define an effective spin S∗ by 2µBS

∗ = m0, and a corresponding effec-
tive moment meff as 2

�
S∗(S∗ + 1)µB . The Stoner model applies best to some

very weak itinerant ferromagnets with S∗ � 1
2 , such as ZrZn2, an intermetallic

compound of two nonmagnetic elements which exhibits a small ferromagnetic
moment and a low Fermi energy. For a weak itinerant ferromagnet, meff is even
larger than expected from this formula. The effect of temperature is not just
to destroy the long-range intersite atomic correlations, but also to eliminate
progressively the on-site Hund’s rule correlations that sustain a local moment.
The susceptibility therefore falls more rapidly with increasing temperature than
predicted by the Curie–Weiss law.

The rigid-band model envisages a fixed, spin-split density of states for the
ferromagnetic 3d elements and their alloys, which is filled up with the necessary
number of electrons as if they were water being poured into a jug. The jugs for
bcc and fcc metals are differently shaped. Ignoring the small contribution of
the 4s-band, the average moment per atom is 	m
 ≈ (N↑

3d −N↓
3d )µB. The total

number of 3d electrons is N3d = N↑
3d +N↓

3d , where N↑
3d = 5 for the strong

ferromagnets. Hence

	m
 ≈ (10 −N3d )µB. (5.34)

This relation applies to any strong ferromagnet regardless of the details of the
density of states.

The rigid-band picture is oversimplified. Nevertheless, the model has merit.
In CuxNi1−x alloys, for example, each Cu atom brings an extra electron. The
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The Slater–Pauling curve.
The average atomic
moment is plotted against
the number of valence
(3d + 4s) electrons.

d-band of Ni has 0.6 holes and the ferromagnetism of CuxNi1−x disappears
when the d-band is full up at x =0.6, as predicted.

Bonding states with delocalized singlet-like wave functions are found near
the bottom of a metallic band and antibonding states with more localized triplet-
like states are near the top. Since the total wave function must be antisymmetric,
this helps to explain why 3d elements near the end of the series tend to be ferro-
magnetic, while those at the beginning of the series are not. The binding energy
of 3d electrons increases by about 5 eV across the series, which is comparable
to the 3d bandwidth. The band narrowing resulting from the increased nuclear
charge is sufficient to offset the broadening resulting from reduced metal–metal
distances as we move across the 3d series.

The famous Slater–Pauling curve, Fig. 5.17, is a plot of the magnetic moment
per atom for binary alloys of 3d elements plotted against Z, the total number
of 3d and 4s electrons per atom. There is inevitably some mixture of 4p
character in the 4s-band. The alloys on the right-hand side of Fig. 5.17 are
strong ferromagnets. The slope of the branch on the right is −1. The multiple
branches with slope ≈1, as expected for rigid bands, are for alloys of late 3d
elements with early 3d elements for which the 3d-states lie well above the
Fermi level of the ferromagnetic host. The assumption of a common band in
the rigid-band model really applies only when the charge difference of the
constituent atoms is small, Z � 2. Otherwise a split band with a joint density
of states reflects the densities of states of the constituents. The partial densities
of states of FeV and FeNi3, for example, are compared in Fig. 5.18.

The magnetic valence model is a more general formulation of these ideas
which allows us to estimate the average atomic moment per atom of any alloy
of a 3d element, provided it is a strong ferromagnet. The valence of an atom is
given by Z = N↑ +N↓, whereN↑ andN↓ are the numbers of ↑ and ↓ valence
electrons per atom. The magnetic moment is given by m = (N↑ −N↓)µB =
(2N↑ − Z)µB. Now the value of N↑

d is exactly 5 for strong ferromagnetic
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Partial densities of states of
(a) FeV and (b) FeNi3.

elements, and 0 for main group elements which have no d electrons. The
magnetic valence of an element Zm, defined as

Zm = 2N↑
d − Z, (5.35)

is an integer. Its moment is m = (Zm + 2N↑
s )µB , where 2N↑

s ≈ 0.6 − 0.7 is
the number of electrons in the unpolarized 4sp-band. The average moment per
atom in an alloy is obtained by replacing Zm by its weighted average value over
all atoms present in the alloy:

	m
 = (	Zm
 + 2N↑
s )µB. (5.36)

In this way it is possible to estimate the magnetization of any strong ferro-
magnetic alloy based on iron, cobalt or nickel. Some magnetic valences are
Zm = −3 for B, Y, La and all rare-earths, −4 for C, Si, Ti, −5 for V, P, −6 for
Cr, but 2 for Fe, 1 for Co and 0 for Ni. Taking YFe2 as an example, the average
moment is [ 1

3 (−3 + 0.6) + 2
3 (2 + 0.6)] = 0.93 µB/atom or 2.8 µB/(formula

unit, fu). We can consider that the yttrium has reduced the iron moment from
2.2 µB to 1.4 µB . Adding more yttrium to the alloy will eventually destroy the
magnetism entirely (Exercise 5.7(c)). Moments per atom for rare-earth–iron
alloys are shown in Fig. 5.19.
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A nonmagnetic virtual
bound state.

