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Introduction

For the description or the study of properties of
physical systems, symmetry is of paramount impor-
tance. The symmetry groups of crystals are the so-
called space groups. Other symmetry operations,
such as time reversal, are sometimes also relevant,
but the most important operations are the elements
of the space groups. Space group symmetry is a
generalization of the property that crystals are, usu-
ally, periodic in three dimensions. This article deals
with the periodicity, the other symmetry operations
of crystals, the classification of the space groups, and,
what is of greater relevance for the physical proper-
ties, their representations.

Lattice Periodicity

Ideally, the most common crystals consist of a peri-
odic array of identical building blocks repeated in all
three directions. There are other types of crystals al-
so, but a discussion of these will be taken up at the
end of this section. Real crystals always have short-
comings in their periodic order; they are finite, which
implies that there is a limit to the periodicity. Rep-
etition means that one may go from one block into
another by a translation. Such a translation is given
by a vector n. All vectors of the translations form a
lattice. That means there are three fundamental
translations, with vectors a, b, and c, such that each
lattice translation n is a linear combination of these
three with integer coefficients, and each such com-
bination transforms a building block into another:

n ¼ n1aþ n2bþ n3c; with integers n1;n2;n3 ½1�

The building blocks do not have an overlap, and
there are no gaps between them. Each building block
consists of an arrangement of atoms or molecules. It
is called a unit cell. The whole structure then remains
the same if it is shifted by any of the translations of
the lattice. Suppose that there are N atoms in the
building block at positions r1,y, rN. Then the posi-
tion of an arbitrary atom of the crystal is given by the
expression

rn;j ¼ r j þ n1aþ n2bþ n3c ½2�

for specific values of j, n1, n2, and n3. The vectors rj
may be chosen inside the unit cell. The vectors a, b,
and c are the basis vectors.

Because the building blocks are repeated in all di-
rections, the three fundamental vectors are inde-
pendent, which also means that every point in space
can be reached from a fixed point by a linear com-
bination, not necessarily with integer coefficients. In
general, the coefficients are real numbers. In partic-
ular, the position of an arbitrary atom with respect to
a chosen origin can be written as

rn;j ¼ ðn1þx1Þaþ ðn2 þ x2Þbþ ðn3 þ x3Þc ½3�

Here (n1þ x1), etc., are real numbers. For example,
for CsCl, the three basis vectors are in Cartesian co-
ordinates (a, 0, 0), (0, a, 0), and (0, 0,a). There is a Cs
atom at r1¼ (0, 0, 0) and a Cl atom at r2¼ (a/2, a/2,
a/2). With respect to the lattice basis, the Cl coordi-
nates are x1 ¼ x2 ¼ x3 ¼ 1=2. The unit cell is a cube.

Distance-Preserving Transformations

Physical laws remain the same if positions are trans-
formed into newer positions with the same distances.
Therefore, such distance-preserving transformations
are important for physics. Among them are transla-
tions, where all positions are shifted by the same
translation vector. In addition, rotations around an
arbitrary point and the full reflection of all points
through an arbitrary point leave the distances invar-
iant. Let O be an arbitrary point in space. Then the
orthogonal group consists of all rotations leaving this
point invariant and all products of such a rotation with
the reflection through O. The group of three-dimen-
sional orthogonal transformations is denoted by
O(3)O. Choosing O as origin and a basis of space
consisting of three basis vectors e1, e2, e3, an or-
thogonal transformation R corresponds to a matrix via

Rei ¼
X3

j¼1

Rjiej ði ¼ 1;2; 3Þ ½4�

For a special choice of the basis, namely, with three
mutually perpendicular vectors of the same length, the
matrices satisfy

