Concepts Fondamentaux de la Physique

Introduction to Second Quantization

Christophe Mora

Contents

1 Preliminaries 1
1.1 Single-particle Hilbert space 1
1.2 Many-particle Hilbert space 2
2 Basics of second quantization 2
2.1 Occupation number representation 2
2.2 Creation and annihilation operators 3
2.3 Bosons 3
3 Representation of operators 4
3.1 Change of basis and the field operator 4
3.2 Representation of one-body and two-body operators 5

Part of the complexity in the many-body problem - systems involving many particles comes from the indistinguishability of identical particles, fermions or bosons. Calculations in first quantization thus involve the cumbersome (anti-)symmetrization of wavefunctions.

Second quantization is an efficient technical tool that describes many-body systems in a compact and intuitive way.

1 Preliminaries

Before entering the details of second quantization, it is worth drawing a clear distinction between the single-particle and the many-particle Hilbert spaces.

1.1 Single-particle Hilbert space

Consider a single particle described by the hamiltonian \hat{h} acting on the Hilbert space \mathcal{H}_{1}. \mathcal{H}_{1} is generated by the complete set of eigenfunctions $|\lambda\rangle(\lambda=\mathbf{k}, \sigma, \nu, \ldots)$

$$
\hat{h}|\lambda\rangle=\varepsilon_{\lambda}|\lambda\rangle,
$$

with the eigenvalues ε_{λ}. The identity operator in \mathcal{H}_{1} is given by the completeness relation $\mathbb{1}=\sum_{\lambda}|\lambda\rangle\langle\lambda|$.

Examples:

1. single particle in free space, $\hat{h}=-\hbar^{2} \nabla^{2} /(2 m)$. The eigenfunctions are labeled by the wavevectors \mathbf{k} with $\psi_{k}(\mathbf{r})=\langle\mathbf{r} \mid \mathbf{k}\rangle=\frac{e^{i \mathbf{k} \cdot \mathbf{r}}}{\sqrt{V}}$ and the energies $\varepsilon_{k}=\hbar^{2} k^{2} / 2 m$.
2. spin $1 / 2$ in a magnetic field, $\hat{h}=-B S^{z}$. The Hilbert space has dimension 2, generated by the eigenstates $|\uparrow\rangle$ and $|\downarrow\rangle$ of the spin operator S^{z}.

The basis of two-particle states, given by the set of (anti-)symmetrized functions, + for bosons and - for fermions,

$$
\psi_{\lambda, \nu}(1,2)=\frac{1}{\sqrt{2}}\left[\varphi_{\lambda}(1) \varphi_{\nu}(2) \pm \varphi_{\lambda}(2) \varphi_{\nu}(1)\right]
$$

is built out of the single-particle states $\varphi_{\lambda}(1)=\langle 1 \mid \lambda\rangle$. The corresponding Hilbert space ${ }^{1}$ is denoted \mathcal{F}_{2}.

1.2 Many-particle Hilbert space

We first discuss fermions. Following the two-particle case, the set of antisymmetrized Slater determinants

$$
\begin{equation*}
\psi_{\lambda_{1}, \ldots, \lambda_{N}}(1, \ldots, N)=\frac{1}{\sqrt{N!}} \sum_{P \in S_{N}}(-1)^{P} \varphi_{\lambda_{1}}\left(P_{1}\right) \ldots \varphi_{\lambda_{N}}\left(P_{N}\right) \tag{1}
\end{equation*}
$$

where the summation runs over all permutations of $\{1, \ldots, N\}$, forms the basis ${ }^{2}$ of the Hilbert space \mathcal{F}_{N}. In the bosonic case, the basis is obtained from symmetrized states, i.e. Eq. (1) where $(-1)^{P}$ is replaced by 1 .

The hamiltonian may describe independent particles in which case

$$
\hat{H}=\sum_{i=1}^{N} \hat{h}^{(i)}
$$

where each piece $\hat{h}^{(i)}$ acts only on the particle i.

Examples:

1. for particles in free space, $\hat{H}=\sum_{i} \mathbf{p}_{i}^{2} /(2 m)$.
2. for an assembly of N distinguishable spins in a magnetic field, $\hat{H}=-B \sum_{i=1}^{N} S_{i}^{z}$. The Hilbert space has dimension 2^{N} and symmetrization is not required.

Interactions between particles can be added, $\hat{H}=\sum_{i} \hat{h}^{(i)}+\hat{V}$, where \hat{V} includes all multi-particle interactions. For example, Coulomb interactions read

$$
\begin{equation*}
\hat{V}_{\text {Coulomb }}=\sum_{i=1}^{N} \sum_{j>i}^{N} \frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} \tag{2}
\end{equation*}
$$

2 Basics of second quantization

So far, we have introduced and discussed the many-body problem in the language of first quantization. Second quantization corresponds to a different labelling of the basis of states Eq. (1) together with the introduction of creation and annihilation operators that connect spaces with different numbers of particles.

[^0]
2.1 Occupation number representation

Since identical particles are indistinguishable, it is not possible, for a state of the form Eq. (1), to ascribe a definite single-particle state to a given particle. Therefore, instead of focusing on the wavefunction of each particle individually, one can reverse the perspective and characterize the states of Eq. (1) by the set of single-particle states $\left\{\lambda_{1}, \ldots, \lambda_{N}\right\}$ that are occupied by particles, all other single-particle states being empty.

In terms of notations, $\left|\left\{n_{\lambda}\right\}\right\rangle$ represents $\left|\psi_{\lambda_{1}, \ldots, \lambda_{N}}\right\rangle^{3}$ with, for fermions, $n_{\lambda}=1$ for $\lambda=\lambda_{i}$, $i=1 \ldots N$, and $n_{\lambda}=0$ otherwise. The state can be written schematically as
where it is explicitly specified on the right-hand-side which states are occupied and which state are empty.