5.3.3 Impurities in ferromagnets

The converse of the problem considered in §5.3.1, the behaviour of a single
impurity atom in a ferromagnetic host, is also interesting. If the impurity is a
much lighter 3d element than the host, like V in Ni (Fig. 5.20) its d levels lie
above the Fermi level in the 4s conduction band. If Vkd is the hopping integral
from the d level to the conduction band, the level acquires a width

 i = πN4s (εF )V 2
kd, (5.37)
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Variation of the magnetic
moment per atom as a
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valence for some
rare-earth iron alloys.
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Figure 5.20

The local density of states
for V in Ni, Fe in Ni and Ni
in V. (Calculations by
courtesy of Nadjib Baadji).

which may be of order 1 eV. The impurity level is then known as a virtual

bound state. The width is inversely related to the time an electron dwells on the
impurity site.

When the virtual bound state lies entirely above εF , the 3d impurity electrons
are emptied into the 3d-band of the host. If the host 3d↑-band is full, there will
be a moment reduction of Ni3d Bohr magnetons, where Ni3d is the number of
impurity 3d electrons. In addition, the moment of one host atom is suppressed at
the site of the substitution. For example, when a V impurity (Z = 5, Ni3d ≈ 4)
is substituted in a Ni host, the moment reduction is drastic, 4 +0.6 =4.6 µB/V.

There will inevitably be some hybridization of the impurity and host 3d-
states, which will be more effective for the host 3d↓ electrons, because they
lie closer to the Fermi level. A light 3d element will therefore acquire a small
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negative moment in a heavy 3d host. These trends are illustrated for impurities
in iron in Fig. 5.21.

SR ST

SR ST

R T

mR      T

(a)

(b)

Coupling of spins and
alignment of moments in
R–T alloys, T = Fe, Co, Ni (a)
R = light rare-earth, (b) R
= heavy rare-earth.

This is an example of the more general rule that exchange coupling between
atoms with d shells that are more than half full with atoms whose d shell is less
than half full is antiferromagnetic. The rare-earths in this context should be con-
sidered as light d elements because their atomic configuration is 4f n5d16s2.

There is therefore antiparallel coupling of the spin moments of the ferromag-
netic 3d elements T = Fe, Co and Ni, and the spin moment of a rare-earth. When
the 4f shell is half-filled, or more, this leads to antiparallel coupling of the
atomic moments in R–T alloys with R =Gd–Yb. However, in light rare-earth
metals where the moment is mainly orbital in character, and directed opposite
to the spin moment according to Hund’s third rule, the R and T moments are
parallel, even though the spins are antiparallel. Many examples of R–T alloys
are presented in Chapter 11.

5.3.4 Half-metals

These oddly named materials are ferromagnets with electrons of only one spin
polarization at the Fermi level. Cobalt and nickel are not half-metals because of
the presence of the 4s electrons at εF which are not fully spin-polarized. Indeed,
no ferromagnetic element is a half-metal. It is necessary to form a compound
where the 4s electrons can be removed from the vicinity of the Fermi energy
by charge transfer or hybridization. Examples include the oxide CrO2 and the
ordered intermetallic compound MnNiSb, which are both discussed in Chapter
11. The characteristic feature of a half-metal is a spin gap in the ↑ or ↓ density of
states at εF . Furthermore, the spin moment per formula unit in a stoichiometric
half-metallic compound is an integral number of Bohr magnetons. This is
because there are an integral number N↑ +N↓ of electrons per formula unit,
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and the band with the spin gap must contain an integral number of N↑ (or N↓)
electrons, hence N↑ −N↓ is also an integer.

Spin-orbit interaction tends to destroy half-metallicity by mixing ↑ and ↓
states, as explained in §5.6.4.