P
j RijRkj ¼ dik or RRT ¼ E, where T

indicates the transpose, and E the unit matrix. Such
matrices are called orthogonal. Their determinant is
either þ 1 (for rotations) or � 1. If one chooses an-
other origin, the orthogonal group around that point
gives the same group of matrices, which can then be
indicated by O(3).
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All distance-preserving transformations can be ob-
tained as a combination of a translation and an or-
thogonal transformation around an origin O. The
effect on a point r of an orthogonal transformation R
together with a translation t is

fRjtgr ¼ Rr þ t ½5�

All these transformations again form a group, the
Euclidean group E(3). Its elements are called Euclid-
ean transformations. The product of two such trans-
formations then is the subsequent execution of the
two:

fR1jt1gfR2jt2gr ¼fR1jt1gðR2r þ t2Þ
¼R1R2r þ R1t2 þ t1 ½6�

from which it follows that

fR1jt1gfR2jt2g ¼ fR1R2jt1 þ R1t2g ½7�

In particular, {R|t}¼ {E|t}{R|0} and {R|t}�1¼
{R�1|�R� 1t}.

A rotation R from O(3)O leaves the point O invar-
iant. A translation u transfers O to Oþu and this
point is left invariant by {E|u}{R|0}{E|�u}. This
means that, the product {R|u�Ru} belongs to the
orthogonal group Oð3ÞOþu. In other words, the
translation part t of a space group element {R|t} may
be changed by an origin shift u according to

t ¼ t þ ðE� RÞu ½8�

The combination of a translation and a rotation
around O is then the same as a combination of an-
other translation and a rotation around Oþu (see
Figure 1).

There is a simple matrix formulation for the action
of a Euclidean transformation on a point r with co-

ordinates x, y, and z:

fRjtg

x

y

z

1

0
BBB@

1
CCCA ¼

R11 R12 R13 t1

R21 R22 R23 t2

R31 R32 R33 t3

0 0 0 1

0
BBB@

1
CCCA

x

y

z

1

0
BBB@

1
CCCA ½9�

Space Groups, Plane Groups, Higher
Dimensions

A collection of atoms which is invariant under the
translations of a three-dimensional lattice is, in gen-
eral, invariant under still more Euclidean transfor-
mations. A space group is a group of Euclidean
transformations that has a translation subgroup as a
lattice group, with three linearly independent basis
vectors. If {E|a} is a translation from the translation
subgroup, and {R|t} an arbitrary element of the space
group, then the following relation holds:

fRjtgfEjagfRjtg�1 ¼ fEjRag ½10�

The first consequence is that the translation
subgroup is an invariant subgroup. (A subgroup A
of a group G is invariant if, for each element a of A
and each g from G, the element gag� l is an element
of A.) Because {E|Ra} is a translation, and therefore
an element of the translation subgroup, Ra belongs
to the lattice. Consequently, the lattice is invariant
under R, and because all R’s form a subgroup of
O(3), this is a crystallographic point group, one of
the 32 point groups. The Euclidean transformations
leaving the CsCl structure invariant are the 48 ele-
ments of the cubic point group, combined with the
lattice translations of the cubic lattice.

A plane group is a subgroup of the Euclidean
group in two dimensions having as translation
subgroup a two-dimensional lattice group. The ele-
ments R now form one of the 10 two-dimensional
crystallographic point groups. The generalization to
space groups in arbitrary dimensions then is
straightforward. Such a group in arbitrary dimen-
sions (including two) is also called a space group.

The Structure of a Space Group

The translation subgroup A of a space group G is
invariant. (It is also called a normal subgroup.) The
orthogonal transformations R appearing in the ele-
ments {R|t} form a three-dimensional crystallographic
point group K. All the elements of K can now be
numbered: R1¼E, R2,y, RN. All elements {Ri|t} inG
form a set Si for fixed i. One can multiply two such
sets: the product SiSj is the set Sk if RiRj¼Rk. In this

A

B

ab

c

Figure 1 The 901 rotation around A brings a to b, a 901 rotation
around B plus a translation brings a via c to b.
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way, the sets Si form a group, which is in fact identical
to the group of all elements Ri, that is, the point
group K. The group of sets Si is called the factor
group, and it is identical to (more precisely isomor-
phic to) the point group K. So, the space group G has
an invariant subgroup A and the factor group G/A is
isomorphic to the point group K.

