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Fig. 8.1. Schottky anomaly in the 
specific heat 

in § 1.4.4 for the specific heat of a paramagnetic substance placed in a fixed 
magnetic field. 

8.4 Diatomic and Polyatomic Gases 

8.4.1 The Born-Oppenhe imer Approximat ion 

In order to determine the internal partition function (8.4) and to find from 
it the thermal properties of the gas, we need to evaluate the eigenenergies e^ 
of one molecule, for the ground state £o and for those excited state which lie 
sufficiently close to the ground state that Sq — £o is at most of the order of 
magnitude of kT. To do this we shall use the so-called Born-Oppenheimer 
approximation (1927) which is of major interest not only in the theory of 
molecules, but also in the theory of solids (§ 11.1.1). 

In the case of a molecule consisting of several atoms an analysis of the 
spectrum implies not only a study of the motion of the electrons, as in the 
case of a monatomic molecule, but above all a study of the relative motion 
of the nuclei. To carry that out we note that the atomic nuclei are several 
thousand times heavier than the electrons and therefore move much more 
slowly than the latter, if the kinetic and potential energies are of the same 
order of magnitude. The Born-Oppenheimer approximation now consists in 
solving the problem in two stages. 

We start by studying the motion of the electrons, neglecting that of the 
nuclei which we assume to be fixed in some, arbitrary, positions. We must 
thus solve a Schrodinger equation describing the electrons, which interact 
through Coulomb forces, and are subject to a fixed external potential due 
to the nuclei and depending on the relative positions of the latter. For most 
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molecules which have rather large binding energies this equation produces 
electron levels with spacings of the order of 1 eV, corresponding to charac
teristic temperatures of the order of 10 000 K. As a result, for most gases 
at room temperature the electron cloud is frozen in into its lowest state. 
The electronic degrees of freedom will therefore, as in the case of monatomic 
gases, lead only to supplying a multiplicity factor in C,, if several electronic 
wavefunctions have the same, or almost the same, energy. In Chap. 11 we 
shall see that the situation is not quite as simple when we apply the Born-
Oppenheimer method to solids, since in that case the electron cloud is ther
mally excited at room temperatures. For the rather tightly bound and rather 
small molecules considered here we can, on the other hand, restrict ourselves 
to the single electronic eigenstate with minimum energy, for each, assumed 
given, arrangement of the nuclei. 

To be more precise, the Hamiltonian of one molecule, in the model of 
§8.1.1, has the form 

H = ^ + h = f„ + fe + y , (8.38) 

where Tn and Te are the kinetic energies of the nuclei and the electrons and 
V the total Coulomb interaction energy, which depends on both the electron 
coordinates r^ and the nuclear coordinates i l„ . The global translational ki
netic energy of the molecule, p /2m is included in Tn, as the mass of the 
electrons is small compared to the nuclear masses. The first stage of the 
Born-Oppenheimer method consists in looking for the ground state of the 
Schrodinger equation 

f e + y ( f e , i l „ ) ] IV'e) = W^(-Rn) IV-e) (8 .39) 

in the Hilbert space of only the electrons., dropping Tn and regarding the 
Jin not as operators, but as parameters. The energy W{R^ of the electronic 
ground state thus depends on the positions of the nuclei. 

In the second stage we study the motion of the nuclei for the lowest 
electron configuration which we have just determined. To do that we must 
reintroduce the term Tn from (8.38) that we omitted until now, and regard 
the i l„ again as operators which do not commute with Tn ~ a feature which 
did not occur in (8.39). The approximation made consists in assuming that 
the electron cloud, which is very mobile, adjusts itself instantly to the configu
ration of the nuclei which in this way feel the effect of the electrons indirectly. 
The Hamiltonian of the nuclei thus contains, on top of the kinetic energy Tn, 
the energy W{Rn) which comes both from the Coulomb interaction between 
the nuclei and from their interaction with the electrons, after the electron 
coordinates have been eliminated as a result of their being frozen in into 
the lowest energy state of (8.39). The lowest energy levels of the molecule 
are thus finally obtained by looking for the eigenvalues of the Schrodinger 
equation 
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f„ + W{Rn)\ |V„> = e l^n) (8.40) 

in the Hilbert space of only the nuclei. 
We should note that the motion of the centre of mass of the molecule 

can be separated off in the Born-Oppenheimer approximation (8.40), as it 
could be done in the case of the exact Hamiltonian (8.1). The eigenenergies 
£ of (8.40) contain therefore a trivial contribution, the translational kinetic 
energy p'^/2m, which must be subtracted when we construct the required 
energies Eg contributing to C(^)-

