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An Introduction to Density Functional
Theory

N. M. Harrison
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For the past 30 years density functional theory has been the dominant method
for the quantum mechanical simulation of periodic systems. In recent years it has also
been adopted by quantum chemists and is now very widely used for the simulation of
energy surfaces in molecules. In this lecture we introduce the basic concepts underlying
density functional theory and outline the features that have lead to its wide spread
adoption. Recent developments in exchange correlation functionals are introduced and
the performance of families of functionals reviewed.

The lecture is intended for a researcher with little or no experience of quantum
mechanical simulations but with a basic (undergraduate) knowledge of quantum
mechanics. We hope to provide sufficient background to enable informed judgements on
the applicability of a particular implementation of density functional theory to a specific
problem in materials simulation.

For those who wish to go more deeply into the formalism of density functional
theory there are a number of reviews and books aimed at intermediate and advanced
levels available in the literature [1,2,3]. Where appropriate source articles are referred to
in the text.

1. The Solution of the Schrödinger Equation

During the course of this lecture we will be primarily concerned with the calculation
of the ground state energy of a collection of atoms. The energy may be computed by
solution of the Schrödinger equation – which, in the time independent, non-
relativistic, Born-Oppenheimer approximation is1;
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Equation 1

                                                                
1 Atomic units are used throughout.

Introduction à la Théorie de la Fonctionnelle de la Densité



2

The Hamiltonian operator, H, consists of a sum of three terms; the kinetic
energy, the interaction with the external potential (Vext) and the electron-electron
interaction (Vee). That is;
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Equation 2

In materials simulation the external potential of interest is simply the

interaction of the electrons with the atomic nuclei;
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Equation 3

Here, ri is the coordinate of electron i and the charge on the nucleus at Ra is
Za. Note that in order to simplify the notation and to focus the discussion on the main
features of DFT the spin coordinate is omitted here and throughout this article.
Equation 1 is solved for a set of Y subject to the constraint that that the Y are anti-
symmetric – they change sign if the coordinates of any two electrons are
interchanged. The lowest energy eigenvalue, E0, is the ground state energy and the
probability density of finding an electron with any particular set of coordinates {ri} is
|Y0|2.

The average total energy for a state specified by a particular Y, not necessarily
one of the eigenfunctions of  Equation 1, is the expectation value of H, that is;
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Equation 4

The notation [Y] emphasises the fact that the energy is a functional of the
wavefunction. The energy is higher than that of the ground state unless Y corresponds
to Y0 – which is the variational theorem;

0][ EE ³Y

Equation 5
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The ground state wavefunction and energy may be found by searching all
possible wavefunctions for the one that minimises the total energy. Hartree-Fock
theory consists of an ansatz for the structure of Y - it is assumed to be an
antisymmetric product of functions (fi) each of which depends in the coordinates of a
single electron, that is;
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Equation 6

where, det indicates a matrix determinant [4]. Substitution of this ansatz for Y
into the Schrödinger equation results in an expression for the Hartree Fock energy;
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Equation 7

The second term is simply the classical Coulomb energy written in terms of
the orbitals and the third term is the exchange energy. The ground state orbitals are
determined by applying the variation theorem to this energy expression under the
constraint that the orbitals are orthonormal. This leads to the Hartree-Fock (or SCF)
equations;
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Equation 8

Where the non-local exchange potential, vX, is such that:
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Equation 9

The Hartree-Fock equations describe non-interacting electrons under the
influence of a mean field potential consisting of the classical Coulomb potential and a
non-local exchange potential.

From this starting point better approximations (correlated methods) for Y and
E0 are readily obtained but the computational cost of such improvements is very high
and scales prohibitively quickly with the number of electrons treated (for an excellent
introduction see ref. [4]). In addition, accurate solutions require a very flexible
description of the wavefunction’s spatial variation, i.e. a large and basis set is required
which also adds to the expense for practical calculations. Many correlated methods
have been developed for molecular calculations  [4]. The cost of the most commonly
used methods, MP2, MP3, MP4, CISD, CCSD, CCSD(T) formally scales with the
number of electrons raised to the power of 5,6,7,6,6,7 respectively. In most cases
CCSD(T) calculations are of sufficient accuracy to determine the chemical properties
of systems to sufficient accuracy to predict chemical properties (stability, reaction
rates …) however, due to the computational expense the routine application of such
methods to realistic models of systems of interest is not practical and not likely to
become so despite rapid advances in computer technology. In this context we mention
recent advances in the solution of the Schrödinger equation using variational quantum
Monte Carlo approach [5].