From each set Si, one may choose an element
{Ri|ti}. Then, every other element from Si may be
written as the product of the representative {Ri|ti} and
a lattice translation {E|a}. Of course, one could have
chosen another representative element fRijt 0ig. Then
the two translations ti and ti

0 differ by a translation a
from the lattice. The translations ti are not necessar-
ily lattice vectors, and they are determined by Ri only
up to a lattice vector. If the representatives can be
chosen such that their translation part is zero, that is,
when all translations ti are lattice vectors, the group
has a simple structure: each element is a product of
an element of the translation subgroup and an ele-
ment of the point group. Then the space group is
called symmorphic.

Consider as examples the plane groups of the two-
dimensional structures for which the unit cell is given
in Figure 2. The unit cells are rectangles, the lattices
have bases vectors (a, 0) and (0,b). The example of
Figure 2a has two different atoms in (0,0) and (1/2,
1/2). The point group symmetry of the lattice consists
of the identity E, the two mirrors mx and my, and the
inversion �E. All four elements transform the posi-
tion of an atom to a position that is related to the
original position by a lattice vector. Thus, the plane
group has a point group (2mm) with four elements.
The example of Figure 2b has one molecule at the
position (0, 0). There are only two point group ele-
ments leaving the molecule invariant, and the point
group is 2 with elements E and �E, although the
lattice is the same. In example (c), there are molecules
at (0, 0) and (1/2, 1/2). The subgroup leaving each
molecule invariant has two elements: 7E. The trans-
formation mx does not leave a molecule invariant,
but the Euclidean transformation fmxjð1=2; 1=2Þg
does. The space group elements are the elements of the
translation subgroup A and the cosets {�E|0}A, fmxj
ð1=2; 1=2ÞgA, and fmyjð1=2; 1=2ÞgA. The point
group is again 2mm.

Space Group Elements

Each element of a space group is a product of an
orthogonal transformation (an element of the point
group K) and a translation t, the latter not always a
lattice translation. The translations ti form a vector
system for the space group. The translations satisfy

t i þ Rit j ¼ tk up to a lattice vector a

if RiRj ¼ Rk

½11�

The translations ti, however, depend on the choice of
the origin. According to eqn [8] they change to
tiþ (E�Ri)u, if the origin is shifted by a translation
u. This makes it necessary to review the concept of a
symmorphic space group. A space group is called
symmorphic if there is an origin such that all repre-
sentatives {Ri|ti} may be chosen with ti¼ 0. Then each
element of G is the product of a point group element
and a lattice translation. If the group is not symmor-
phic, then it is called nonsymmorphic.

A three-dimensional rotation has an axis and a
rotation angle. If one chooses an orthonormal coor-
dinate system and the rotation angle along the z-axis,
then the rotation is given by a matrix

cos f �sin f 0

sin f cos f 0

0 0 1

0
B@

1
CA

When an orthogonal transformation has a determi-
nant equal to � 1, it has the same form but with an
overall minus sign. Consider the case that the or-
thogonal transformation is combined with a transla-
tion t with coordinates a, b, and c in the same
reference system. By a shift of origin over the vector
u with components x, y, and z, the translation is
transformed into the translation tþ (1�R)u, with
components

aþ xð1� cos fÞ þ y sin f;

b� x sin fþ yð1� cos fÞ; c

By a proper choice of u, the first two components can
be eliminated, but not the third. It is the case of a
screw axis, a rotation combined with a translation
along the rotation axis. If the rotation is over an

(a) (b) (c)

Figure 2 Three unit cells for the space groups (a) pmm, (b) p2, and (c) pgg.
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angle f¼ 2pm/n, with n¼ 2,3,4, or 6, the translation
is always 1/n of a lattice vector. When the determi-
nant is � 1, the origin can always be shifted such that
the translation vanishes, except for the case n¼ 2.
Then the orthogonal transformation is

1 0 0

0 1 0

0 0 �1

0
B@

1
CA

and the first two components cannot be changed. It is
a mirror operation with a translation in the mirror
plane, and is called a glide operation. The plane of
the mirror is the glide plane (Figure 3).

