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in §1.4.4 for the specific heat of a paramagnetic substance placed in a fixed
magnetic field.

8.4 Diatomic and Polyatomic Gases

8.4.1 The Born-Oppenheimer Approximation

In order to determine the internal partition function (8.4) and to find from
it the thermal properties of the gas, we need to evaluate the eigenenergies ¢,
of one molecule, for the ground state £y and for those excited state which lie
sufficiently close to the ground state that e, — £¢ is at most of the order of
magnitude of kT. To do this we shall use the so-called Born-Oppenheimer
approximation (1927) which is of major interest not only in the theory of
molecules, but also in the theory of solids (§11.1.1).

In the case of a molecule consisting of several atoms an analysis of the
spectrum implies not only a study of the motion of the electrons, as in the
case of a monatomic molecule, but above all a study of the relative motion
of the nuclei. To carry that out we note that the atomic nuclei are several
thousand times heavier than the electrons and therefore move much more
slowly than the latter, if the kinetic and potential energies are of the same
order of magnitude. The Born-Oppenheimer approximation now consists in
solving the problem in two stages.

We start by studying the motion of the electrons, neglecting that of the
nucleir which we assume to be fixed in some, arbitrary, positions. We must
thus solve a Schrédinger equation describing the electrons, which interact
through Coulomb forces, and are subject to a fixed external potential due
to the nuclei and depending on the relative positions of the latter. For most
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molecules which have rather large binding energies this equation produces
electron levels with spacings of the order of 1 eV, corresponding to charac-
teristic temperatures of the order of 10 000 K. As a result, for most gases
at room temperature the electron cloud is frozen in into its lowest state.
The electronic degrees of freedom will therefore, as in the case of monatomic
gases, lead only to supplying a multiplicity factor in (, if several electronic
wavefunctions have the same, or almost the same, energy. In Chap.11 we
shall see that the situation is not quite as simple when we apply the Born-
Oppenheimer method to solids, since in that case the electron cloud is ther-
mally excited at room temperatures. For the rather tightly bound and rather
small molecules considered here we can, on the other hand, restrict ourselves
to the single electronic eigenstate with minimum energy, for each, assumed
given, arrangement of the nuclei.

To be more precise, the Hamiltonian of one molecule, in the model of
§8.1.1, has the form
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where fn and fe are the kinetic energies of the nuclei and the electrons and

V the total Coulomb interaction energy, which depends on both the electron

coordinates 7, and the nuclear coordinates R,. The global translational ki-

netic energy of the molecule, p°/2m is included in T, as the mass of the

electrons is small compared to the nuclear masses. The first stage of the

Born-Oppenheimer method consists in looking for the ground state of the

Schrédinger equation

[T+ V (Fey Ba)| 1) = W (Ra) lie) (8.39)

in the Hilbert space of only the electrons, dropping Tn and regarding the
R, not as operators, but as parameters. The energy W(Ry) of the electronic
ground state thus depends on the positions of the nuclei.

In the second stage we study the motion of the nuclei for the lowest
electron configuration which we have just determined. To do that we must
reintroduce the term T}, from (8.38) that we omitted until now, and regard
the IA%n again as operators which do not commute with fn - a feature which
did not occur in (8.39). The approximation made consists in assuming that
the electron cloud, which is very mobile, adjusts itself instantly to the configu-
ration of the nuclei which in this way feel the effect of the electrons indirectly.
The Hamiltonian of the nuclei thus contains, on top of the kinetic energy Th,
the energy W (R,) which comes both from the Coulomb interaction between
the nuclei and from their interaction with the electrons, after the electron
coordinates have been eliminated as a result of their being frozen in into
the lowest energy state of (8.39). The lowest energy levels of the molecule
are thus finally obtained by looking for the eigenvalues of the Schrodinger
equation
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Lo+ W(R)| ) = e ) (8.40)

in the Hilbert space of only the nucle:.

We should note that the motion of the centre of mass of the molecule
can be separated off in the Born-Oppenheimer approximation (8.40), as it
could be done in the case of the exact Hamiltonian (8.1). The eigenenergies
¢ of (8.40) contain therefore a trivial contribution, the translational kinetic
energy p?/2m, which must be subtracted when we construct the required
energies ¢, contributing to {(T).