For instance, for a diatomic molecule such as HCl the energy W depends 
only on the distance g between the two nuclei. If for the moment we disregard 
the direct Coulomb interaction between the nuclei, the energy of the ground 
state of the 18 electrons is negative; it increases with g from the binding 
energy of an atom of charge 18 - the combined charge of the CI and H nuclei 
- for ^ = 0, to the sum of the binding energies of the two separate, CI and H, 
atoms for p = oo. To obtain W we must add to this function the repulsion 
between the H and CI nuclei which becomes very large as £» —> 0. The result 
is the curve W{g) shown in Fig.8.2 where we dropped an additive constant. 
At small distances apart the direct repulsion dominates; at larger distances 
apart the binding energy of the electrons becomes dominant and W{g) shows 
a pronounced minimum near some value g — 'g. The energy W{g) plays the 
role of an effective interaction potential for the nuclei in the Schrodinger 
equation (8.40), where the total energy of the system is equal to W{g) plus 
the kinetic energy Tu of the nuclei. The latter can be split into a sum of two 
terms, 

where p is the momentum of the centre of mass of the diatomic molecule, 
TO its total mass, ir the relative momentum of the two nuclei, the masses of 
which are /^i and /i2, and /x the reduced mass 

/x = - ^ ^ i ^ . (8.42) 
Ml +M2 

Finally, if we drop, as in (8.1), the translational kinetic energy of the molecule, 
there remains for us the task to solve a Schrodinger equation (8.40), where the 
coordinates of the electrons and of the centre of mass have been eliminated, 
with an effective internal Hamiltonian 

-2 

^ - | l + W (̂?)> (8-43) 

which is the same as that of a single particle with coordinates ^ in a central 
potential W{g). 
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Fig. 8.2. Energy levels of the HCl molecule 

The eigenvalues Sg of (8.43) are found by separating the angular and the 
radial variables and they are characterized by the quantum numbers q = 
I, m, n where I has a multiplicity 2/ + 1 connected with the quantum number 
TO. Moreover, we should include the quantum numbers of the nuclear spins 
which may give rise to additional degeneracies - or to quasi-degeneracies, 
as the magnetic interactions of those spins are negligibly small. In the rest 
of this chapter we shall s tudy the rotational motion (associated with the 
quantum numbers I and m) and the vibrational motion (associated with the 
radial quantum number n) and their thermodynamic consequences. 

A study of the quantum harmonic oscillator shows tha t the vibrational 
frequencies (j;/27r, and thus the spacing ULJ of the levels, are for a given poten
tial inversely proportional to the square root of the mass of the oscillator. As 
the masses of the nuclei are much larger than the electron mass, one expects 
tha t the energy levels of h, associated with the relative motion of the nuclei, 
are much more closely spaced than the excited levels of the electron cloud -
which we have justifiably assumed to be frozen in into its ground state. In 
fact, a numerical estimate of the inertia coefficients for the rotations and vi
brations of diatomic molecules, defined by (8.63), shows tha t they are usually 
rather large. Hence the corresponding levels lie densely and the character
istic rotation and vibration temperatures are much lower than the electronic 
characteristic temperatures. For instance, for HCl the characteristic rotation 
tempera ture is 0 r = 15 K, and the vibration temperature 0^ — 4100 K, 
corresponding, respectively, to excitation energies of the order of 10~^ eV 
and 0.35 eV. 



370 8. Molecular Properties of Gases 

If the gas is at a temperature well above these characteristic temperatures 
quantization of the levels does not play any role as they lie densely on the 
scale kT\ one can therefore t reat the effective Hamiltonian (8.43) as a clas
sical Hamiltonian and replace the calculation of the trace in (8.4) by an 
integration, as we saw in §2.3.2, which leads to 

As a first approximation, valid at temperatures which are high as compared to 
©r and 0y, we shall thus t reat in § 8.4.3 the internal molecular rotational and 
vibrational variables by classical statistical mechanics using (8.44). Before 
doing this we shall prove the energy equipartition theorem which will be 
useful in tha t analysis. 

Expression (8.44) must in actual cases be multiplied by a multiplicity factor g 
similar to the one in § 8.3.2. Moreover, if the two atoms of the molecule are indis
tinguishable we must introduce a factor ^, which is a special case of the factor 1/5 
of (2.59), to compensate for the fact that a single configuration of the molecule is 
represented by two different points in phase space, ir, Q and —ir, —g. These con
stant factors do not affect the specific heats, but appear, for instance, in expression 
(8.14) for the entropy and in the mass action law through (8.30); they thus play an 
important role in chemical thermodynamics. Ehrenfest and Trkal recognized the 
importance of the symmetry factor S in this context in 1921. 

8.4 .2 T h e E n e r g y Equipar t i t i on T h e o r e m 

One of the problems of statistical mechanics consists in determining how the 
energy of a system is distributed over its various degrees of freedom. We have 
seen tha t the general answer to this question is obtained by writing down 
tha t the temperatures associated with the independent degrees of freedom 
become equal. The result takes a particularly simple form for all problems in 
classical statistical mechanics where the Hamiltonian is quadratic in each of 
the phase space variables which occur in it. Let a;i, . . . , a;„ be those variables; 
they can be either coordinates or momenta. The Hamiltonian is supposed to 
be a sum of n terms of the form 

n n ^ 

the aj are arbitrary positive constants, which can be interpreted as elastic 
force coefficients if X j IS cl position coordinate, and as inverse masses or inertia 
coefficients if momentum. In thermal equilibrium the internal energy 
U = {H) is the sum of the average energies (hj) associated with the n degrees 
of freedom. 

The energy equipartit ion theorem states tha t under those conditions the 
internal energy per degree of freedom {hj) is equal to ^kT, whatever the 
value of the constants aj-. 
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