In two dimensions, the only plane group elements
with intrinsic nonzero translation components are
glide operations. For a rotation with a translation, the
latter can always be eliminated by a shift of the origin.

Classification

Because the orientation and the lattice constants may
vary continuously, the number of space groups is in-
finite. However, there is good reason to identify space
groups under certain conditions, for example, if they
are just different orientations of the same group in
space. In principle, which groups may be identified
depends on the physics of the problem one wants to
study by symmetry. Space groups are subgroups of the
inhomogeneous affine group as well, the group of
pairs of nonsingular linear transformations and trans-
lations. If a group G1 may be transformed into group
G2 by a change of origin (translation) and a linear
transformation of the lattice (homogeneous affine
transformation), the two may be identified, or in oth-
er words considered as equivalent, because the choice
of origin and basis does not change the physics. This
is a definition inspired by physics. In mathematical
language, the two groups are conjugated subgroups
of the inhomogeneous affine group. This means that
the groups G1 and G2 are considered to be equivalent
if there is a nonsingular linear transformation S and a

translation {E|t} such that

G1 ¼ fSjtgG2fSjtg�1 ½12�

With this relation, there are 219 equivalence classes
of three-dimensional space groups. If the handedness
of the basis is relevant, for instance, in the case of
helical structures, there is a finer definition, which
calls the groups equivalent if the conjugation is by an
element {S|t} such that det(S)40. Then there are 230
equivalence classes of space groups in three dimen-
sions. With both definitions, there are 17 different
plane groups in two dimensions. A theorem by
Bieberbach states that conjugation in the affine group
is equivalent to isomorphism.

The space groups can also be grouped into larger
classes. A coarser classification uses arithmetic
equivalence. Choosing an origin and a lattice basis,
the point group K of a space group corresponds to a
group of integer matrices D1(K). After a basis trans-
formation, corresponding to an integer nonsingular
matrix S, the same group is represented by an integer
matrix group D2(K)¼ SD1(K)S

� 1. Two such groups
are called arithmetically equivalent. Then a space
group determines an arithmetic crystal class. If one
drops the condition that the conjugation matrix S has
integer entries and allows real matrices, two groups
conjugated by S are said to be geometrically
equivalent. Arithmetic equivalence implies geomet-
ric equivalence. Space groups may be grouped into
affine equivalence classes, and further into arithmetic
and geometric crystal classes. In three dimensions,
there are 219 affine classes, 73 arithmetic classes, and
32 geometric classes. The latter two classifications
can, of course, be used for point groups as well. For
each arithmetic class there is exactly one symmorphic
space group. Finally, there are seven systems (triclin-
ic, monoclinic, orthorhombic, tetragonal, rho-
mbohedral, hexagonal, and cubic) and six families
(each three-dimensional system is a family, except the
rhombohedral and hexagonal, which belong to the
same family). The reader is referred to more special-
ized works on crystallography for a definition.