For instance, for a diatomic molecule such as HCI the energy W depends
only on the distance ¢ between the two nuclei. If for the moment we disregard
the direct Coulomb interaction between the nuclei, the energy of the ground
state of the 18 electrons is negative; it increases with ¢ from the binding
energy of an atom of charge 18 — the combined charge of the Cl and H nuclei
—for ¢ = 0, to the sum of the binding energies of the two separate, Cl and H,
atoms for ¢ = oo. To obtain W we must add to this function the repulsion
between the H and Cl nuclei which becomes very large as o — 0. The result
is the curve W (p) shown in Fig.8.2 where we dropped an additive constant.
At small distances apart the direct repulsion dominates; at larger distances
apart the binding energy of the electrons becomes dominant and W(p) shows
a pronounced minimum near some value ¢ = p. The energy W{p) plays the
role of an effective interaction potential for the nuclei in the Schrodinger
equation (8.40), where the total energy of the system is equal to W(p) plus
the kinetic energy Ty, of the nuclei. The latter can be split into a sum of two
terms,

~2 ~2
~ P I8
Th = — 4+ —, 8.41
2m + 24 ( )

where p is the momentum of the centre of mass of the diatomic molecule,
m its total mass, T the relative momentum of the two nuclei, the masses of
which are g1 and po, and u the reduced mass

Finally, if we drop, as in (8.1), the translational kinetic energy of the molecule,
there remains for us the task to solve a Schrédinger equation (8.40), where the
coordinates of the electrons and of the centre of mass have been eliminated,
with an effective internal Hamiltonian

~2

~ T

h~— 0 8.43
3 W@, (8.43)

which is the same as that of a single particle with coordinates @ in a central
potential W (p).
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Fig. 8.2. Energy levels of the HCl molecule

The eigenvalues ¢4 of (8.43) are found by separating the angular and the
radial variables and they are characterized by the quantum numbers ¢ =
I, m,n where [ has a multiplicity 2/ 4+ 1 connected with the quantum number
m. Moreover, we should include the quantum numbers of the nuclear spins
which may give rise to additional degeneracies — or to quasi-degeneracies,
as the magnetic interactions of those spins are negligibly small. In the rest
of this chapter we shall study the rotational motion (associated with the
quantum numbers [ and m) and the vibrational motion (associated with the
radial quantum number n) and their thermodynamic consequences.

A study of the quantum harmonic oscillator shows that the vibrational
frequencies w/27, and thus the spacing hw of the levels, are for a given poten-
tial inversely proportional to the square root of the mass of the oscillator. As
the masses of the nuclei are much larger than the electron mass, one expects
that the energy levels of h, associated with the relative motion of the nuclei,
are much more closely spaced than the excited levels of the electron cloud -
which we have justifiably assumed to be frozen in into its ground state. In
fact, a numerical estimate of the inertia coefficients for the rotations and vi-
brations of diatomic molecules, defined by (8.63), shows that they are usually
rather large. Hence the corresponding levels lie densely and the character-
istic rotation and vibration temperatures are much lower than the electronic
characteristic temperatures. For instance, for HCI the characteristic rotation
temperature is ©, = 15 K, and the vibration temperature ©, = 4100 K,
corresponding, respectively, to excitation energies of the order of 1073 eV
and 0.35 eV.
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If the gas is at a temperature well above these characteristic temperatures
quantization of the levels does not play any réle as they lie densely on the
scale kT'; one can therefore treat the effective Hamiltonian (8.43) as a clas-
sical Hamiltonian and replace the calculation of the trace in (8.4) by an
integration, as we saw in §2.3.2, which leads to

3,73
= / d 7};‘: 2 —h(me)/kT (8.44)
As a first approximation, valid at temperatures which are high as compared to
O, and O, we shall thus treat in § 8.4.3 the internal molecular rotational and
vibrational variables by classical statistical mechanics using (8.44). Before
doing this we shall prove the energy equipartition theorem which will be
useful in that analysis.

Expression (8.44) must in actual cases be multiplied by a multiplicity factor g
similar to the one in §8.3.2. Moreover, if the two atoms of the molecule are indis-
tinguishable we must introduce a factor %, which is a special case of the factor 1/8
of (2.59), to compensate for the fact that a single configuration of the molecule is
represented by two different points in phase space, w, ¢ and —7, —g. These con-
stant factors do not affect the specific heats, but appear, for instance, in expression
(8.14) for the entropy and in the mass action law through (8.30); they thus play an
important réle in chemical thermodynamics. Ehrenfest and Trkal recognized the
importance of the symmetry factor S in this context in 1921.

8.4.2 The Energy Equipartition Theorem

One of the problems of statistical mechanics consists in determining how the
energy of a system is distributed over its various degrees of freedom. We have
seen that the general answer to this question is obtained by writing down
that the temperatures associated with the independent degrees of freedom
become equal. The result takes a particularly simple form for all problems in
classical statistical mechanics where the Hamiltonian is quadratic in each of
the phase space variables which occur in it. Let z1, ..., x, be those variables;
they can be either coordinates or momenta. The Hamiltonian is supposed to
be a sum of n terms of the form
n

n
1
H = Z hj = Z §aj$?; (8.45)
Jj=1

j=1
the a; are arbitrary positive constants, which can be interpreted as elastic
force coeflicients if z; is a position coordinate, and as inverse masses or inertia
coeflicients if z; is a momentum. In thermal equilibrium the internal energy
U = (H) is the sum of the average energies (h;) associated with the n degrees
of freedom.

The energy equipartition theorem states that under those conditions the
internal energy per degree of freedom (h;) is equal to %kT, whatever the
value of the constants a;:
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