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Part of the complexity in the many-body problem - systems involving many particles -
comes from the indistinguishability of identical particles, fermions or bosons. Calculations
in first quantization thus involve the cumbersome (anti-)symmetrization of wavefunctions.

Second quantization is an efficient technical tool that describes many-body systems in a
compact and intuitive way.

1 Preliminaries

Before entering the details of second quantization, it is worth drawing a clear distinction
between the single-particle and the many-particle Hilbert spaces.

1.1 Single-particle Hilbert space

Consider a single particle described by the hamiltonian ĥ acting on the Hilbert space H1.
H1 is generated by the complete set of eigenfunctions |λ〉 (λ = k, σ, ν, . . .)

ĥ|λ〉 = ελ|λ〉,

with the eigenvalues ελ. The identity operator in H1 is given by the completeness relation
1 =

∑
λ |λ〉〈λ|.

Examples:

1. single particle in free space, ĥ = −~2∇2/(2m). The eigenfunctions are labeled by the

wavevectors k with ψk(r) = 〈r|k〉 = eik·r√
V

and the energies εk = ~2k2/2m.

2. spin 1/2 in a magnetic field, ĥ = −BSz. The Hilbert space has dimension 2, generated
by the eigenstates | ↑〉 and | ↓〉 of the spin operator Sz.
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The basis of two-particle states, given by the set of (anti-)symmetrized functions, + for
bosons and − for fermions,

ψλ,ν(1, 2) =
1√
2

[ϕλ(1)ϕν(2)± ϕλ(2)ϕν(1)] ,

is built out of the single-particle states ϕλ(1) = 〈1|λ〉. The corresponding Hilbert space1 is
denoted F2.

1.2 Many-particle Hilbert space

We first discuss fermions. Following the two-particle case, the set of antisymmetrized Slater
determinants

ψλ1,...,λN (1, . . . , N) =
1√
N !

∑
P∈SN

(−1)Pϕλ1(P1) . . . ϕλN (PN), (1)

where the summation runs over all permutations of {1, . . . , N}, forms the basis2 of the
Hilbert space FN . In the bosonic case, the basis is obtained from symmetrized states, i.e.
Eq. (1) where (−1)P is replaced by 1.

The hamiltonian may describe independent particles in which case

Ĥ =
N∑
i=1

ĥ(i),

where each piece ĥ(i) acts only on the particle i.

Examples:

1. for particles in free space, Ĥ =
∑

i p
2
i /(2m).

2. for an assembly of N distinguishable spins in a magnetic field, Ĥ = −B
∑N

i=1 S
z
i . The

Hilbert space has dimension 2N and symmetrization is not required.

Interactions between particles can be added, Ĥ =
∑

i ĥ
(i) + V̂ , where V̂ includes all

multi-particle interactions. For example, Coulomb interactions read

V̂Coulomb =
N∑
i=1

N∑
j>i

e2

4πε0

1

|ri − rj|
. (2)

2 Basics of second quantization

So far, we have introduced and discussed the many-body problem in the language of first
quantization. Second quantization corresponds to a different labelling of the basis of states
Eq. (1) together with the introduction of creation and annihilation operators that connect
spaces with different numbers of particles.

1Restricted to (anti-)symmetrized wavefunctions, F2 is a subset of the larger space H1 ⊗H1.
2A different choice for the set of single-particle states |λ〉 gives, using Eq. (1), a different many-particle

basis that nevertheless spans the same Hilbert space FN .
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2.1 Occupation number representation

Since identical particles are indistinguishable, it is not possible, for a state of the form
Eq. (1), to ascribe a definite single-particle state to a given particle. Therefore, instead of
focusing on the wavefunction of each particle individually, one can reverse the perspective
and characterize the states of Eq. (1) by the set of single-particle states {λ1, . . . , λN} that
are occupied by particles, all other single-particle states being empty.

In terms of notations, |{nλ}〉 represents |ψλ1,...,λN 〉3 with, for fermions, nλ = 1 for λ = λi,
i = 1 . . . N , and nλ = 0 otherwise. The state can be written schematically as

|{nλ}〉 = |0 . . .
λ1
1 . . . 0 . . .

λ2
1 . . . 0 . . . (. . .)

λN
1 〉, (3)

where it is explicitly specified on the right-hand-side which states are occupied and which
state are empty.

Bosonic states have similar expressions although the occupation numbers nλ can take
values larger than 1, for example

|{nλ}〉 = |0 . . .
λ1
5 . . . 0 . . .

λ2
1 . . . 0 . . . (. . .)

λN
7 〉, (4)

for nλ1 = 5, nλ2 = 1, . . ., nλN = 7.