Notation

Because the full explanation of the notation and no-
menclature for crystallographic groups requires much
more space, only a brief discussion is presented here.
There are two systems, the Hermann–Mauguin sym-
bols, recommended by the International Union for
Crystallography (IUCr), and the Schoenflies symbols.
The latter are based on the symbols for the 32 point
groups arranged in geometric classes. For each class
there is a numbering of the corresponding space

Figure 3 A two-dimensional pattern with pgm symmetry:

rectangular lattice, horizontal mirrors, and vertical glides.
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groups. An example is C2
2 with point group C2 con-

sisting of an identity and a two-fold rotation. It is the
second group with this point group. The Hermann–
Mauguin symbols tend to have more information.
They are based on the IUCr symbols for point groups.
A second ingredient are the lattices. Lattices are con-
sidered to be equivalent if the point groups that leave
them invariant (which on a lattice basis may be given
by groups of integer matrices) may be represented by
a change of lattice basis by the same groups of ma-
trices. These classes are the Bravais classes. In three
dimensions, there are 14 Bravais classes (Table 1). For
lattices with the same point group symmetry, there is
a common conventional basis on which the point
group elements are simple, but one needs additional
lattice vectors. For example, there are three Bravais
classes for which the symmetry is the symmetry group
of the cube, with 48 elements. The lattices of one
Bravais class have a basis with three mutually per-
pendicular basis vectors of the same lengths. For the

other two, the face-centered cubic (f.c.c.) and body-
centered cubic (b.c.c.), there is a sublattice of this
kind, but not all lattice vectors belong to that. One
needs additional vectors to obtain all the lattice trans-
lations: (0, 1/2, 1/2), (1/2, 0, 1/2), and (1/2, 1/2, 0) for
f.c.c. and (1/2, 1/2, 1/2) for b.c.c (Figure 4). These
additional vectors are given by capital letters in three
dimensions, and lower case letters in two dimensions.
The symbols of the symmetry groups of the three cu-
bic lattices are Pm %3m, Fm %3m, and Im %3m. These are
the Hermann–Mauguin symbols for the space groups
of the primitive cubic, f.c.c., and b.c.c. lattices, re-
spectively. For each of the 73 arithmetic crystal class-
es, and thus for all symmorphic space groups there is
such a symbol, consisting of the symbol for the point
group preceded by a letter indicating the additional
lattice vectors (the centering).

Finally, for nonsymmorphic space groups, the
nonlattice translations for the elements appearing
in the symbol for the symmorphic space group are

Table 1 The 14 Bravais classes in three dimensions and their maximal symmorphic space groups

System Centering translations Maximal symmorphic

space group

Basis

Triclinic None P %1 No relations

Monoclinic None P2/m a.c¼b.c¼0

ð1=2; 0; 1=2Þ B2/m

Orthorhombic None Pmmm Three axes perpendicular

ð1=2; 1=2; 1=2Þ Immm

ð0; 1=2; 1=2Þ; ð1=2; 0; 1=2Þ; ð1=2; 1=2; 0Þ Fmmm

ð1=2; 1=2; 0Þ Cmmm

Tetragonal None P4/mmm Three axes perpendicular

ð1=2; 1=2; 1=2Þ I4/mmm |a|¼ |b|

Rhombohedral None R %3m |a|¼ |b|¼ |c|

+(a,b)¼+(b, c)¼+(c, a)

Hexagonal None P6/mmm |a|¼ |b|, c>a, c>b

+(a,b)¼2p/3
Cubic None Pm %3m All basis vectors mutually perpendicular

and equal in length

ð0; 1=2; 1=2Þ; ð1=2; 0; 1=2Þ; ð1=2; 1=2; 0Þ Fm %3m

ð1=2; 1=2; 1=2Þ Im %3m

(c)(a) (b)

Figure 4 Unit cells for lattices from each of the three cubic Bravais classes. (a) Primitive, (b) b.c.c. with additional basis vector (1/2, 1/2,

1/2), and (c) f.c.c. with additional (0, 1/2, 1/2), (1/2, 0, 1/2), and (1/2, 1/2, 0).
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indicated by either a change of the letter or by a
subindex. The symbol for a symmorphic space group
with point group m may be Pm. If the mirror m
becomes a glide with nonlattice translation in the
third direction, the symbol is Pc. The symbol P2
gives a symmorphic space group with point group 2,
P21 indicates a nonsymmorphic group with a screw
axis. All space groups, their symbols and their ele-
ments can be found in the International Tables for
Crystallography, vol. A.