5.3.5 The two-electron model

Further insight into the physical interactions of importance in metals is pro-
vided by a diatomic two-electron model. Although highly simplified, the model
contains most of the ingredients of the physics of the many-electron problem,
except orbital degeneracy. Important quantities are the on-site Coulomb repul-
sion U , the transfer or ‘hopping’ integral t which gives rise to the bandwidth
W and the direct exchange Jd .

The HamiltonianH(r1, r2) is that in the Schrödinger equation of (5.20), with
an additional term e2/4�0 |r1 − r2| to take account of the Coulomb interaction
of the two electrons with each other. The spatially symmetric and antisymmetric
wave functions

φs = (1/
√

2)(ψ1 + ψ2), φa = (1/
√

2)(ψ1 − ψ2), (5.21)

may be regarded as embryonic Bloch functions (electron waves) for the metal
with k = 0 and k = π/d, where d is the interatomic spacing. We can replace
φs and φa by embryonic Wannier functions which are mostly localized on the
left and right atoms:

φl = (1/N )(ψ1 + aψ2), φr = (1/N )(aψ1 + ψ2), (5.38)

with

a = −1 +
√

1 − S2

S ,

where S is the overlap integral
�

ψ∗
1(r)ψ2(r)d3r and N is a normalization

factor. These Wannier functions, Fig. 5.22, differ from ψ1 and ψ2, the eigen-
functions of the one-electron problem, in that they are supposed to be orthogonal�

φ∗
l (r)φr(r)d

3r = 0.
There are now four possible two-electron wave functions �i(r, r �):

�1 = φl(r)φl(r �); �2 = φl(r)φr (r �);
�3 = φr (r)φl(r �); �4 = φr(r)φr (r �).

The functions �1 and �4 represent doubly occupied states. The interaction
matrix is




U t t Jd
t 0 Jd t

t Jd 0 t

Jd t t U


 . (5.39)
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Wannier functions and
atomic wave functions for
the diatomic molecule.

The Coulomb interaction U is the energy penalty when two electrons are put
into the same orbital. It is several electron volts:

U =
�

φ∗
l (r)φ∗

l (r �)H(r, r �)φl(r)φl(r �)d3rd3r �.

The transfer or hopping integral t is also positive, and is �1 eV. It represents the
bandwidth. More generally, in the tight-binding approximation, the bandwidth
is 2Znt , where Zn is the number of nearest neighbours.

t ≈
�

φ∗
R(r)φ∗

l (r �)H(r, r �)φl(r)φr (r �)d3rd3r �

The direct exchange between doubly occupied sites is smaller, and of order
0.1 eV:

Jd =
�

φ∗
l (r)φ∗

l (r �)H(r, r �)φr (r)φr (r �)d3rd3r �.

The interaction matrix (5.39) can be diagonalized directly. Two doubly occu-
pied states have eigenvalues of order U , and are therefore neglected. The other
states, which are much lower in energy, are: (i) a delocalized ferromagnetic
state (the spatial part of the wave function is antisymmetric) with eigenvalue
εFM = −Jd

�FM = (1/
√

2)[φl(r)φr (r �) − φr(r)φl(r �)];

and (ii) an antiferromagnetic state (the spatial part of the wave function is
symmetric)

�AF = (sin χ/
√

2)[φl(r)φl(r �) + φr (r)φr (r �)]

+ (cos χ/
√

2)[φl(r)φr (r �) + φr(r)φl(r �)],

where tanχ = 4t/U. The associated energy is εAF = U/2 + Jd −�
4t2 + U2/4.
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The effective exchange is Jeff = 1
2 (εAF − εFM ),

Jeff = Jd + U/4 −
�

(t2 + U 2/16). (5.40)

Jeff > 0 indicates a ‘ferromagnetic’ ground state and Jeff < 0 indicates an
‘antiferromagnetic’ ground state. Direct exchange favours ferromagnetism,
but strong interatomic hopping t favours antiferromagnetism. When U � t,
and Jd = 0, the exchange is antiferromagnetic, as illustrated in §5.2.2:

Jeff = −2t2/U. (5.41)

Ferromagnetic Antiferromagnetic

eV + t

−eV  + t

  √ t 2 + (eV) 2
eV − t

−eV − t − √ t 2 + (eV) 2

Energy levels of the
ferromagnetic and
antiferromagnetic states
for the two-atom/
four-state problem.