Bosonic states have similar expressions although the occupation numbers n_{λ} can take values larger than 1, for example

$$
\begin{equation*}
\left|\left\{n_{\lambda}\right\}\right\rangle=\left|0 \ldots \stackrel{\lambda_{1}}{5} \ldots 0 \ldots \stackrel{\lambda_{2}}{1} \ldots 0 \ldots(\ldots)^{\lambda_{N}}\right\rangle \tag{4}
\end{equation*}
$$

for $n_{\lambda_{1}}=5, n_{\lambda_{2}}=1, \ldots, n_{\lambda_{N}}=7$.

2.2 Creation and annihilation operators

The constraint on the number of particles, $\sum_{\lambda} n_{\lambda}=N$, can be released by working in the extended Hilbert space

$$
\mathcal{F}=\bigoplus_{N=0}^{+\infty} \mathcal{F}_{N}
$$

called the Fock space. Here, $\mathcal{F}_{1}=\mathcal{H}_{1}$ is the single-particle Hilbert space, \mathcal{F}_{0} contains a unique vacuum state, often noted $|0\rangle$, in which no particle is present.

In the Fock space, creation operators are introduced that raise the number of particles in a given single-particle state by 1 . For fermions, it reads
while particle creation in a single-particle state that is already occupied gives zero,

$$
c_{\lambda_{2}}^{\dagger}\left|0 \ldots \stackrel{\lambda_{1}}{1} \ldots 0 \ldots 1_{1}^{\lambda_{2}} \ldots 0 \ldots(\ldots)^{\lambda_{N}}{ }^{1}\right\rangle=0
$$

The annihilation operator c_{λ}, lowering the number by 1 , is the hermitian conjugate of c_{λ}^{\dagger}. The full basis of the Fock space \mathcal{F} is in fact generated by creation operators applied on the vacuum state, namely $\left|n_{\lambda_{1}}=1, \ldots, n_{\lambda_{N}}=1\right\rangle=c_{\lambda_{1}}^{\dagger} \ldots c_{\lambda_{N}}^{\dagger} \mid 0>$.

The antisymmetric properties of the basis states (Slater determinants) $\left|n_{\lambda_{1}} \ldots n_{\lambda_{N}}\right\rangle$ are ensured by the anticommutation relations

$$
\begin{equation*}
\left\{c_{\alpha}, c_{\beta}\right\}=c_{\alpha} c_{\beta}+c_{\beta} c_{\alpha}=0, \quad\left\{c_{\alpha}, c_{\beta}^{\dagger}\right\}=\delta_{\alpha, \beta} \tag{5}
\end{equation*}
$$

The product $\hat{n}_{\lambda}=c_{\lambda}^{\dagger} c_{\lambda}$ gives the number of fermions occupying the state $|\lambda\rangle$,

$$
c_{\lambda}^{\dagger} c_{\lambda}\left|\left\{n_{\alpha}\right\}\right\rangle=n_{\lambda}\left|\left\{n_{\alpha}\right\}\right\rangle
$$

where $n_{\lambda}=0$ or 1 .

$$
{ }^{3} \psi_{\lambda_{1}, \ldots, \lambda_{N}}(1, \ldots, N)=\left\langle 1, \ldots, N \mid \psi_{\lambda_{1}, \ldots, \lambda_{N}}\right\rangle
$$

2.3 Bosons

There are only slight differences in the way second quantization works for fermions and for bosons. In the case of bosons, the basis states are symmetrized functions and the number of bosons in a given single-particle state is not restricted. These properties are ensured by the commutation relations

$$
\begin{equation*}
\left[b_{\alpha}, b_{\beta}\right]=b_{\alpha} b_{\beta}-b_{\beta} b_{\alpha}=0, \quad\left[b_{\alpha}, b_{\beta}^{\dagger}\right]=\delta_{\alpha, \beta} \tag{6}
\end{equation*}
$$

with the (annihilation) creation operators $\left(b_{\alpha}\right) b_{\alpha}^{\dagger}$. From Eq. (6), one can prove ${ }^{4}$ that

$$
\begin{align*}
b_{\lambda}^{\dagger}\left|n_{\lambda}\right\rangle & =\sqrt{n_{\lambda}+1}\left|n_{\lambda}+1\right\rangle \tag{7}\\
b_{\lambda}\left|n_{\lambda}\right\rangle & =\sqrt{n_{\lambda}}\left|n_{\lambda}-1\right\rangle
\end{align*}
$$

such that $\hat{n}_{\lambda}=b_{\lambda}^{\dagger} b_{\lambda}$ is indeed the number operator, $\hat{n}_{\lambda}\left|n_{\lambda}\right\rangle=n_{\lambda}\left|n_{\lambda}\right\rangle$.

3 Representation of operators

The complexity associated with wavefunction (anti)symmetrization has been reduced, in the formalism of second quantization, to the surprisingly simple commutation relations, Eq. (5) for fermions and Eq. (6) for bosons. Had the usual operators of the theory complicated expressions in terms of creation/annihilation operators, this would not be very useful. However, as we shall see below, the hamiltonian as well as standard operators do have simple expressions in second quantization.

3.1 Change of basis and the field operator

Starting with the expression $|\lambda\rangle=c_{\lambda}^{\dagger}|0\rangle$, one can insert the closure relation $\mathbb{1}=\sum_{\lambda}|\lambda\rangle\langle\lambda|$ to derive the transformation law for the creation/annihilation operators

$$
\begin{equation*}
c_{\alpha}^{\dagger}=\sum_{\lambda}\langle\lambda \mid \alpha\rangle c_{\lambda}^{\dagger}, \quad c_{\alpha}=\sum_{\lambda}\langle\alpha \mid \lambda\rangle c_{\lambda}, \tag{8}
\end{equation*}
$$

from one basis to another. Hence, the change of basis only requires the calculation of matrix elements $\langle\alpha \mid \lambda\rangle$ involving single-particle states.