The discussion above has established that direct solution of the Schrödinger
equation is not currently feasible for systems of interest in condensed matter science –
this is a major motivation for the development and use of density functional theory.

The question that arises is – Is it necessary to solve the Schrödinger equation
and determine the 3N dimensional wavefunction in order to compute the ground state
energy ?

2. Avoiding the Solution of the Schrödinger Equation

The Hamiltonian operator (Equation 2) consists of single electron and bi-
electronic interactions – i.e. operators that involve on the coordinates of one or two
electrons only. In order to compute the total energy we do not need to know the 3N
dimensional wavefunction. Knowledge of the two-particle probability density – that
is, the probability of finding an electron at r1 and an electron at r2 is sufficient.

A quantity of great use in analysing the energy expression is the second order
density matrix, which is defined as:
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Equation 10

The diagonal elements of P2, often referred to as the two-particle density
matrix or pair density, are;
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This is the required two electron probability function and completely
determines all two particle operators. The first order density matrix is defined in a
similar manner and may be written in terms of P2 as;
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Given P1 and P2 the total energy is determined exactly;
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Equation 12

We conclude that the diagonal elements of the first and second order density
matrices completely determine the total energy. This appears to vastly simplify the
task in hand. The solution of the full Schrödinger equation for Y is not required – it is
sufficient to determine P1 and P2 -  and  the problem in a space of 3N coordinates has
been reduced to a problem in a 6 dimensional space.

Approaches based on the direct minimisation of E(P1,P2) suffer from the
specific problem of ensuring that the density matrices are legal – that is, they must be
constructible from an antisymmetric Y. Imposing this constraint is non trivial and is
currently an unsolved problem [6,7]. In view of this we conclude that Equation 12
does not lead immediately to a reliable method for computing the total energy without
calculating the many body wavefunction.

The observation which underpins density functional theory is that we do not
even require P2 to find E – the ground state energy is completely determined by the
diagonal elements of the first order density matrix – the charge density.
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3. The Hohenburg-Kohn Theorems

In 1964 Hohenburg and Kohn proved the two theorems [8]. The first theorem may be
stated as follows;

The electron density determines the external potential (to within an additive constant).

If this statement is true then it immediately follows that the electron density
uniquely determines the Hamiltonian operator (Equation 2). This follows as the
Hamiltonian is specified by the external potential and the total number of electrons,
N, which can be computed from the density simply by integration over all space.
Thus, in principle, given the charge density, the Hamiltonian operator could be
uniquely determined and this the wave functions Y (of all states) and all material
properties computed.

Hohenburg and Kohn [8] gave a straightforward proof of this theorem, which
was generalised to include systems with degenerate states in proof given by Levy in
1979 [9]. It is said that the theoretical spectroscopist E. B. Wilson put forward a very
straightforward proof of this theorem during a meeting in 1965 at which it was being
introduced. Wilson’s observation is that the electron density uniquely determines the
positions and charges of the nuclei and thus trivially determines the Hamiltonian. This
proof is both transparent and elegant – it is based on the fact that the electron density
has a cusp at the nucleus, such that;
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where )(rr  is the spherical average of r and so a sufficiently careful

examination of the charge density uniquely determines the external potential and thus
the Hamiltonian.

Although less general than the Levy proof this observation establishes the
theorem for the case of interest – electrons interacting with nuclei. The first theorem
may be summarised by saying that the energy is a functional of the density – E[r].

The second theorem establishes a variational principle;

For any positive definite trial density, rt, such that Ndt =ò rr)(r  then [ ] 0EE t ³r

The proof of this theorem is straightforward. From the first theorem we know
that the trial density determines a unique trial Hamiltonian (Ht) and thus wavefunction

(Yt); 0||][ EHE ttt ³YY=r  follows immediately from the variational theorem of

the Schrödinger equation (Equation 5). This theorem restricts density functional
theory to studies of the ground state. A slight extension allows variation to excited
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states that can be guaranteed orthogonal to the ground state but in order to achieve
this knowledge of the exact ground state wavefunction is required.