Our rudimentary model can also illustrate how exchange depends on band
filling. We consider the ferromagnetic and the antiferromagnetic states, for
which the one-electron Hamiltonians are,

HF =
�±eV t

t ±eV

�
,

HAF =
�±eV t

t ∓eV

�
,

where V is the local exchange potential experienced by an electron on site 1 or
2 and t is the interatomic hopping integral. When t =0, there is one-electron
exchange splitting of the states. Diagonalizing the matrices to find the eigen-
values involves solving the determinant |H − λI| = 0. For the ferromagnetic
state, the energy levels are ±eV + t and ±eV − t , whereas for the antiferro-
magnetic state, they are doubly degenerate ±

�
t2 + (eV )2. It can be seen that

a single electron or three electrons (quarter-filled or three-quarters-filled band)
go into a ferromagnetic state, but two electrons (half-filled band) prefer the
antiferromagnetic state.

5.3.6 The Hubbard model

A famous model Hamiltonian which represents electron correlation in the
tight-binding model for an array of one-electron atoms is

H = −
�

i,j

tc
†
i cj + U

�

i

N
↑
i N

↓
i ,

where N↑,↓
i are the numbers of spin-up and spin-down electrons, respectively,

on the ith atom. The first term is the transfer term that creates the band of width
W = 2Zt ; the second is the Coulomb energy penalty involved in placing two
electrons on the same atom.

Electrons are localized when U/W > 1 because there are then no states
available to accommodate the double-occupancy charge fluctuations that are
indispensable for electronic conduction. Compounds with an integral number
of electrons per atom which satisfy this condition are known as Mott–Hubbard

insulators.
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The second term can be rewritten using

UN
↑
i N

↓
i = U [(N↑ +N↓)2/4 − (N↑ −N↓)2/4].

The Stoner interaction −(I/4)(N↑ −N↓)2 is thereby identified as the spin-
dependent part of the on-site Coulomb interaction; hence I ≈ U. In the Hub-
bard model, the on-site correlations create a magnetic moment, and hopping
between adjacent nondegenerate singly occupied orbitals provides an antifer-
romagnetic interaction.

A variant of the Hubbard model is the t–J model, where the second term is
replaced by −2J �

i>j Si · Sj with J = −2t2/U.

o o

o
o

o

o o

o

o o

o

o

o

o

o
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o

o
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o

o

o
o

o
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The Born–Oppenheimer
approximation: the
electrons (marked with
arrows) move in a
background of frozen
nuclei (open circles).

5.3.7 Electronic structure calculations

A solid is a system ofN electrons at positions {r i} andN � nuclei, usually centred
on a periodic lattice {RI }. Inner electrons occupy tightly bound, localized core
orbitals around the nuclei. Outer orbitals with binding energies of a few electron
volts or less are the home of the valence and conduction electrons, which
determine the electronic character of the solid, be it metal, semiconductor,
insulator, ferromagnet, antiferromagnet, superconductor, . . . The instantaneous
velocity of these outer electrons is of order the Fermi velocity, vF ≈ 106 m s−1.

Ion cores vibrate at phonon frequencies that are of order 1014 Hz, with an
amplitude of about 10 pm, which means that their velocity is of order 103 m
s−1. We are therefore justified in thinking that the electron sees the potential
of a set of nuclei instantaneously frozen in position – the Born–Oppenheimer

approximation. Furthermore, we will ignore the atomic displacements, which
lead to electron scattering, and assume that the ion cores are localized at the
lattice sites. The electrons experience Coulomb interactions with the nuclei, and
with each other. The Hamiltonian, with factors of 1

2 to avoid double counting,
takes the form

H = −
�

i

�2∇2
i

2me
−

�

i,I

Ze2

4π�0RIi
+ 1

2

�

i,j

e2

4π�0rij
. (5.42)

The problem is to solve Schrödinger’s equationH� = ε�, where �({RI }, {ri})
is a wave function for the huge number of electrons and nuclei in the system.

An abbreviated notation for H is

H = T + V + U, (5.43)

where T and V are the terms corresponding to the one-electron kinetic and
potential energy and U represents the two-electron interactions that capture the
complexity of the physics.

Many first-principles methods for solving the many-electron Schrödinger
equation use wave functions based on Slater determinants. The idea is to build
in the antisymmetry of the wave function under exchange of any two electrons
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with given space and spin coordinates x, y, z, σ denoted as xi and xj . In the case
of just two electrons, for example, � = ψ1(x1)ψ2(x2) is not antisymmetric,
but (1/

√
2)[ψ1(x1)ψ2(x2) − ψ1(x2)ψ2(x1)] is a suitable wave function. It can

be written in the form of a determinant:

�(x1, x2) = 1√
2

����
ψ1(x1) ψ2(x1)
ψ1(x2) ψ2(x2)

���� . (5.44)

Placing two electrons in the same orbit ψ1 = ψ2 gives �(x1, x2) = 0, as
required by the Pauli principle. Slater generalized this idea to N electrons,
writing the wave function as

�(x1, x2, . . . , xN ) = 1√
N

���������

ψ1(x1) ψ2(x1) · · · ψN (x1)
ψ1(x2) ψ2(x2) · · · ψN (x2)

...
...