By convention, the field operator $\Psi(\mathbf{r})$ in a continuous problem is associated to the basis of position states $|\mathbf{r}\rangle$,

$$
\begin{equation*}
\Psi(\mathbf{r})=\sum_{\lambda}\langle\mathbf{r} \mid \lambda\rangle c_{\lambda} . \tag{9}
\end{equation*}
$$

Using Eq. (5) and Eq. (6), one finds the commutation relation

$$
\begin{array}{rlrl}
\left\{\Psi(\mathbf{r}), \Psi\left(\mathbf{r}^{\prime}\right)\right\} & =0, & & \left\{\Psi(\mathbf{r}), \Psi^{\dagger}\left(\mathbf{r}^{\prime}\right)\right\}=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right), \\
& \text { fermions, } \tag{10}\\
{\left[\Psi(\mathbf{r}), \Psi\left(\mathbf{r}^{\prime}\right)\right]=0,} & & {\left[\Psi(\mathbf{r}), \Psi^{\dagger}\left(\mathbf{r}^{\prime}\right)\right]=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right),} & \\
\text { bosons. }
\end{array}
$$

The total number of particles (fermions or bosons) is then given by

$$
\begin{equation*}
\hat{N}=\sum_{\lambda} c_{\lambda}^{\dagger} c_{\lambda}=\int d^{d} r \hat{\rho}(\mathbf{r}) \tag{11}
\end{equation*}
$$

[^1]where the local density operator $\hat{\rho}(\mathbf{r})=\Psi^{\dagger}(\mathbf{r}) \Psi(\mathbf{r})$ has been introduced.
Example: The transformation to the Fourier momentum representation reads
\[

$$
\begin{equation*}
\Psi(\mathbf{r})=\frac{1}{\sqrt{V}} \sum_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{r}} c_{\mathbf{k}} \tag{12}
\end{equation*}
$$

\]

where $c_{\mathbf{k}}$ destroys a particle with momentum \mathbf{k}. The total number of particle is given by $\hat{N}=\sum_{\mathbf{k}} c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}}$.

3.2 Representation of one-body and two-body operators

Single-particle or one-body operators have the form $\hat{O}^{(1)}=\sum_{i=1}^{N} \hat{o}^{(1)}[i]$ in first quantization, where $\hat{o}^{(1)}[i]$ is a single-particle operator acting on the i th particle. In the language of second quantization, they take the form

$$
\begin{equation*}
\hat{O}^{(1)}=\sum_{\alpha, \beta}\langle\alpha| \hat{o}^{(1)}|\beta\rangle c_{\alpha}^{\dagger} c_{\beta}, \tag{13}
\end{equation*}
$$

with the matrix elements $\langle\alpha| \hat{o}^{(1)}|\beta\rangle=\int d 1 d 2 \varphi_{\alpha}^{*}(1)\langle 1| \hat{o}^{(1)}|2\rangle \varphi_{\beta}(2)$.

Examples:

1. The kinetic energy operator $\hat{T}=\sum_{i} \mathbf{p}_{i}^{2} /(2 m)$, describing independent particles, reads in second quantization

$$
\begin{equation*}
\hat{T}=\sum_{\mathbf{k}} \frac{\hbar^{2} k^{2}}{2 m} c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}} \tag{14}
\end{equation*}
$$

i.e. it is diagonal in the momentum basis. An alternative expression involving the field operator is

$$
\begin{equation*}
\hat{T}=\int d^{d} r \Psi^{\dagger}(\mathbf{r}) \frac{(\hbar \nabla / i)^{2}}{2 m} \Psi(\mathbf{r})=\int d^{d} r \frac{\hbar^{2}}{2 m} \nabla \Psi^{\dagger}(\mathbf{r}) \cdot \nabla \Psi(\mathbf{r}) \tag{15}
\end{equation*}
$$

2. Tight-binding models are simplified band models for electrons in solids where only neighboring sites hybridize. A particularly simple example is given by the hamiltonian

$$
\begin{equation*}
\hat{H}=-t \sum_{\langle i, j\rangle}\left(c_{i}^{\dagger} c_{j}+c_{j}^{\dagger} c_{i}\right), \tag{16}
\end{equation*}
$$

where c_{i}^{\dagger} creates an electron on site i and $\langle i, j\rangle$ denotes neighboring sites. The product $c_{i}^{\dagger} c_{j}$ describes intuitively the hopping of an electron from site j to site i : one electron is annihilated on site j while a novel electron appears on site i. The hamiltonian Eq. (16) is diagonalized by going to the Fourier space $c_{\mathbf{k}}=\frac{1}{\sqrt{N_{s}}} \sum_{i} e^{-i \mathbf{k} \cdot \mathbf{r}_{i}} c_{i}\left(N_{s}\right.$ is the number of sites of the lattice), with the result $\hat{H}=\sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}}$. In one dimension, $\varepsilon_{k}=-2 t \cos (k a), a$ being the lattice spacing.

We now consider a two-body operator such as the Coulomb interaction of Eq. (2). In first quantization, it has the form

$$
\begin{equation*}
\hat{O}^{(2)}=\frac{1}{2} \sum_{i \neq j} \hat{o}^{(2)}[i, j], \tag{17}
\end{equation*}
$$

where $\hat{o}^{(2)}[i, j]$ accounts for pair interactions. In second quantization, it reads ${ }^{5}$

$$
\begin{equation*}
\hat{O}^{(2)}=\frac{1}{2} \sum_{\alpha, \beta, \gamma, \delta}\langle\alpha \beta| \hat{o}^{(2)}|\gamma \delta\rangle c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\delta} c_{\gamma}, \tag{18}
\end{equation*}
$$

with the matrix elements

$$
\begin{equation*}
\langle\alpha \beta| \hat{o}^{(2)}|\gamma \delta\rangle=\int d 1 d 2 \varphi_{\alpha}^{*}(1) \varphi_{\beta}^{*}(2) \hat{o}^{(2)}[1,2] \varphi_{\gamma}(1) \varphi_{\delta}(2) \tag{19}
\end{equation*}
$$