The two theorems lead to the fundamental statement of density functional
theory;

[ ] 0))((][ =-- ò NdE rrrmrd

Equation 13

The ground state energy and density correspond to the minimum of some
functional E[r] subject to the constraint that the density contains the correct number
of electrons. The Lagrange multiplier of this constraint is the electronic chemical
potential m.

The above discussion establishes the remarkable fact that there is a universal
functional E[r] (i.e. it does not depend on the external potential which represents the
particular system of interest) which, if we knew its form, could be inserted into the
above equation and minimised to obtain the exact ground state density and energy.

4. The Energy Functional

From the form of the Schrödinger equation (Equation 1) we can see that the
energy functional contains three terms – the kinetic energy, the interaction with the
external potential and the electron-electron interaction and so we may write the
functional as;

][][][][ rrrr eeext VVTE ++=

The interaction with the external potential is trivial;
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The kinetic and electron-electron functionals are unknown. If good
approximations to these functionals could be found direct minimisation of the energy
would be possible; this possibility is the subject of much current research - see for
instance Ref. [10].

Kohn and Sham proposed the following approach to approximating the kinetic
and electron-electron functionals [11]. They introduced a fictitious system of N non-
interacting electrons to be described by a single determinant wavefunction in N
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“orbitals” fi. In this system the kinetic energy and electron density are known exactly
from the orbitals;

å Ñ-=
N

i

iisT ffr
2

2

1
][

Here the suffix emphasises that this is not the true kinetic energy but is that of
a system of non-interacting electrons, which reproduce the true ground state density;
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Equation 14

The construction of the density explicitly from a set of orbitals ensures that it
is legal – it can be constructed from an asymmetric wavefunction.

If we also note that a significant component of the electron-electron
interaction will be the classical Coulomb interaction – or Hartree energy (this is
simply the second term of Equation 7 written in terms of the density);
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the energy functional can be rearranged as;
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Equation 15

Where we have introduced the exchange-correlation functional;
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Exc is simply the sum of the error made in using a non-interacting kinetic
energy and the error made in treating the electron-electron interaction classically.
Writing the functional (Equation 15) explicitly in terms of the density built from non-
interacting orbitals (Equation 14) and applying the variational theorem (Equation 13)
we find that the orbitals, which minimise the energy, satisfy the following set of
equations;
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In which we have introduced a local multiplicative potential which is the
functional derivative of the exchange correlation energy with respect to the density,
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Equation 17

This set of non-linear equations (the Kohn-Sham equations) describes the
behaviour of non-interacting “electrons” in an effective local potential. For the exact
functional, and thus exact local potential, the “orbitals” yield the exact ground state
density via Equation 14 and exact ground state energy via Equation 15.

These Kohn-Sham equations have the same structure as the Hartree-Fock
equations (Equation 8) with the non-local exchange potential replaced by the local
exchange-correlation potential vxc. We note at this point that the nomenclature in
general use and reproduced here is very misleading. As stated above Exc contains an
element of the kinetic energy and is not the sum of the exchange and correlation
energies as they are understood in Hartree-Fock and correlated wavefunction theories.
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The Kohn-Sham approach achieves an exact correspondence of the density
and ground state energy of a system consisting of non-interacting Fermions and the
“real” many body system described by the Schrödinger equation. A cartoon
representing this relationship is displayed in Figure 1.

Figure 1 A cartoon representing the relationship between the "real" many body system (left
hand side) and the non-interacting  system of Kohn Sham density functional theory (right hand
side).

The correspondence of the charge density and energy of the many-body and
the non-interacting system is only exact if the exact functional is known. In this sense
Kohn-Sham density functional theory is an empirical methodology – we do not know
(and have no way of systematically approaching) the exact functional. However, the
functional is universal – it does not depend on the materials being studied. For any
particular system we could, in principle, solve the Schrödinger equation exactly and
determine the energy functional and its associated potential. This, of course, involves
a greater effort than a direct solution for the energy. Nevertheless, the ability to
determine exact properties of the universal functional in a number of systems allows
excellent approximations to the functional to be developed and used in unbiased and
thus predictive studies of a wide range of materials – a property usually associated
with an ab initio theory. For this reason the approximations to density functional
theory discussed below are often referred to as ab initio or first principles methods.