2.2 Creation and annihilation operators

The constraint on the number of particles,
∑

λ nλ = N , can be released by working in the
extended Hilbert space

F =
+∞⊕
N=0

FN ,

called the Fock space. Here, F1 = H1 is the single-particle Hilbert space, F0 contains a
unique vacuum state, often noted |0〉, in which no particle is present.

In the Fock space, creation operators are introduced that raise the number of particles
in a given single-particle state by 1. For fermions, it reads

c†λ1 |0 . . .
λ1
0 . . . 0 . . .

λ2
1 . . . 0 . . . (. . .)

λN
1 〉 = |0 . . .

λ1
1 . . . 0 . . .

λ2
1 . . . 0 . . . (. . .)

λN
1 〉,

while particle creation in a single-particle state that is already occupied gives zero,

c†λ2|0 . . .
λ1
1 . . . 0 . . .

λ2
1 . . . 0 . . . (. . .)

λN
1 〉 = 0.

The annihilation operator cλ, lowering the number by 1, is the hermitian conjugate of c†λ.
The full basis of the Fock space F is in fact generated by creation operators applied on the
vacuum state, namely |nλ1 = 1, . . . , nλN = 1〉 = c†λ1 . . . c

†
λN
|0 >.

The antisymmetric properties of the basis states (Slater determinants) |nλ1 . . . nλN 〉 are
ensured by the anticommutation relations

{cα, cβ} = cαcβ + cβcα = 0, {cα, c†β} = δα,β. (5)

The product n̂λ = c†λcλ gives the number of fermions occupying the state |λ〉,

c†λcλ|{nα}〉 = nλ|{nα}〉

where nλ = 0 or 1.

3ψλ1,...,λN
(1, . . . , N) = 〈1, . . . , N |ψλ1,...,λN

〉.
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2.3 Bosons

There are only slight differences in the way second quantization works for fermions and for
bosons. In the case of bosons, the basis states are symmetrized functions and the number of
bosons in a given single-particle state is not restricted. These properties are ensured by the
commutation relations

[bα, bβ] = bαbβ − bβbα = 0, [bα, b
†
β] = δα,β, (6)

with the (annihilation) creation operators (bα) b†α. From Eq. (6), one can prove4 that

b†λ|nλ〉 =
√
nλ + 1|nλ + 1〉

bλ|nλ〉 =
√
nλ|nλ − 1〉

(7)

such that n̂λ = b†λbλ is indeed the number operator, n̂λ|nλ〉 = nλ|nλ〉.

3 Representation of operators

The complexity associated with wavefunction (anti)symmetrization has been reduced, in the
formalism of second quantization, to the surprisingly simple commutation relations, Eq. (5)
for fermions and Eq. (6) for bosons. Had the usual operators of the theory complicated
expressions in terms of creation/annihilation operators, this would not be very useful. How-
ever, as we shall see below, the hamiltonian as well as standard operators do have simple
expressions in second quantization.

3.1 Change of basis and the field operator

Starting with the expression |λ〉 = c†λ|0〉, one can insert the closure relation 1 =
∑

λ |λ〉〈λ|
to derive the transformation law for the creation/annihilation operators

c†α =
∑
λ

〈λ|α〉 c†λ, cα =
∑
λ

〈α|λ〉 cλ, (8)

from one basis to another. Hence, the change of basis only requires the calculation of matrix
elements 〈α|λ〉 involving single-particle states.

By convention, the field operator Ψ(r) in a continuous problem is associated to the basis
of position states |r〉,

Ψ(r) =
∑
λ

〈r|λ〉 cλ. (9)

Using Eq. (5) and Eq. (6), one finds the commutation relation

{Ψ(r),Ψ(r′)} = 0, {Ψ(r),Ψ†(r′)} = δ(r− r′), fermions,

[Ψ(r),Ψ(r′)] = 0, [Ψ(r),Ψ†(r′)] = δ(r− r′), bosons.
(10)

The total number of particles (fermions or bosons) is then given by

N̂ =
∑
λ

c†λcλ =

∫
ddr ρ̂(r) (11)

4The states |nλ〉 are chosen to be normalized to 1.



3.2 Representation of one-body and two-body operators 5

where the local density operator ρ̂(r) = Ψ†(r)Ψ(r) has been introduced.

Example: The transformation to the Fourier momentum representation reads

Ψ(r) =
1√
V

∑
k

eik·r ck, (12)

where ck destroys a particle with momentum k. The total number of particle is given by
N̂ =

∑
k c
†
kck.