Example: Electron-electron Coulomb interaction is given in second quantization by

$$
\begin{equation*}
\hat{V}_{\text {Coulomb }}=\frac{1}{2} \sum_{\sigma_{1}, \sigma_{2}} \int d \mathbf{r}_{1} d \mathbf{r}_{2} \frac{e^{2}}{4 \pi \varepsilon_{0}\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \Psi_{\sigma_{1}}^{\dagger}\left(\mathbf{r}_{1}\right) \Psi_{\sigma_{2}}^{\dagger}\left(\mathbf{r}_{2}\right) \Psi_{\sigma_{2}}\left(\mathbf{r}_{2}\right) \Psi_{\sigma_{1}}\left(\mathbf{r}_{1}\right), \tag{20}
\end{equation*}
$$

in terms of the field operator $\Psi_{\sigma}(\mathbf{r})$. Here the spin σ of electrons has been included. After going to the Fourier momentum representation of Eq. (12), one obtains the alternative expression

$$
\hat{V}_{\text {Coulomb }}=\frac{1}{2 V} \sum_{\sigma_{1}, \sigma_{2}} \sum_{\mathbf{q}, \mathbf{k}_{1}, \mathbf{k}_{2}} v(q) c_{\mathbf{k}_{1}+\mathbf{q}, \sigma_{1}}^{\dagger} c_{\mathbf{k}_{2}-\mathbf{q}, \sigma_{2}}^{\dagger} c_{\mathbf{k}_{2}, \sigma_{2}} c_{\mathbf{k}_{1}, \sigma_{1}}
$$

with the Fourier transform of the Coulomb pair potential $v(q)=e^{2} /\left(\varepsilon_{0} q^{2}\right)$.

References

[1] H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics (Oxford University Press, Oxford, 2004).
[2] A. Altland and B. Simons, Condensed Matter Field Theory (Cambridge University Press, Cambridge, 2010).

[^2]
Theory of Condensed Matter

Exercises on second quantization

Xavier Leyronas, Christophe Mora

1 Starters

1. For $\alpha \neq \beta$, compute the matrix element $\langle 0| c_{\alpha} c_{\beta} c_{\alpha}^{\dagger} c_{\beta}^{\dagger}|0\rangle$ for fermions and for bosons.
2. Consider free fermions with spin $1 / 2$ in a box of volume V. Write the hamiltonian \hat{H}_{0} in second quantization in the Fourier momentum representation.
(a) Write the expression of the ground state $|\mathrm{FS}\rangle$.
(b) Compute the following quantities

$$
\left\langle\hat{n}_{k \sigma}\right\rangle=\langle\mathrm{FS}| c_{k \sigma}^{\dagger} c_{k \sigma}|\mathrm{FS}\rangle, \quad E_{0}=\langle\mathrm{FS}| \hat{H}_{0}|\mathrm{FS}\rangle, \quad N_{0}=\langle\mathrm{FS}| \hat{N}|\mathrm{FS}\rangle,
$$

in the thermodynamic limit $V \rightarrow+\infty$.
3. In the case of fermions, prove that

$$
c_{\alpha}^{\dagger}\left|\left\{n_{\beta}\right\}\right\rangle=\left\{\begin{array}{lr}
(-1)^{\sum_{\beta<\alpha} n_{\beta}}\left|n_{1} n_{2} \ldots 1 n_{\alpha+1} \ldots n_{N}\right\rangle & \text { if } n_{\alpha}=0 \tag{1}\\
0 & \text { if } n_{\alpha}=1
\end{array}\right.
$$

and

$$
c_{\alpha}\left|\left\{n_{\beta}\right\}\right\rangle=\left\{\begin{array}{lcr}
0 & \alpha & \text { if } n_{\alpha}=0 \tag{2}\\
(-1)^{\sum_{\beta<\alpha} n_{\beta}} \mid n_{1} n_{2} \ldots 0 & \left.n_{\alpha+1} \ldots n_{N}\right\rangle & \text { if } n_{\alpha}=1
\end{array}\right.
$$

4. Show that the change of basis

$$
c_{\beta}^{\dagger}=\sum_{\alpha} U_{\beta \alpha} c_{\alpha}^{\dagger},
$$

preserves the canonical commutation relations iff U is a unitary matrix. Is $U_{\beta \alpha}=\langle\beta \mid \alpha\rangle$ a unitary matrix? Show that the expression of the number operator $\hat{N}=\sum_{\alpha} c_{\alpha}^{\dagger} c_{\alpha}$ is not modified by the above transformation.
5. For bosons, show that

$$
\left|n_{1} n_{2} \ldots\right\rangle=\prod_{i} \frac{\left(b_{i}^{\dagger}\right)^{n_{i}}}{\sqrt{n_{i}!}}|0\rangle .
$$

6. Compute the commutator $\left[\hat{H}_{0}, \hat{N}\right]$ for free fermions. What is the meaning of the result? Is it modified when interactions are taken into account?
7. Consider spinless free fermions or free bosons.
(a) Derive the expression $\hat{H}_{0}=\sum_{k} \varepsilon_{k} c_{k}^{\dagger} c_{k}$ from $\hat{H}_{0}=-\left(\hbar^{2} / 2 m\right) \int d r \psi^{\dagger}(r) \nabla^{2} \psi(r)$.
(b) Derive the expression of the Coulomb pair potential in the momentum representation starting from $\hat{V}_{\text {Coulomb }}=\frac{1}{2} \sum_{\sigma_{1}, \sigma_{2}} \int d r_{1} d r_{2} V\left(r_{1}-r_{2}\right) \Psi_{\sigma_{1}}^{\dagger}\left(r_{1}\right) \Psi_{\sigma_{2}}^{\dagger}\left(r_{2}\right) \Psi_{\sigma_{2}}\left(r_{2}\right) \Psi_{\sigma_{1}}\left(r_{1}\right)$.
8. Consider the one-dimensional tight-binding model $(t>0)$

$$
\begin{equation*}
\hat{H}=-t \sum_{i}\left(c_{i}^{\dagger} c_{i+1}+\text { h.c. }\right), \tag{3}
\end{equation*}
$$