The computational cost of solving the Kohn Sham equations (Equation 16)
scales formally as N3 (due to the need to maintain the orthogonality of N orbitals) but
in current practice is dropping towards N1

 through the exploitation of the locality of
the orbitals.
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For calculations in which the energy surface is the quantity of primary interest
DFT offers a practical and potential highly accurate alternative to the wavefunction
methods discussed above. In practice, the utility of the theory rests on the
approximation used for Exc[r].

5. The Local Density Approximation for Exc[r]

The generation of approximations for Exc has lead to a large and still rapidly
expanding field of research. There are now many different flavours of functional
available which are more or less appropriate for any particular study. Ultimately such
judgments must be made in terms of results (i.e.: the direct comparison with more
accurate theory or experimental data, which will be discussed below) but knowledge
of the derivation and structure of functionals is very valuable when selecting which to
use in any particular study.

The early thinking that lead to practical implementations of density functional
theory was dominated by one particular system for which near exact results could be
obtained – the homogeneous electron gas. In this system the electrons are subject to a
constant external potential and thus the charge density is constant. The system is thus
specified by a single number - the value of the constant electron density r=N/V.

Thomas and Fermi studied the homogeneous electron gas in the early 1920’s
[12]. The orbitals of the system are, by symmetry, plane waves. If the electron-
electron interaction is approximated by the classical Hartree potential (that is
exchange and correlation effects are neglected) then the total energy functional can be
readily computed [12]. Under these conditions the dependence of the kinetic and
exchange energy (Equation 7) on the density of the electron gas can be extracted
(Dirac [13,1,14]) and expressed in terms of a local functions of the density. This
suggests that in the inhomogeneous system we might approximate the functional as an
integral over a local function of the charge density. Using the kinetic and exchange
energy densities of the non-interacting homogeneous electron gas this leads to;
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Equation 18

These results are highly suggestive of a representation for Exc in an
inhomogeneous system. The local exchange correlation energy per electron might be
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approximated as a simple function of the local charge density (say, exc(r)). That is, an
approximation of the form;

[ ] ò» rrr dE xcxc ))(()( rerr

Equation 19

An obvious choice is then to take exc(r) to be the exchange and correlation
energy density of the uniform electron gas of density r - this is the local density
approximation (LDA). Within the LDA exc(r) is a function of only the local value of
the density. It can be separated into exchange and correlation contributions;

)()()( rerere cxxc +=

Equation 20

The Dirac form can be used for ex (Equation 18);
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Equation 21

Where for generality a free constant, C, has been introduced rather than that
determined for the homogeneous electron gas. This functional form is much more
widely applicable than is implied from its derivation and can be established from
scaling arguments [1]. The functional form for the correlation energy density, ec, is
unknown and has been simulated for the homogeneous electron gas in numerical
quantum Monte Carlo calculations which yield essentially exact results [15].  The
resultant exchange correlation energy has been fitted by a number of analytic forms
[16,17,18] all of which yield similar results in practice and are collectively referred to
as LDA functionals.

A cartoon of the principles underlying the LDA is displayed in Figure 2. The
energy density for the material represented by the inhomogeneous density of the left
hand panel, is assigned a value from the known density variation of the exchange-
correlation energy density of the homogeneous electron gas (right hand panel). This
value is assigned with no regard to location or variations of the inhomogeneous
density.
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Figure 2 A cartoon depicting the use of the local density approximation to determine the
exchange correlation energy of an inhomogeneous system. The exchange energy density of the
homogeneous electron gas is depicted on the right and the density of the inhomogeneous system
on the left [19].

The LDA has proven to be a remarkably fruitful approximation. Properties
such as structure, vibrational frequencies, elastic moduli and phase stability (of
similar structures) are described reliably for many systems (explicit cases will be
discussed below). However, in computing energy differences between rather different
structures the LDA can have significant errors. For instance, the binding energy of
many systems is overestimated (typically by 20-30 %) and energy barriers in diffusion
or chemical reactions may be too small or absent.  Nevertheless, the remarkable fact is
that the LDA works as well as it does given the reduction of the energy functional to a
simple local function of the density.