. . .
...

ψ1(xN ) ψ2(xN ) · · · ψN (xN )

���������
. (5.45)

A compact way to denote a Slater determinant is as a ket, |1, 2, . . . , N
.

John Hubbard, 1931–1980

The Hartree–Fock method assumes that the exactN -electron wave function of
the system can be approximated as a single Slater determinant. A variational
solution is then based on a linear combination of these one-electron wave func-
tions with coefficients chosen to minimize the energy. The method completely
neglects electron correlations, but takes perfect account of the exchange. Each
electron is surrounded by an exchange hole, from which any other electron with
the same spin is excluded.

An alternative approach to Hartree–Fock calculations is density functional

theory (DFT), which provides an approximate solution for both exchange and
correlation energies. It succeeds in mapping a many-electron problem with U
onto a one-electron problem without U . The theory is based on two theorems,
proved by Hohenberg and Kohn in the mid 1960s. The first is that the density
n(r) of a system of N electrons determines all the ground-state electronic
properties. The ground-state wave function �0 is a unique functional of electron
density �0[n(r)]. (A functional is just a function which has another function as
its argument.) Other physical properties can be derived from the wave function.
In particular, the ground-state energy is

ε0[n(r)] = 	�0|T + V + U |�0
. (5.46)

The second is that the energy functional ε0[n(r)] is lower in energy for
the ground-state density n0(r) than any other state. The term in the energy
which needs to be minimized in (5.46) is the one that depends on {RI },
V[n(r)] = −e

�
V (r)n(r)d3r . The significance of these theorems is that it is

immensely easier to base a calculation on the density, which depends on only
three variables, x, y, z, or four when we include the spin σ , than it is on the wave
functions of anN -electron system which depend on 4N variables. The problem
is that the correct density functional is unknown, and it must be arrived at by
inspired approximation. Furthermore, the method applies to the ground state,
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and it does not give the structure of excited states, although a time-dependent
variant of the theory may remedy this defect.

Density functional theory is usually implemented using the Kohn–Sham

method, where the problem of strongly interacting electrons moving in the
potential of the nuclei is reduced to the more tractable problem of noninteract-
ing electrons in an effective potential which somehow takes care of the inter-
electronic Coulomb interaction, as well as exchange and correlation effects.
The energy of (5.46) is rewritten as

o

o

o

o

o

o

o

The Kohn–Sham formalism.
Each electron moves
independently in an
effective potential created
by the others.

ε0[n(r)] = Ts[n(r)] + εV [n(r)], (5.47)

where Ts is the noninteracting kinetic energy and εV is the total potential
energy. The Kohn–Sham equations for this noninteracting system are just a set
of effective, single-particle Schrödinger equations

�
−�2∇2

i

2me
+ Vs(r)

�
φi(r) = εiφi(r) (5.48)

which yield a set of orbitals φi which are approximate wave functions for the
real system of electrons that reproduce the density of the original many-electron
system n(r) = �

i

��φ2
i

��. The effective single-particle potential is usually written
as

Vs = V + 1

2

�
e2n(r �)

4π�0 |r − r �|d3r � + Vxc[n(r)]. (5.49)

The first term is the Coulomb interaction of the electron with the nuclei, the
second term is the Hartree term VH describing the electron–electron Coulomb
repulsion, and the key term is the third one, the exchange-correlation potential,
which includes all the many-electron correlations. The Kohn–Sham equations
are solved by following an iterative procedure. Taking an initial guess for
[n(r)],Vs is calculated and the equations are solved for φi(r), from which a new
density is calculated, and the process is repeated. The local density approximation

(LDA) assumes that the exchange-correlation functional Vxc[n{r}] depends
only on the density at the point where the function is evaluated Vxc[n(r)]. A
variant is the general gradient approximation, where Vxc depends also on the
density gradient Vxc[n(r),∇n(r)]. In systems of more ionic character, a U
term can be added to reduce double orbital occupancy.