with periodic boundary conditions $c_{N_{s}+1}=c_{1}$, describing the hopping of electrons on a lattice of N_{s} sites with lattice spacing a. Diagonalize the hamiltonian by going to the Fourier space and show that the eigenenergies are given by

$$
\varepsilon_{k}=-2 t \cos (k a) .
$$

What are the admissible values for the wavevector k ?
9. The local density operator is given for a single particle by $\hat{\rho}(\mathbf{r})=|\mathbf{r}\rangle\langle\mathbf{r}|$. Give the expression of $\hat{\rho}(\mathbf{r})$ in second quantization in a given basis $\left|\varphi_{\lambda}\right\rangle$ of one-particle states. Give $\hat{\rho}(\mathbf{r})$ in the basis of position states $|\mathbf{r}\rangle$. In the basis of momentum states $|\mathbf{k}\rangle$, give $\hat{\rho}(\mathbf{r})$ and then its Fourier transform

$$
\hat{\rho}(\mathbf{q})=\int d \mathbf{r} \hat{\rho}(\mathbf{r}) e^{-i \mathbf{q} \cdot \mathbf{r}}
$$

2 Spin operator

We consider fermions with spin $1 / 2$. We denote by $\alpha=\uparrow, \downarrow$ the spin component. The spin operator of the many-body system assumes the form

$$
\begin{equation*}
\hat{\mathbf{S}}=\sum_{\lambda} c_{\lambda \alpha^{\prime}}^{\dagger} \frac{\sigma_{\alpha^{\prime} \alpha}}{2} c_{\lambda \alpha} \tag{4}
\end{equation*}
$$

where $\sigma=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ is a vector composed by the standard Pauli matrices ${ }^{1}$, and λ denotes the set of additional quantum numbers (wavevector, lattice site index, etc).

1. Forget about spin for one moment and consider a finite Hilbert space with N one-particle states. We use the notation $c^{\dagger}=\left(c_{1}^{\dagger}, c_{2}^{\dagger}, \ldots, c_{N}^{\dagger}\right)$ as a vector with N entries. Prove the following identity

$$
\left[c^{\dagger} A c, c^{\dagger} B c\right]=c^{\dagger}[A, B] c
$$

where A and B are $N \times N$ matrices.
2. Use the previous result to show that the spin operator in Eq. (4) satisfies the commutation relations of the Lie group $\operatorname{SU}(2)$.
3. Can we say something specific about $\hat{\mathbf{S}}^{2}$?
4. Give the spin raising and lowering operators $\hat{S}^{ \pm}=\hat{S}_{x} \pm i \hat{S}_{y}$ in terms of creation and annihilation operators.

We take the Hubbard model in the atomic limit : a single site governed by the hamiltonian

$$
\hat{H}=\varepsilon_{d}\left(\hat{n}_{\uparrow}+\hat{n}_{\downarrow}\right)+U \hat{n}_{\uparrow} \hat{n}_{\downarrow}
$$

where $\hat{n}_{\sigma}=d_{\sigma}^{\dagger} d_{\sigma}$.
5. Give the size of the corresponding Hilbert space.
6. Diagonalize the hamiltonian.
7. Precise the spin for each eigenstate.

3 Hartree-Fock

We consider a gas of N electrons with spin $1 / 2$. The hamiltonian includes kinetic and Coulomb energies, $\hat{H}=\hat{T}+\hat{V}$ or

$$
\begin{equation*}
\hat{H}=\sum_{\sigma, \mathbf{k}} \varepsilon_{k} c_{\mathbf{k} \sigma}^{\dagger} c_{\mathbf{k} \sigma}+\frac{1}{2 V} \sum_{\sigma_{1}, \sigma_{2}} \sum_{\mathbf{q}, \mathbf{k}_{1}, \mathbf{k}_{2}} \frac{e^{2}}{\varepsilon_{0} q^{2}} c_{\mathbf{k}_{1}+\mathbf{q}, \sigma_{1}}^{\dagger} c_{\mathbf{k}_{2}-\mathbf{q}, \sigma_{2}}^{\dagger} c_{\mathbf{k}_{2}, \sigma_{2}} c_{\mathbf{k}_{1}, \sigma_{1}} . \tag{5}
\end{equation*}
$$

This hamiltonian can not be diagonalized. We shall therefore treat the Coulomb interaction \hat{V} in perturbation theory.

1. What is the ground state of the system in the absence of \hat{V} ?
2.

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

2. Show that the correction to the ground state energy, to leading order in \hat{V}, has two contributions : a direct Hartree term, which in this case is infinite, and an exchange Fock term.
3. Compute the Fock term using the identity

$$
\mathcal{V}_{q}=\sum_{\mathbf{k}} \theta\left[\varepsilon_{F}-\varepsilon_{\mathbf{k}}\right] \theta\left[\varepsilon_{F}-\varepsilon_{\mathbf{k}+\mathbf{q}}\right]=\frac{4 \pi k_{F}^{3}}{3}\left[1-\frac{3}{4} \frac{q}{k_{F}}+\frac{1}{16}\left(\frac{q}{k_{F}}\right)^{3}\right] \quad \text { for } \quad|\mathbf{q}|<2 k_{F}
$$

and zero for $|\mathbf{q}| \geq 2 k_{F}$. Find the result

$$
\frac{\delta E}{V}=-\frac{k_{F}^{4}}{4 \pi^{3}} \frac{e^{2}}{4 \pi \varepsilon_{0}}
$$

4 Finite temperature and thermodynamics

We recall that the partition function Z in the grand canonical ensemble is given by

$$
Z=\operatorname{Tr} e^{-\beta(\hat{H}-\mu \hat{N})}
$$

where the trace is taken over all states of the many-body Hilbert space. μ denotes here the chemical potential. The mean value of an operator \hat{O} acting in the many-body Hilbert space is then given by

$$
\langle\hat{O}\rangle=\frac{1}{Z} \operatorname{Tr}\left[\hat{O} e^{-\beta(\hat{H}-\mu \hat{N})}\right] .
$$

1. Suppose that the hamiltonian is diagonal in the occupation number for some particular one-particle basis,

$$
\hat{H}=\sum_{\lambda} \varepsilon_{\lambda} \hat{n}_{\lambda} .
$$

This implies in passing that particles are independent, i.e. not interacting. Show that the partition function factorizes as $Z=\prod_{\lambda} Z_{\lambda}$.
2. Give the expression of Z_{λ} for fermions and for bosons.
3. Compute $\left\langle\hat{n}_{\lambda}\right\rangle$ for fermions and for bosons. Which distributions do we find?