Figure 3 The difference between the exchange (left) and correlation (right) energy densities
computed using variation quantum Monte Carlo and the local density approximation in bulk
Silicon[20].

The magnitude of the errors in the LDA energy densities has recently been
estimated by computing the energy density of bulk silicon with variational quantum
Monte Carlo (V-QMC) calculations. In Figure 3 the difference between LDA
densities and the, V-QMC result is plotted. There are very significant errors in the
exchange and correlation energies but, as the exchange energy is generally
underestimated and the correlation energy overestimated, these errors tend to cancel.
The success of the LDA appears to be in part due to this cancellation of errors.

For further insight into the reasons for the success of the LDA we return to our
discussion of the density matrices. As demonstrated above (Equation 12) the first and

r r

r exc(r)
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second order density matrices are sufficient to determine the exact total energy.
Insight into the behaviour of functionals can be obtained by examining how well they
approximate P2. A commonly used device is to convert P2 - the probability of finding
an electron at r1 and an electron at r2 – into the conditional probability of finding an
electron at r2 given that there is an electron at r1; this quantity is the exchange
correlation hole;
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Equation 22

We may think of Pxc as the hole an electron placed at r1 digs for itself in the
surrounding density. There are a number of exact properties of the hole which one
would hope to reproduce in approximations. For instance, for any point r1 the
reduction in the surrounding density should be one-electron, that is;

1),( 221 -=ò rrr dPxc

Equation 23

This result follows immediately if P2 of Equation 22 is inserted in Equation
11.

The exact variation of the exchange hole for a neon atom is plotted as a
function of r2 for r1=0.09a0 and 0.4 a0 Figure 4 and compared to that computed
within the LDA (from ref. [21]). It is clear that the LDA is a very poor approximation
to P2.
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Figure 4 The exchange hole, Px(r,r’), for a neon atom comparing the exact result (continuous
line) to that of the LDA (dashed line) [21]. The top panel is for r=0.09a0 and the lower for r=0.4a0

We are faced with the question – how can the LDA produce such reasonable
energetics if the pair correlation function is so poorly described? The answer is based
on the structure of the Coulomb operator. We remember from Equation 12 that the
electron-electron interaction can be written in terms of P2 as;
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Equation 24

From this it seems readily apparent that a poor approximation to P2 leads
directly to a poor estimate of the electron-electron interaction. However, the Coulomb
operator depends only on the magnitude of the separation of r1 and r2 Substitution of
u= r1- r2 yields;
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Thus the electron-electron interaction depends only on the spherical average
of the pair density - P(u);
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Equation 26

The exact P(u) for the neon atom is compared to that resulting from the  LDA
in Figure 5 for the same positions of r used in Figure 4. The LDA makes a reasonable
approximation to the spherically averaged hole and preserves the normalisation of the
hole to –1 (Equation 23). This observation explains in part the success of the LDA.

Figure 5 The spherical average of the exchange hole in a neon atom. comparing the exact result
(continuous line) with that computed in the LDA (dashed line) [21].
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We can conclude that the remarkable performance of the LDA is a
consequence of its reasonable description of the spherically averaged exchange
correlation hole coupled with the tendency for errors in the exchange energy density
to be cancelled by errors in the correlation energy density. An understanding of these
features is an important pre-requisite to developing functionals that seek to improve
on the LDA

6. Beyond the Local Density Approximation

At first sight a very natural extension of the LDA would be to recognise that in
many systems the exchange contribution to the energy is dominant over the
correlation energy and to compute the non-local exchange potential exactly as in
Hartree Fock theory (Equation 7) whilst approximating the correlation potential
within the LDA. This would yield a functional of the form:

LDA
cFockxc EEE +»

The greater complexity [22] associated with the calculation of the non-local
exchange potential would be offset by potentially significantly greater accuracy.
However, the performance of the LDA is, in part, based on rather delicate
cancellations between the exchange and correlation interactions and, in general, the
use of the exact exchange interaction produces rather poor results.