All this can be generalized to the spin-dependent case. In the local spin

density approximation (LSDA) two densities must be taken into account, the
scalar electron density n(r) and the vector magnetization density m(r) =
µB[n↑(r) − n↓(r)]ez. They are both incorporated in a 2 × 2 density matrix

n̂(r) = 1
2 [n(r)Î + σ̂ · s(r)], where Î is the identity matrix

�
1 0
0 1

�
, σ̂ are the

Pauli spin matrices (3.17) and s(r) is the local spin density m(r)/µB . For a
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collinear spin configuration, the density matrix is diagonal:

n̂(r) =
�
n↑(r) 0

0 n↓(r)

�
, (5.50)

so that n(r) = n↑(r) + n↓(r) and m(r) = µB[n↑(r) − n↓(r)]. The potential
matix is given by V̂ = V Î + µBm(r) · B, where B is the magnetic field. The
spin-polarized version of the Kohn–Sham equations is

��
−�2∇2

i

2me
+ VH

	
Î +V + Vxc

��
φ

↑
i (r)

φ
↓
i (r)

�
= εi

�
φ

↑
i (r)

φ
↓
i (r)

�
. (5.51)

The exchange-correlation matrix depends on both n(r)and m(r),

Vxc = Vxc[n(r),m(r)], (5.52)

for which a suitable approximation must be found. Equations (5.51) yield the
wave functions φ

↑,↓
i (r) from which the density matrix n̂(r) is deduced. A self-

consistent solution is obtained, as in the the nonmagnetic case. A number of
computer codes are available to do the job. If the density matrix is diago-
nal, the magnetic structure is collinear, but the general formalism allows for
noncollinear structures. DFT is an accurate method for calculating magnetic
moments and spin-polarized band structures, especially in metallic systems.

The three forces in
magnetism: theory,
experiment, and
simulation. (Courtesy
Wiebke Drenckhan).

Exponential growth of computer power, and especially multiprocessor com-
puter clusters, has enabled computer simulation to establish itself as a third
force, alongside experiment and theory, for investigations in magnetism. Not
only in electronic structure calculations, where it is becoming possible to inves-
tigate the crystal structure and magnetic order of a new compound without ever
actually having to make it in the laboratory, but also in the areas of electronic
transport properties and micromagnetism, are computational methods making
their mark. Large numbers of atoms, of order 1000 or more, can be handled
using current DFT codes, which makes it possible to investigate spin-dependent
transport in a molecule, or to study the appearance of a magnetic moment on
different types of lattice defects in a solid. It is immensely more convenient to
create a specific complex lattice defect on a computer than it is in the laboratory.

5.4 Collective excitations

The comparison of magnetization data on nickel with the predictions of
molecular field theory for J = 1

2 in Fig. 5.3 shows discrepancies both at low
temperature, and in the vicinity of TC.Actually the discrepancies are worse than
they appear because TC is used to determine nW , so the model is constrained
to return the right Curie temperature, and the correct value of m0.

Experimental methods discussed in Chapter 10, exist to determine the
exchange constants directly, so it is possible to make a more telling comparison
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Figure 5.24

Illustration of a spin wave.

between theory and experiment, as indicated in Fig. 5.23. Here it is evident that
ferromagnetism is considerably less stable at elevated temperature than molec-
ular field theory would have us believe; it overestimates TC by as much as a
factor of 2, depending on the dimensions and the lattice type. The spontaneous
magnetization is diminished at low temperatures by spin-wave excitations. Near
TC the critical fluctuations destroy it.

5.4.1 Spin waves

The total exchange energy in the ferromagnetic ground state is −2ZJ S2 per
site, where Z is the number of magnetic nearest neighbours and J is the
nearest-neighbour exchange interaction. The elementary excitations from the
ferromagnetic ground state are not, as might be imagined, flips of individual
spins that reduce an atomic moment from a state with Ms = S to one with
Ms = (S − 1).A single localized spin reversal in an S = 1

2 chain ↑↑↑↑↓↑↑↑↑
costs 8J S2 or 2J when S = 1

2 , which is twice as large as kBTC for the chain
treated in the molecular field approximation (5.26); Z = 2 for a chain, so
kBTC = 2JZS(S + 1)/3 = J . Such expensive excitations cannot occur at low
temperature. Instead, all the atoms share out the spin reversal, with periodic
oscillation of their transverse spin orientation. The spin deviations spread over
the whole lattice in a propagating spin wave with wave vector q and energy
εq = �ωq , as illustrated in Fig. 5.24. Spin waves exist as classical excitations,
but the extended, quantized spin deviations in solids are known as magnons

by analogy with phonons, the quantized lattice waves. Think of spin waves
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as oscillations in the relative orientations of spins on a lattice, whereas lattice
waves are oscillations of the relative positions of atoms on a lattice.