1. Starters
2. $<0 \mid c_{\alpha} c_{\beta} c_{\alpha}^{+} c_{\hat{B}} \operatorname{los} \quad \beta_{B} \neq \beta$

aromolizel)
$\rightarrow 2^{\text {nd }}$ method:
quantization in solutions

$$
\begin{aligned}
& F:\langle 0| c \alpha c \beta c_{\alpha}^{+} c^{+} \beta|0\rangle=-\langle 0| c \alpha c_{\alpha}^{+} c_{\beta} C \beta|0\rangle, \mu_{\beta}\left\{c_{\beta}, c_{0}^{+}\right\}=0 \\
& =-\langle 0| c \alpha c_{\alpha}^{+}\left(\nabla-c_{1}^{+}(\beta) \operatorname{lo}\right) \operatorname{fr}\left\{\left(\alpha, \alpha_{1}^{+}, \alpha\right\}=1+\beta\right. \\
& =0(\text { mull nectar }) \\
& =-\langle 0(c \alpha c \alpha 10) \\
& =-\langle 0| 11-\underbrace{c_{\alpha}^{+} C_{\alpha}|0\rangle}_{=0}=-1
\end{aligned}
$$

B: Ane thwing uith + scopus. $:+1$

$$
\begin{aligned}
& 2 \cdot \hat{k}=\sum_{\vec{k}, \sigma} \& \vec{k}|\vec{k}, \sigma\rangle\langle\vec{k}, \sigma|, k_{2}=\frac{2 \pi}{L_{v}} n_{2}, n_{v} \in \mathbb{Z} \\
& \Sigma \vec{k}=\frac{\hbar^{2} \vec{k}^{2}}{2 m} \backslash\langle\vec{r} \mid \vec{k}\rangle=\frac{e^{\vec{k}} \cdot \vec{r}}{\sqrt{V}} \quad \sigma=T, \downarrow(\operatorname{cosin}) \\
& \text { Lectane } \Rightarrow \hat{H}_{0}=\sum_{\vec{k}, \sigma} \varepsilon \vec{k} c_{\vec{k}, \sigma}^{+} \overrightarrow{C_{k}} \sigma \\
& V=4 x L_{y} L_{3}
\end{aligned}
$$

(a) Fermi Sed (o Fermi Sphere). Fill all the

$$
\left.|F S\rangle=\prod_{\left|R_{2}\right|\left\langle k F_{1}\right.} c_{\frac{1}{1} \uparrow}^{c_{k}}\left|\frac{1}{2}\right| 0\right\rangle
$$

The wave-nectors ofthe occupied 1-part stotas lies sinide a phere of radius kF, ble Fermi wave-mubor

$$
(b)\langle\hat{n} k \sigma\rangle=\left\langle f s \left\lvert\, C \frac{t}{k} \sigma c k \sigma\right. \| F s\right\rangle
$$

2uther lRI<RF We hane
 so we have:

Sone thang for $\sigma=\psi$.
Thenefore: $\langle f s| \hat{n}+\frac{1}{k}|f S\rangle=1$ if $|\vec{k}|<k F$
Condubrén $\langle F S| \hat{n} k_{p}|f s\rangle=\theta\left(k_{F}-|\bar{k}|\right)$

$$
(3 D)
$$

$$
\begin{aligned}
& E_{0}=\langle F S| \hat{H}_{0}|F S\rangle=\sum_{k \sigma} \Sigma_{k}\langle F S| \hat{n} k \sigma|F S\rangle \\
& =\sum_{k \sigma} \sum_{k} \theta(k f-|k|) \\
& V \rightarrow \infty: \sum_{k} \rightarrow y \int_{k} \frac{d^{3} \vec{k}}{(2 \pi)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{E 0}{K}=\frac{1}{10 \pi^{2}} \frac{h^{2}}{k^{2}} k_{F}^{5}
\end{aligned}
$$

$$
\begin{aligned}
& =c_{k \|-\left(c_{k N}^{+}\right)^{2}}^{c_{k N}} \\
& =|F S\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =2 v \frac{(4 \pi)^{\circ}}{(2 \pi)^{3}} \quad \frac{f k f}{b} d k k^{2} \\
& \frac{N}{V}=\frac{k_{F}^{3}}{3 \pi^{2}}
\end{aligned}
$$

3.

$$
\begin{aligned}
c_{\alpha}^{+}|\{n \beta\}\rangle= & c_{\alpha}^{+} \mid n_{1} n_{2}-n_{\alpha} \ldots n_{N} \\
& n_{\rho}=0 \text { o } 1
\end{aligned}
$$

 of a Fackstole $\mid n_{1} n_{2}-n_{k}$ anN \rangle, fiom loffr to sugher. Fonexample if the 1 -poct stoter 4\rangle ed 12 one ecaupheid, we wate $\left.\left|\hat{1}{ }_{1}^{2}\right\rangle \equiv c_{1}^{+}\left|c c_{2}^{+}\right| 0\right\rangle$.
If hy definitanan we write $\left(c^{+}\right)^{0} \equiv 1$, we conunta:

$$
\begin{aligned}
& \left.\ln 1 m_{2}-n_{N}\right\rangle=\left(c_{1}^{+}\right)^{n-c_{1}^{2} c_{1} p_{2}^{2}}\left(c_{2}^{+}\right)^{n_{2}}- \\
& \text { Coproxtor } \\
& \left.\left(c^{+}\right)^{n}\right)^{n} 10>
\end{aligned}
$$