3.2 Representation of one-body and two-body operators

Single-particle or one-body operators have the form Ô(1) =
∑N

i=1 ô
(1)[i] in first quantization,

where ô(1)[i] is a single-particle operator acting on the ith particle. In the language of second
quantization, they take the form

Ô(1) =
∑
α,β

〈α|ô(1)|β〉 c†αcβ, (13)

with the matrix elements 〈α|ô(1)|β〉 =
∫
d1 d2 ϕ∗α(1)〈1|ô(1)|2〉ϕβ(2).

Examples:

1. The kinetic energy operator T̂ =
∑

i p
2
i /(2m), describing independent particles, reads

in second quantization

T̂ =
∑
k

~2k2

2m
c†kck, (14)

i.e. it is diagonal in the momentum basis. An alternative expression involving the field
operator is

T̂ =

∫
ddrΨ†(r)

(~∇/i)2

2m
Ψ(r) =

∫
ddr

~2

2m
∇Ψ†(r) · ∇Ψ(r). (15)

2. Tight-binding models are simplified band models for electrons in solids where only
neighboring sites hybridize. A particularly simple example is given by the hamiltonian

Ĥ = −t
∑
〈i,j〉

(
c†i cj + c†j ci

)
, (16)

where c†i creates an electron on site i and 〈i, j〉 denotes neighboring sites. The product
c†i cj describes intuitively the hopping of an electron from site j to site i: one electron
is annihilated on site j while a novel electron appears on site i. The hamiltonian
Eq. (16) is diagonalized by going to the Fourier space ck = 1√

Ns

∑
i e
−ik·ri ci (Ns is the

number of sites of the lattice), with the result Ĥ =
∑

k εkc
†
kck. In one dimension,

εk = −2t cos(ka), a being the lattice spacing.

We now consider a two-body operator such as the Coulomb interaction of Eq. (2). In
first quantization, it has the form

Ô(2) =
1

2

∑
i 6=j

ô(2)[i, j], (17)
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where ô(2)[i, j] accounts for pair interactions. In second quantization, it reads5

Ô(2) =
1

2

∑
α,β,γ,δ

〈αβ|ô(2)|γδ〉c†αc
†
βcδcγ, (18)

with the matrix elements

〈αβ|ô(2)|γδ〉 =

∫
d1 d2ϕ∗α(1)ϕ∗β(2)ô(2)[1, 2]ϕγ(1)ϕδ(2). (19)

Example: Electron-electron Coulomb interaction is given in second quantization by

V̂Coulomb =
1

2

∑
σ1,σ2

∫
dr1 dr2

e2

4πε0|r1 − r2|
Ψ†σ1(r1)Ψ

†
σ2

(r2)Ψσ2(r2)Ψσ1(r1), (20)

in terms of the field operator Ψσ(r). Here the spin σ of electrons has been included. After
going to the Fourier momentum representation of Eq. (12), one obtains the alternative
expression

V̂Coulomb =
1

2V

∑
σ1,σ2

∑
q,k1,k2

v(q) c†k1+q,σ1
c†k2−q,σ2ck2,σ2ck1,σ1

with the Fourier transform of the Coulomb pair potential v(q) = e2/(ε0 q
2).
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Theory of Condensed Matter

Exercises on second quantization
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1 Starters

1. For α 6= β, compute the matrix element 〈0|cαcβc†αc†β|0〉 for fermions and for bosons.

2. Consider free fermions with spin 1/2 in a box of volume V . Write the hamiltonian Ĥ0 in
second quantization in the Fourier momentum representation.

(a) Write the expression of the ground state |FS〉.
(b) Compute the following quantities

〈n̂kσ〉 = 〈FS|c†kσckσ|FS〉, E0 = 〈FS|Ĥ0|FS〉, N0 = 〈FS|N̂ |FS〉,

in the thermodynamic limit V → +∞.

3. In the case of fermions, prove that

c†α|{nβ}〉 =

{
(−1)

∑
β<α nβ |n1 n2 . . .

α
1 nα+1 . . . nN 〉 if nα = 0

0 if nα = 1
(1)

and

cα|{nβ}〉 =

{
0 if nα = 0

(−1)
∑
β<α nβ |n1 n2 . . .

α
0 nα+1 . . . nN 〉 if nα = 1

(2)

4. Show that the change of basis

c†β =
∑
α

Uβαc
†
α,

preserves the canonical commutation relations iff U is a unitary matrix. Is Uβα = 〈β|α〉
a unitary matrix ? Show that the expression of the number operator N̂ =

∑
α c
†
αcα is not

modified by the above transformation.

5. For bosons, show that

|n1 n2 . . .〉 =
∏
i

(b†i )
ni

√
ni!
|0〉.

6. Compute the commutator [Ĥ0, N̂ ] for free fermions. What is the meaning of the result ? Is
it modified when interactions are taken into account ?