In the homogeneous electron gas the non-local exchange potential has
effectively infinite range and its contribution to the electron-electron interaction
diverges at the Fermi surface [23]. In metals we conclude that the non-local exchange
potential does not yield the correct physics – indeed this behaviour was one of the
main motivating factors in the early work of Thomas and Fermi [12], which formed
the basis of density functional theory.
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Further evidence for the poor behaviour of the non-local exchange interaction
in systems where the band gap (HOMO-LUMO gap) is small is obtained from studies
of the H2 molecule at extended bond lengths. The exchange correlation hole for this
system is displayed in Figure 6.

Figure 6 The exchange correlation hole in H2  at an extended bond lengths computed exactly, with
the non-local exchange potential of Hartree-Fock theory and in the LDA. The hole density is
plotted as a function of r’ with r centred on the H2 bond [19].

The Hartree-Fock potential produces a very reasonable local and semi-local
description – which is superior to that of the LDA – but introduces a pathological
non-local feature.

We can conclude that in order to improve on the LDA approximation semi-
local theories which incorporate some of the features of the exact exchange
interaction are required and that theories which preserve the analytic properties of the
exchange correlation hole are likely to be successful.

7. The Generalised Gradient Approximation

The local density approximation can be considered to be the zeroth order
approximation to the semi-classical expansion of the density matrix in terms of the

Exact Hartree-Fock LDA
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density and its derivatives [24]. A natural progression beyond the LDA is thus to the
gradient expansion approximation (GEA) in which first order gradient terms in the
expansion are included. This results in an approximation for the exchange hole [24]
which has a number of unphysical properties; it does not normalise to –1, it is not
negative definite and it contains oscillations at large u [25].

In the generalised gradient approximation (GGA) a functional form is adopted
which ensures the normalisation condition and that the exchange hole is negative
definite [26,27]. This leads to an energy functional that depends on both the density
and its gradient but retains the analytic properties of the exchange correlation hole
inherent in the LDA.

The typical form for a GGA functional is;

rdrE xcxc ò Ñ» ),()( rrer

Equation 27

As we will see below the GGA improves significantly on the LDA’s
description of the binding energy of molecules – it was this feature which lead to the
very wide spread acceptance of DFT in the chemistry community during the early
1990’s. A number of functionals within the GGA family [28,26,27,29,30,31] have
been developed. The performance of these functionals will be discussed below.

8. Meta-GGA functionals

Recently functionals that depend explicitly on the semi-local information in
the Laplacian of the spin density or of the local kinetic energy density have been
developed [32,33,34]. Such functionals are generally referred to as meta-GGA
functionals.

The form of the functional is typically;

rdrE xcxc ò ÑÑ» ),|,|,()( 2 trrrer

Equation 28

Where the kinetic energy density t is;
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9. Hybrid Exchange Functionals

There is an exact connection between the non-interacting density functional
system and the fully interacting many body system via the integration of the work
done in gradually turning on the electron-electron interactions. This adiabatic
connection approach [35] allows the exact functional to be formally written as:
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Equation 30

where the expectation value lr ,... >< is the density-density correlation

function and is computed at density )(rr  for a system described by the effective

potential;
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Equation 31

Thus the exact energy could be computed if one knew the variation of the
density-density correlation function with the coupling constant, l. The LDA is
recovered by replacing the pair correlation function with that for the homogeneous
electron gas.

The adiabatic integration approach suggests a different approximation for the
exchange-correlation functional. At l=0 the non-interacting system corresponds
identically to the Hartree-Fock ansatz, while the LDA and GGA functionals are
constructed to be excellent approximations for the fully interacting homogeneous
electron gas – that is, a system with l=1. It is therefore not unreasonable to
approximate the integral over the coupling constant as a weighted sum of the end
points – that is, we might set:

GGA
xcFockxc bEaEE +»

with the coefficients are to be determined by reference to a system for which
the exact result is known. Becke adopted this approach [36] in the definition of a new
functional with coefficients determined by a fit to the observed atomisation energies,
ionisation potentials, proton affinities and total atomic energies for a number of small
molecules [36]. The resultant (three parameter) energy functional is,



21

9188 81.072.0)(2.0 PW
c

B
X

LDA
X

Fock
X

LDA
xcxc EEEEEE D+D+-+=

Here 88B
XED and 91PW

cED are widely used GGA corrections [37,38] to the LDA

exchange and correlation energies respectively.