Hence we have:

$$
c^{+}|\{n \beta\}\rangle=c_{\alpha}^{+}\left(c_{1}^{+}\right)^{n_{1}}\left(c_{2}^{+}\right)^{n_{2}} \cdot\left(c_{\alpha}^{+}\right)^{n_{\alpha}} \cdot\left(c_{N}^{+}\right)^{n^{N}}|0\rangle
$$

$0-1$ commntt $\left.\left(C^{+} \beta\right)^{\alpha} p=\mu!\right)$ if $\mu \beta=0$
Therefore $\quad c_{\alpha}^{+}\left(c_{1}^{+}\right)^{n}=(-1)^{n p}\left(c_{p}^{+}\right)^{n} c_{\alpha}^{+}$
Thus we have:

$$
\begin{aligned}
& c_{\alpha}^{+}\left|\left\{_{n}{ }_{\beta}\right\rangle=(-1)^{n_{1}+n_{2} \cdot n_{n}}\left(c_{n}^{+}\right)^{n_{1}}-c_{\alpha}^{+}\left(c_{\alpha}^{+}\right)^{n_{\alpha}}-10\right\rangle \\
& \text { if } n_{\alpha}=1: c_{\alpha}^{+} c_{\alpha}^{+}=0
\end{aligned}
$$

If $n \alpha=0:$ we reconer che Foch slote with $n_{\alpha}-1$

In the solle unay, une find?
4. $c_{\beta}^{+}=\sum_{\alpha} U_{\beta \alpha} c_{\alpha}^{+}$, hene $c_{\beta}=\sum_{\alpha}\left(U_{\beta \alpha}\right)^{*} c_{\alpha}$

F: $\left.\left\{C_{\beta,} c_{\beta}\right\}\right\}=\sum_{\alpha \alpha}, U_{\beta \alpha} \cup_{\beta^{\prime} \alpha^{\prime}}\left\{c_{\alpha}, c_{\alpha}{ }^{\prime}\right\}$ (1)

$$
{ }_{0}\left\langle\beta, c^{\prime}{ }^{\prime}\right\}=\sum_{\alpha \alpha} U_{\beta \alpha}\left(U_{\beta^{\prime} \alpha^{\prime}}\right)^{*}\left\{c_{\alpha}, c_{\alpha^{\prime}}^{\prime}\right\}(2)
$$

- If $\left.\left\{C_{\beta}, c^{+} \beta^{\prime}\right\}=S \beta \beta^{\prime} \quad \operatorname{an}\left\{c_{\alpha} c_{\alpha}^{+}\right\}=\operatorname{Ja\alpha }^{\prime \prime}\right\}$
$\operatorname{fin}\left(\alpha^{\prime}\right): \quad S \beta \beta^{\prime}=\sum_{\alpha \alpha^{\prime}} u_{\beta \alpha}\left(u_{\beta} \alpha^{\prime}\right)^{k} f_{\alpha \alpha^{\prime}}$

$$
\begin{aligned}
& =\sum_{\alpha}^{\alpha} U_{\beta \alpha} \frac{\left(U_{\beta}^{\prime} \alpha\right)^{*}}{=U_{\alpha}^{+}}=\sum_{\alpha} U_{\beta \alpha} U_{\alpha \beta}^{+} \\
& =\left(U U^{+}\right)_{\beta \beta}
\end{aligned}
$$

Therefre $U^{+}=1$ -
 Frime (1): $\left\{C_{\left.\beta, C \beta^{\prime}\right\}}=\sum_{\alpha \alpha^{\prime}} U U-x_{0}=0\right.$
From $(2):\left\{c_{\beta}, c_{\beta}^{\prime} \beta^{\prime}\right\}=\sum_{\alpha} U_{\alpha} U_{\alpha}\left(U_{\beta^{\prime}} \alpha^{\prime}\right)^{*} \delta_{\alpha \alpha}$.

$$
\begin{aligned}
& =\sum_{\alpha}^{\alpha} u_{\beta \alpha}{ }^{\alpha}\left(u_{\left.\beta^{\prime} \alpha\right)^{*}}{ }^{\circ}=\left(u^{\alpha}\right)_{\beta \beta}^{\prime}\right. \\
& =f_{\alpha \beta} \\
& \equiv u_{\alpha}^{+} \mu^{\prime}
\end{aligned}
$$

Theiefore we recoswantede comonncol comutation neletion for the apendtou in the num roow.
$B \cdot:$ same thinf

$$
\begin{aligned}
& U \beta \alpha=\langle\beta \mid \alpha\rangle \quad\left(U^{+}\right)_{\alpha \beta} \equiv\left(U_{\beta \alpha}\right)^{*}=(\langle\beta \mid \alpha\rangle)^{*} \\
& \left(U^{+} U\right)_{\alpha \alpha}=\sum_{\beta}\left(U^{+}\right)_{\alpha \beta} U_{\beta \alpha}=\langle\alpha \mid \beta\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\sum\left\langle\langle\alpha \mid \beta\rangle\langle\beta \mid \alpha\rangle=\langle\alpha| \frac{(2 \beta \beta \mid)|\alpha|\rangle}{\approx 11}\right. \\
& =\langle\alpha \mid \alpha\rangle=f \alpha \alpha \mid
\end{aligned}
$$

Thanfore UE unitary.
5. We check that if $\left.\ln 1 n_{12}-0\right\rangle=\frac{\pi \cdot}{1} \frac{\left(b_{1} \pm_{1}\right)^{n_{1}}}{\sqrt{n+1}}|10\rangle$, whole
i) $b_{i}^{+}\left|\cdots n_{i}-1\right\rangle=\sqrt{n_{i}+1} \ldots 1-n_{i}+1 \ldots$
in, $b_{i}\left|-\cdots n_{i} \cdots\right\rangle=\sqrt{n_{i}}| | n_{i}-1 \cdots>$
i). $b_{2}^{+} \ln 1 n_{2} \gg: b_{i}$ commute nth the $(b+j)^{n j}$. Hence:
ii) Da communes with all the $\left(b_{1}^{+}\right)^{n i}$ if fol $^{-} \neq i$