The relation between the wavevector q = 2π/λ and frequency ωq of the spin
wave can be calculated classically, or from quantum mechanics. The classical
approach considers the spin angular momentum of the atom at site j , �Sj and
equates the torque exerted by the molecular field to the rate of change of angular
momentum, thus

�
dSj
dt

= µ0gµBSj × Hj . (5.53)

In a chain, the molecular fieldHj at site j is due to the neighbours at sites j ± 1.
From (5.25), Hj = 2J (Sj−1 + Sj+1)/µ0gµB , hence �dSj /dt = 2J Sj ×
(Sj−1 + Sj+1). This can be written in Cartesian coordinates:

�
dSxj
dt

= 2J
�
S
y

j (Szj−1 + Szj+1) − Szj (Syj−1 + Syj+1)



plus cyclic permutations. For small deviations, we can approximate Szj =
Sj = S and neglect terms like Sxi S

y

j . Hence

�
dSxj
dt

= 2J S
�
2Syj − Syj−1 − Syj+1



,

−�
dSyj
dt

= 2J S
�
2Sxj − Sxj−1 − Sxj+1



,

�
dSzj
dt

= 0. (5.54)

Solutions are of the form Sxj = uS exp[i(jqa − ωqt)], S
y

j = vS exp[i(jqa −
ωq t)], where q is the wavevector and a is the interatomic spacing. Substitut-
ing back into (5.54) gives −i�ωqu = 4J S(1 − cos qa)v, i�ωqv = 4J S(1 −
cos qa)u. Multiplying these results for a one-dimensional chain of isotropic
spins, gives

�ωq = 4J S(1 − cos qa). (5.55)

In the limit of small wavevectors, the spin-wave dispersion relation becomes

Wavevector, q

E
ne

rg
y,

 e 

The spin-wave dispersion
relation for a chain of
atoms.

εq ≈ Dswq2, (5.56)

where εq = �ωq and the spin-wave stiffness parameter is Dsw = 2J Sa2. It
takes a vanishingly small energy to create a long-wavelength magnetic exci-
tation. The generalization to a three-dimensional cubic lattice with nearest-
neighbour interactions is

�ωq = 2J S
�
Z −

�

δ

cos q · δ

�
,

where the sum is over the Z vectors δ connecting the central atom to its nearest
neighbours. The same dispersion relation withDsw = 2J Sa2

0 is found in any of
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Figure 5.25

The magnon dispersion
relations for iron measured
in different directions in
the unit cell. The dashed
line corresponds to
D sw = 4.5 × 10−40 J m2.
(G. Shirane et al., Journal of
Applied Physics, 39, 383
(1968))

the three basic cubic lattices, where a0 is now the lattice parameter. Dispersion
of magnons differs from that of phonons, εq ≈ c0q where c0 is the velocity of
sound, which is linear in the small-q limit. The value of Dsw for cobalt, for
example, is 8.0 ×10−40 J m2 (500 meV Å2). It is smaller for other ferromagnets
(Table 5.4). The dispersion relation for iron is shown in Fig. 5.25.

Equation (5.55) can be derived quantum mechanically from the Heisenberg
Hamiltonian (5.24) where the sum is over nearest-neighbour pairs i, j . The
Hamiltonian

Si · Sj = Sxi Sxj + Syi Syj + Szi Szj (5.57)

is written in terms of the raising and lowering operators.

Si · Sj = Szi Szj + 1
2 (S+

i S
−
j + S−

i S
+
j ). (5.58)

The ground state of the system |�
 has all the spins aligned in the z-direction, so
that H|�
 = −2J (N − 1)S2|�
. Flipping a spin 1

2 at site i using S−
i reduces

Mi
S from S to S − 1; |i
 = S−

i |�
 lowers the total spin of the system by 1.
However, |i
 is not an eigenstate of the Hamiltonian of the chain of spins with
nearest-neighbour interactions

H = −2J
N−1�

i=1

�
Szi S

z
i+1 + 1

2 (S+
i S

−
i+1 + S−

i S
+
i+1)




because H|i
 = 2J [−(N − 1)S2 + 2S|i
 − S|i + 1
 − S|i − 1
]. It is neces-
sary to form linear combinations like

|q
 = 1√
N

�

i

eiq·ri |i
 (5.59)



165 5.4 Collective excitations

5100 5 10 015

2

4

6

8

10

12

5 0

14

MT TK

Wavevector, q (nm  )

LA LA

TO

TA

A

A

K

K

a-axis b-axis c-axis

Figure 5.26

Magnon dispersion relation
for terbium (J. Jonsen and
A. R. Mackintosh, Rare
Earth Magnetism, Oxford
University Press 1991).