7. Consider spinless free fermions or free bosons.

(a) Derive the expression Ĥ0 =
∑

k εkc
†
kck from Ĥ0 = −(~2/2m)

∫
dr ψ†(r)∇2ψ(r).

(b) Derive the expression of the Coulomb pair potential in the momentum representation

starting from V̂Coulomb = 1
2

∑
σ1,σ2

∫
dr1 dr2 V (r1−r2) Ψ†σ1(r1)Ψ

†
σ2(r2)Ψσ2(r2)Ψσ1(r1).

8. Consider the one-dimensional tight-binding model (t > 0)

Ĥ = −t
∑
i

(
c†i ci+1 + h.c.

)
, (3)

with periodic boundary conditions cNs+1 = c1, describing the hopping of electrons on a
lattice of Ns sites with lattice spacing a. Diagonalize the hamiltonian by going to the
Fourier space and show that the eigenenergies are given by

εk = −2t cos(ka).

What are the admissible values for the wavevector k ?



9. The local density operator is given for a single particle by ρ̂(r) = |r〉〈r|. Give the expression
of ρ̂(r) in second quantization in a given basis |ϕλ〉 of one-particle states. Give ρ̂(r) in the
basis of position states |r〉. In the basis of momentum states |k〉, give ρ̂(r) and then its
Fourier transform

ρ̂(q) =

∫
dr ρ̂(r)e−iq·r

2 Spin operator

We consider fermions with spin 1/2. We denote by α =↑, ↓ the spin component. The spin
operator of the many-body system assumes the form

Ŝ =
∑
λ

c†λα′
σα′α

2
cλα (4)

where σ = (σx, σy, σz) is a vector composed by the standard Pauli matrices 1, and λ denotes the
set of additional quantum numbers (wavevector, lattice site index, etc).

1. Forget about spin for one moment and consider a finite Hilbert space with N one-particle
states. We use the notation c† = (c†1, c

†
2, . . . , c

†
N ) as a vector with N entries. Prove the

following identity
[c†Ac, c†B c] = c† [A,B] c

where A and B are N ×N matrices.

2. Use the previous result to show that the spin operator in Eq. (4) satisfies the commutation
relations of the Lie group SU(2).

3. Can we say something specific about Ŝ2 ?

4. Give the spin raising and lowering operators Ŝ± = Ŝx ± iŜy in terms of creation and
annihilation operators.

We take the Hubbard model in the atomic limit : a single site governed by the hamiltonian

Ĥ = εd(n̂↑ + n̂↓) + U n̂↑n̂↓

where n̂σ = d†σdσ.

5. Give the size of the corresponding Hilbert space.

6. Diagonalize the hamiltonian.

7. Precise the spin for each eigenstate.

3 Hartree-Fock

We consider a gas of N electrons with spin 1/2. The hamiltonian includes kinetic and Cou-
lomb energies, Ĥ = T̂ + V̂ or

Ĥ =
∑
σ,k

εk c
†
kσckσ +

1

2V

∑
σ1,σ2

∑
q,k1,k2

e2

ε0 q2
c†k1+q,σ1

c†k2−q,σ2ck2,σ2ck1,σ1 . (5)

This hamiltonian can not be diagonalized. We shall therefore treat the Coulomb interaction V̂
in perturbation theory.

1. What is the ground state of the system in the absence of V̂ ?

1.

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)



2. Show that the correction to the ground state energy, to leading order in V̂ , has two contri-
butions : a direct Hartree term, which in this case is infinite, and an exchange Fock term.

3. Compute the Fock term using the identity

Vq =
∑
k

θ[εF − εk]θ[εF − εk+q] =
4πk3F

3

[
1− 3

4

q

kF
+

1

16

(
q

kF

)3
]

for |q| < 2kF

and zero for |q| ≥ 2kF . Find the result

δE

V
= −

k4F
4π3

e2

4πε0
.

4 Finite temperature and thermodynamics

We recall that the partition function Z in the grand canonical ensemble is given by

Z = Tre−β(Ĥ−µN̂)

where the trace is taken over all states of the many-body Hilbert space. µ denotes here the
chemical potential. The mean value of an operator Ô acting in the many-body Hilbert space is
then given by

〈Ô〉 =
1

Z
Tr
[
Ô e−β(Ĥ−µN̂)

]
.

1. Suppose that the hamiltonian is diagonal in the occupation number for some particular
one-particle basis,

Ĥ =
∑
λ

ελn̂λ.

This implies in passing that particles are independent, i.e. not interacting. Show that the
partition function factorizes as Z =

∏
λ Zλ.

2. Give the expression of Zλ for fermions and for bosons.

3. Compute 〈n̂λ〉 for fermions and for bosons. Which distributions do we find ?




