Reciprocal Lattice, Invariant Functions,
Extinction Rules

A function that is invariant under translations has
special properties for its Fourier transform. Suppose
r(r) is such a function (e.g., a density function of a
crystal). It has the property that r(r) and r(rþ a) are
equal for every translation a from the lattice. Writing
down the Fourier decomposition yields

rðrÞ ¼
Z

#rðkÞ expðik � rÞdk

rðr þ aÞ ¼
Z

#rðkÞ expðik � ðr þ aÞÞdk
½13�

from which it follows that k � a¼ 0 (mod 2p) for each
translation vector a. Therefore, for each wave vector
k occurring in the Fourier expansion, one has this
relation. All vectors k satisfying this relation form a
lattice, as is easily checked. This lattice is called the
reciprocal lattice for the so-called direct lattice of the
vectors a.

If a, b, and c span the direct lattice, a basis for the
reciprocal lattice is givenby a�; b�; c� defined by

a� ¼ 2pðb� cÞ=V; b� ¼ 2pðc� aÞ=V;

c� ¼ 2pða� bÞ=V ½14�

where V¼a � (b� c) is the volume of the unit cell.
Then the Fourier decomposition is

rðrÞ ¼
X

kAL�
#rðkÞ expðik � rÞ ½15�

where L� is the reciprocal lattice. Each vector of the
reciprocal lattice can be expressed in terms of the
basis of the lattice

k ¼ ha� þ kb� þ lc�AL� ½16�
The reciprocal lattice is left invariant by the point
group K as well.

Apart from translations, a lattice periodic function
is generally left invariant by other distance-pre-
serving transformations as well. Suppose g¼ {R|t} is
an element of the space group that leaves a function
r(r) invariant. This means that r(r) and r(g�1r) are

the same (the exponent � 1 is just for convenience).
Then one has the relation

rðrÞ ¼ rðfRjtg�1rÞ ½17�

For the Fourier components #rðkÞ, this implies

#rðkÞ ¼ #rðRkÞ expðiRk � tÞ ½18�

This is a very interesting formula. It is known that
the wave vectors occurring in the Fourier decompo-
sition belong to the reciprocal lattice. Now, consider
a reciprocal lattice vector k that is invariant under
orthogonal transformation R. Then the expression
becomes r(k)¼ r(k) exp(ik � t). This is only possible if
r(k)¼ 0 or if k � t¼ 0 (mod 2p). If t is a translation
from the lattice, this relation is trivially fulfilled. But
if there is a t such that the second relation is not
satisfied, this means that the corresponding Fourier
component #rðkÞ vanishes. This is an extinction rule.

An important example is the diffraction intensity.
A crystal diffracts and the diffraction pattern consists
of sharp Bragg peaks at the positions k. The intensity
of the peaks is given by the square of the absolute
value of the static structure factor:

IðkÞ ¼ jFðkÞj2 ¼ 1

N

XN

j¼1

expðik � r jÞ
�����

�����

2

½19�

Here j runs over the N particles in the unit cell. It is
the Fourier transform of the autocorrelation func-
tion, which is invariant under space group elements.
Hence, the positions of the Bragg peaks are on the
reciprocal lattice, and the extinction rules apply: the
intensity is zero at k if there is a space group element
{R|t} with Rk¼ k and k � ta 0 (mod 2p). Additionally,
one has for arbitrary k that I(Rk)¼ I(k). Conse-
quently, the diffraction has the point group in its
symmetry group.