Hybrid functionals of this type are now very widely used in chemical
applications with the B3LYP functional (in which the parameterisation is as given
above but with a different GGA treatment of correlation [39]) being the most notable.
Computed binding energies, geometries and frequencies are systematically more
reliable than the best GGA functionals.

10. The Performance of Various Functionals

The functionals currently used in density functional simulations form a natural
hierarchy. Although it cannot be claimed that there is a systematic approach to the
exact functional it is clear that improvements are being made in the underlying
functional form and that the description of ground state properties is improving. The
most notable recent advances being those in which the non-local nature of the
exchange potential is introduced in one form or another. The current hierarchy is
summarized in Table 1.

Dependencies Family

Exact exchange, |Ñr|, r Hybrid

Ñ2r, t Meta-GGA

|Ñr| GGA

r LDA

Table 1 The current hierarchy of exchange correlation functionals.

In producing functionals there are two broad schools of thought, which may be
summarized as follows;

· Adopt an appropriate functional form and introduce parameters to be
determined by reference to experimental data or data from explicitly
correlated calculations. This is largely an empirical approach.

· Use the exact properties of the functional to determine both its
structure and the parameters in its functional form.
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There are, of course, a number of functionals that rather cross the boundary
between the two schools but, as we will see below, the distinction is often valuable in
assessing the likely accuracy of a particular functional in a new application.
Unfortunately in order to discuss a variety of functionals they must be labeled with a
mnemonic – a selection of which are listed in Table 2 along with an indication of the
family they come from and the number of empirically determined parameters which
enter the functional. The parameters are determined in practice from fitting to the
properties of large training sets of molecular properties.

Mnemonic Family Parameters

LDA Local -

BLYP GGA Light

PBE GGA -

HCTH GGA 18

VS98 Meta-GGA 21

PKZB Meta-GGA 1

Hybrid Hybrid-exchange 3

Table 2 Mnemonics used to define density functionals of various families and the number of
external parameters fitted when defining the functional.

Apart from the LDA the functionals listed are the GGA functionals BLYP [29,
39], PBE [31], HCTH [40] the meta-GGA functionals VS98 [41], PKZB [34] and the
Hybrid functional of Becke [36]. The degree of empirical parameterisation of these
functionals varies considerably with the BLYP, PBE and PKZB functionals aiming to
be virtually ab-initio and parameter free while the HCTH and VS98 functionals are
very heavily parameterised with reference to large molecular training sets.

The performance on these functionals in calculations of a number of molecular
and material properties have recently been tabulated by Kurth et. al. [42] and Adamo
et. al. [43]. Here we summarise some of the key data from these studies.

Atomisation Energies

M.R.E % M.A.E. (max) kcal/mol

LDA 22 % -

BLYP 5 % -

PBE 7 % 17 (51)

HCTH 3 % -

VS98 2 % 3 (12)
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PKZB 3 % 5 (38)

Hybrid - 3 (20)

Table 3 Atomisation Energies - the mean relative error (M.R.E) for a collection of 20 molecules
[42]  and the mean absolute error (M.A.E.) in kcal/mol for a collection of 148 molecules  [43] with
the maximum absolute error given in brackets.

In Table 3 errors in computed molecular atomisation energies are tabulated.
The tendency of the LDA to over bind by 20-30% discussed above is seen clearly in
this data. The GGA functionals yield very significant improvements with relative
errors in the range 3-7% and an average absolute error of 17 kcal/mol. The highly
parameterised HCTH functional performs somewhat better than the BLYP and PBE
functionals. The meta-GGA functionals yield relative errors of 2-3% and average
absolute errors of 3-5 kcal/mol. Again the highly parameterised functional – VS98 -
performs slightly better than PKZB. The meta-GGA functionals achieve a distinct
improvement over the GGA functionals. The relatively lightly parameterised hybrid
functional performs as well as the best meta-GGA. For many chemical reactions an
accuracy of 1-2 kcal/mol is sufficient for predictive modelling of the
thermochemistry. It is clear that average errors yielded by the meta-GGA and hybrid
functionals are approaching this limit. Performance is not systematically at this level;
maximum errors for ‘difficult’ systems are still in the range 12-38 kcal/mol.