This state is a magnon, a spin flip delocalized on the chain, with wavevector q.
Then

H|q
 = 2J√
N

N−1�

i=1

eiq·ri [−(N − 1)S2 + 2S|i
 − S|i + 1
 − S|i − 1
]

= [−2J (N − 1)S2 + 4J S(1 − cos qa)]|q
. (5.60)

Dropping the first term, which is constant, we have ε(q) = 4J S(1 − cos qa),
as before.

Dispersion relations are best measured by inelastic neutron scattering, which
is discussed in Chapter 10. There are multiple magnon branches when the unit
cell is noncubic, or if it contains more than one magnetic atom. The energy in a
mode of frequency ωq containing Nq magnons is (Nq + 1

2 )�ωq . Excitation of
magnons is responsible for the fall of magnetization with increasing T . They
also contribute to resistivity and magnetic specific heat. By analysing spin-
wave dispersion relations measured across the Brillouin zone, it is possible to
deduce the exchange interactions J (r ij ) for different atom pairs. Alternatively,
the wavevector-dependent exchange J (q) can be fitted to the data. When the
minimum of J (q) does not fall at q = 0, a spatially modulated magnetic
structure is stable (§6.3).

Figure 5.26 shows the spin-wave dispersion relation for terbium. There is an
energy gap at q = 0 due to the single-ion anisotropy of this rare-earth metal
(§4.4.4). Excitation of spin waves can be suppressed at very low temperatures
by the anisotropy. The energy gap at q = 0 is K1/n, where n is the number of
atoms per unit volume. In hexagonal close packed (hcp) cobalt, for example,
n = 9 × 1028 m−3, K1 = 500 kJ m−3, the spin-wave gap is 0.4 K.

Magnons behave like bosons; each magnon corresponds to the reversal of
one spin 1

2 over the whole sample, or a change MS = 1 for the whole system.
Hence the average number of quantized spin waves in a mode q is given by the
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Table 5.6. Comparison of excitations in solids

Excitation Dispersion Specific heat

Electrons Fermions εk ≈ (�/2m)k2 γT

Phonons Bosons εq ≈ c0q T 3

Magnons (ferromagnetic) Bosons εq ≈ Dswq2 T 3/2

Magnons (antiferromagnetic) Bosons εq ≈ Daf q T 3

Bose distribution

	Nq
 = 1/[exp(�ωq/kBT ) − 1].

However, the magnon density of states N (ωq ) ∝ ω
1
2
q , just like that of electrons

which have a similar dispersion relation εk = �2k2/2m. Dispersion relations
and the corresponding low-temperature specific heats are summarized in
Table 5.6. It can be shown that the reduction in magnetization at low tem-
peratures due to the excitation of magnons is

 M/M0 = (0.0587/ν)(kBT /2SJ )3/2. (5.61)

This is the Bloch T 3/2 power law. The integer ν equals 1, 2 or 4 for a simple cubic,
bcc or fcc lattice. Specific heat follows the same power law at low temperature.
A consequence of spin-wave excitation is that Curie temperatures are much
lower than expected from molecular field theory, given the exchange constant
J (Fig. 5.23).

For electrons in ferromagnetic metals, there is an additional scattering pro-
cess, in addition to scattering from defects, phonons and other electrons. The
electron can be inelastically spin-flip scattered, with the creation or annihilation
of a magnon (ωq, q). This leads to a term in resistivity varying as T 2.

Our discussion of spin waves has been based on localized spins and Heisen-
berg exchange coupling, but the idea is more general; any ferromagnetic con-
tinuum with exchange stiffness will exhibit spin-wave excitations.

5.4.2 Stoner excitations

Besides spin waves, another type of excitation in a metal can reduce its mag-
netization. Electrons at the Fermi level can be excited from filled states in
the majority-spin band to empty states in the minority-spin band. If the initial
state has wavevector k and the final state has wavevector k − q, an exci-
tation of wavevector q is produced. The energy of the excitation is given
by

�ωq = εk − εk−q + ex.
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