Representations of Space Groups

Euclidean transformations act on positions in space. A
quantum mechanical system in such a space has states
on which the Euclidean transformations act as linear
operators. For example, if the state is given by a wave
function c(r), the effect of a Euclidean transformation
{R|t} gives a new wave function c0(r)¼c(R� 1(r� t)).
This is the action of a linear operator Tg, with
g¼ {R|t}. Choosing a basis c(r) in the space of states,
such a linear operator corresponds to a matrix D(g):

TgciðrÞ ¼
XN

j¼1

DðgÞjicjðrÞ ½20�
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(n is the dimension of the state space.) Now the ma-
trices satisfy D(g1)D(g2)¼D(g1g2). This is called a
(matrix) representation. If the dimension of the space
is n, then the representation is said to be n-dimen-
sional, and the matrices are n� n. These representa-
tions are important for characterizing energy levels
and other properties. Clearly, the space is mapped
onto itself and, therefore, it is invariant under the
group of transformations G. If there is no subspace
(different from the origin or the whole space) that is
invariant, the representation is said to be irreducible.
In general, an energy level space carries an irreducible
representation of the symmetry group, the dimension
of the space is the level degeneracy, and there are or-
thogonality relations between states from the state
space.

This gives a short argument why one should look
at the irreducible representations of the space groups.
The simplest space group is just a translation group,
with three basis translations. Because the order in
which translations are applied is not relevant, it is a
commutative group, and according to the results of
group theory the irreducible representations of co-
mmutative groups are one-dimensional, that is the
matrices are just numbers. They satisfy D({E|a})
D({E|b})¼D({E|aþ b}). The solution is D({E|a})¼
exp(ik � a) for some vector k. Two vectors k and k0

give the same representation if k� k0 belongs to the
reciprocal lattice, because then k � a¼ k0 � a (mod 2p)
for all lattice vectors a. Therefore, the irreducible
representations are characterized by a vector from
the unit cell of the reciprocal lattice. A special choice
of this unit cell is the Brillouin zone. It is the unit cell
of the reciprocal lattice consisting of all points in
reciprocal space which are closer to the origin than to
any other point of the reciprocal lattice. Of course,
the unit cell of a lattice is not uniquely defined.
However, the choice of the Brillouin zone is very
convenient when studying electrons or elementary
excitations in crystals.

A wave function c(r) in a lattice periodic crystal
which belongs to an irreducible representation of the
lattice subgroup has a special form, the Bloch form,
as follows from a group-theoretical argument. Under
a translation a, the function transforms to c(r� a)
which should be equal to exp(ik � a)c(r) for some k.
Then define U(r)¼ exp(ik � r)c(r). It follows that

Uðr þ aÞ ¼ expðik � ðr þ aÞÞcðr þ aÞ
¼ expðik � ðr þ aÞÞexpð�ik � aÞcðrÞ
¼UðrÞ

which proves that c(r) is the product of a plane wave,
exp(� ik � r) and a lattice periodic function U(r). This
constitutes the well-known Bloch’s theorem.

Consider a state space that is invariant under a
space group acting on the space by operators Tg for
each element g of the space group G. Suppose, fur-
thermore, that the representation is irreducible. The
translation subgroup A is a subgroup of G. So, there
is a basis formed by functions ci for the space con-
sisting of the eigenvectors of the commuting opera-
tors Ta. One has

Tacj ¼ expðikj � aÞcj ½21�

A subspace of the space is that belonging to one
particular wave vector k. For each state, c from this
space it holds that Tac¼ exp(ik � a)c. Applying Tg to
any state from this space, c transforms to Tgc. How
does this transform under the translations? Applying
a translation {E|a} to the transformed vector:

TaTgc ¼TgðTg�1TaTgÞc ¼ TgTbc

¼ expð�ik � bÞTgc

Here b¼R�1a if g¼ {R|t}. The state Tgc, therefore,
acquires a phase factor exp(iRk � a) and belongs to
the subspace of states transforming with a wave vec-
tor Rk. This means that, if there are states transfor-
ming under translations with a wave vector k, then
there are, in the irreducible space, states transfor-
ming with the wave vector Rk for every point group
element. One can write the whole space as a sum of
spaces each belonging to a specific Rk. One of these
spaces is that of states transforming with k.