Structures

M.R.E. % [42] M.A.E. (max) Angstrom   [43]

LDA 5% -

BLYP 8% -

PBE 4% 0.011 (0.064)

HCTH 6% -

VS98 8% 0.008 (0.08)

PKZB 3% 0.019 (0.111)

Hybrid - 0.007 (0.062)

Table 4 Mean relative error (M.R.E.)  in the unit cell volumes of 12 crystals [42] and mean
absolute errors (M.A.E.) in the bond lengths of 23 molecules  [43] with the maximum absolute
error given in brackets.

Results for unit cell volumes of 12 different crystal structures and for the bond lengths
in 23 molecules are summarised in Table 4. The LDA is a remarkably good
approximation in bulk crystals and its error for volumes (5%) compares favourably to
that produced by GGA functionals (4-8%) and meta-GGA functionals (3-8%). In
molecular systems the highly parameterised meta-GGA and the hybrid functional are
somewhat more accurate than the PBE GGA functional. It is interesting to note that
although the VS98 functional is somewhat more accurate than the PKZB in molecules
this situation is reversed for calculations on crystals. This is part of a general trend in
that lightly parameterised functionals do not contain a bias towards molecular systems
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and tend to be transferable to materials applications while highly parameterised
functionals are not.

Bulk Modulus and Vibrational Frequencies

Bulk Modulus

M.R.E. %

Vibrational Frequencies

M.A.E. (max) (cm-1)

LDA 19% -

BLYP 22% -

PBE 10% 65 (-194)

HCTH 20% -

VS98 29% 33 (-109)

PKZB 9% 72 (+144)

Hybrid - 40 (-209)

Table 5 Mean relative error (M.R.E) in the bulk moduli of 12 crystals [42] and mean absolute
error (M.A.E.) in the vibrational frequencies of 55 molecules [43] with the maximum absolute
error given in brackets.

Results for the bulk moduli of 12 different crystal structures and for the vibrational
frequencies in a set of 55 molecules are summarised in Table 5. For the calculation of
bulk moduli the GGA functionals offer a small but non-systematic improvement over
the 19% error of the LDA. The PKZB meta-GGA functional produces a significantly
smaller error of 9%. For vibrational frequencies in molecules the VS98 and hybrid
exchange functionals perform somewhat better than the PBE GGA functional or the
PKZB meta-GGA functional. As for computed structures there is a tendency for the
highly parameterised VS98 meta-GGA functional to perform well in molecules but
rather poorly in crystalline solids.

11. Conclusions

Density functional theory provides us with a relatively efficient and unbiased tool
with which to compute the ground state energy in realistic models of bulk materials
and their surfaces. The reliability of such calculations depends on the development of
approximations for the exchange-correlation energy functional. Significant advances
have been made in recent years in the quality of exchange correlation functionals as
dependence on local density gradients, semi-local measures of the density and non-
local exchange functionals have been introduced.

The local density approximation is a very simple and remarkably reliable for the
structure, elastic moduli, relative phase stability of many materials but is less accurate
for binding energies and details of the energy surface away from equilibrium
geometries – eg: transition states. The GGA family of functionals improves binding
energies to average errors of 20 kcal/mol and relative errors of 3-7% while meta-GGA
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and hybrid-exchange functionals reduce these errors to 3-5 kcal/mol and 2-3%. This is
close to the accuracy required for predictive simulations of thermochemical
properties. The GGA, meta-GGA and hybrid functionals retain, and somewhat
improve on, the LDA’s excellent description of bonds lengths with typical errors in
the region of 1-2 milli-Angstrom. Using these functionals elastic moduli are
reproduced to within 10% and vibrational frequencies to ~40cm-1.

There is a distinct tendency for functionals that are highly parameterised and fitted to
the properties of molecular systems to perform somewhat better than lightly
parameterised functions for molecules but to perform relatively poorly in simulations
on periodic materials.
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