Now define the subgroup of G consisting of all
elements {R|t} for which Rk¼ k (modulo the recip-
rocal lattice because k and kþK give the same rep-
resentation if K belongs to the reciprocal lattice).
This group is called the group of k: Gk. The subspace
of states transforming with k under translations is
invariant under the group of k. Then for an element g
from the group of k:

Tg ¼ expðik � tÞDR ðg ¼ fRjtgÞ

The operators form an irreducible representation of
the group of k. For a symmorphic group of k the
elements g can be written as a product {E|t}{R|0} of a
lattice translation and a point group element. In this
case, the operators DR form an irreducible represen-
tation of the point group of the group of k, denoted by
Kk. These are known, and can be labeled by a label v.
Then a basis of the space of Gk transforms under g as

Tgcj ¼ expðik � tÞDkjðRÞck ½22�

The basis carries an irreducible representation v of
the point group K (simply take t¼ 0 in the last for-
mula). Here the matrices D(R) are the irreducible
representation v of the point group Kk. For non-
symmorphic groups, the procedure is somewhat
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more complicated, because not only standard repre-
sentations but projective representations also occur.

Finally, a basis for the full state space can be con-
structed as follows. The group of k is a subgroup of
the space groupG.G can be decomposed according to

G ¼ Gk þ g2Gk þ?þ gsGk

where the space group elements gi have homogeneous
parts Ri for which Rik¼ ki. Then the basis is defined as

Cij ¼ Tgicj ½23�
The dimension of the representation is sd, where s is
the number of points ki, and d the dimension of the
point group representation D(Kk). The irreducible
representation carried by the state space then is char-
acterised by the so-called ‘‘star’’ of k (all vectors ki),
and an irreducible representation of the point group
Kk. This means that electronic states and phonons can
be characterized by k, v. Their transformation prop-
erties under space group transformations follows from
this characterization.

Aperiodic Crystals

Apart from crystals with three-dimensional lattice
periodicity, there are materials with a diffraction
pattern with sharp Bragg peaks on positions

k ¼
Xn

i¼1

hia
�
i ðinteger hiÞ ½24�

When n¼ 3, the structure is periodic. If n43, the
structure is aperiodic, but it is still considered as
crystal, because there is long-range order. Examples
are modulated phases and quasicrystals. They may
be described as intersections of physical space with a
higher-dimensional lattice periodic structure. The
symmetry of such structures is a space group in n
dimensions, and in this case the theory of space
groups in arbitrary dimensions can be used.

See also: Crystal Structure; Electron–Phonon Interactions
and the Response of Polarons; Group Theory; Insulators,

Electronic States of; Lattice Dynamics: Vibrational Modes;
Periodicity and Lattices; Point Groups; Quantum Mechan-
ics: Foundations; Quasicrystals; Scattering, Elastic
(General).

PACS: 61.50.Ah; 02.30.� a
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Nomenclature

a, b, c lattice basis vectors
a�, b�, c� reciprocal lattice basis vectors
A translation subgroup of a space group
D(R) matrix representation
exp(� ik � r)U(r) Bloch form of a wave function
E(3) Euclidean group
F(k) structure factor
G space group
K point group
n lattice translation vector
O(3) orthogonal group in three dimensions
rj position of an atom in the unit cell
R orthogonal transformation
{R|t} space group element
Tg linear operator for group element g:
#rðkÞ Fourier component of r(r)
r(r) density function
ci basis of a state space
c(r) wave function
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Introduction

The specific heat of a substance is the amount of heat
required to raise the temperature by one degree.

When heat is introduced under certain specified con-

ditions, it is a well-defined thermodynamic property

that gives a measure of the increases in the entropy,

the energy, and the enthalpy with increasing temper-

ature. It is related to other thermodynamic proper-

ties, for example, the thermal expansion, which is a

measure of the pressure dependence of the entropy.
Specific-heat data make an important contribution to
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