Marva, del the $\left(b_{1}\right)^{n+\prime}$ s comate, and we dock $\left(b_{t}\right)^{n}$ adthetail prightrmos place.

$$
b_{i} \ln n_{2} \rightarrow=\frac{\left(b_{1}^{+}\right)^{n_{1}}}{\sqrt{n_{1}!}}-\frac{b_{2}\left(^{+}\left(b_{1}\right)^{n_{1}}\right.}{\sqrt{n_{1}!}} l_{1}
$$

$$
\begin{aligned}
& \left.=\sqrt{n_{1}+1} \ln A_{2} \ldots\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{\beta} c_{\beta}^{+} c_{\beta}=\sum_{\beta}\left(\sum_{\alpha_{1}} \bigcup_{\beta \alpha_{1}} c_{\alpha_{1}}^{*}\right)\left(\sum_{\alpha_{2}}\left(U_{\beta-\alpha_{2}}\right)^{*} c_{\alpha_{2}}\right) \\
& =\frac{\sum_{\alpha_{1} \alpha_{2}} c_{\alpha_{1}}\left(\sum_{\beta} U_{\beta} \mu_{1} U_{\left.\beta \alpha_{2}\right)^{*}}^{U_{1}}\right) C_{\alpha_{2}} .}{U_{\alpha_{2} \beta}^{+}}
\end{aligned}
$$

unay ; $b^{t}=1+b^{+} b$, une cosidy fand

$$
\begin{aligned}
b\left(b^{+}\right)^{n} & =\frac{\left.b b+\left(b^{+}\right)^{n-1}=\left(b^{+}\right)^{n-1}+b^{+}+b^{(} b^{+}\right)^{n-1}}{1+b^{+} b^{n}-1} \\
& \left.=2\left(b^{+}\right)^{n-1}+\left(b^{+}\right)^{2} b\left(b^{+}\right)^{n-2}\left(b^{+}\right)^{n-2}+b^{+} b b^{+}\right) \\
& =n\left(b^{+}\right)^{n-1}+\left(b^{+}\right)^{n} b
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{n_{1}} \cdot \frac{\left(b_{1}\right)^{n_{1}}}{\sqrt{n_{1}!} \cdot \frac{\left(b_{i}^{+}\right)^{n_{i}-1}}{\sqrt{\left.n_{i}-1\right)!}} 100} \\
& =\sqrt{n_{1}!} \ln +1 \quad>
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6. }\left[\hat{H}_{0}, \hat{N}\right]=\sum_{k_{1} k_{2}} \sum k_{1}\left[C_{k_{1} \sigma_{1}}^{+} c k_{1} \sigma_{1}, c_{k_{2} \sigma_{2}}^{+} \subset k_{2} \sigma_{2}\right] \\
& \text { - if } \frac{\left(k_{1} \sigma_{1}\right)}{\#_{1}} \neq \frac{\left(k_{2} \sigma_{2}\right)}{\equiv 2},\left[c_{1}^{+} c_{1}, c^{+} c_{2}\right]=c^{+}\left[c_{1}, c^{+} c_{2}\right] \\
& \left.+\in c_{1}^{+}, c^{+}+c_{2}\right) c_{1} \\
& {\left[c_{1}, c^{+} c_{2} c_{2}\right]=c_{1} c_{2}^{+} c_{2}-c_{2}^{+} c_{2} c_{1}=(-1)^{2} c_{2}^{+} c_{2} c_{1}-c_{1} c_{1} c_{1}} \\
& =0^{-c^{F_{2} c_{1}}} \\
& \text { out in the saine way } c\left(-1_{1}, c_{2} c_{2}\right)=0
\end{aligned}
$$

Therefore $\left(c_{1} c_{1}, c^{\frac{1}{2}} c_{2} D=0\right.$

- if $\left(k_{1} k_{1}\right)=\left(k_{2} q_{2}\right)$, whe hone chruangh $\left[\hat{n}_{1}, \hat{n}_{1}\right]=0$

Therefore $\left[\hat{H}_{0}, \hat{N}\right]=0$
From Quiontaim Mechaneios, iff a suptem of hamiltanian Ho commutes with an oliserndble $\hat{\theta}$ chin means $\hat{0}$ is Consened, Here, we find thatipa njocem of foree fommions (Ramiltomin Ho), the total poaticle number is conserned, rutich is obrians. Interaction do not clange the total pootice mumba chenefoe une dooliame THint, $\hat{N}]=0$
7. Lectire: field aperator
$e \cdot g-\quad \psi(\vec{R})=\frac{\sum_{k} \frac{e^{\sqrt{k} \cdot n^{2}}}{\sqrt{V}}<\frac{2}{k}}{\sqrt{V}}$
Inmer: $C \alpha=\int d \overrightarrow{\omega_{L}}\left(\varphi_{\alpha}(\vec{\pi})\right)^{*} \psi(\vec{r})$

$$
e \cdot q \cdot c=\int d\left(\vec{r} \cdot \frac{e^{-i} \vec{a} \cdot \vec{r}}{\sqrt{v}} \psi(\vec{r})\right.
$$

(2)
$-S a_{1} R e^{-1}\left(+\left(h_{1}+h_{2}\right)-\left(k_{3}+k_{1}\right)\right)-R$

$$
\Rightarrow V \& k_{1}+k_{2} k_{1} 3+k 4
$$

Aque

$$
\begin{aligned}
& 9=6_{4}-k_{1} \quad 3 \text { mew } 2 \text { ? unde } \\
& =-\left(k_{3}-k_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+k_{1}-k_{1}=-k_{2}+k_{3}=k_{2}\right) \\
& C l e-2
\end{aligned}
$$

हो Voulen $V_{1}=\frac{1}{2} \sum_{1 \sigma_{2}} \frac{1}{V} \sum_{k_{1} k_{2}}$
 looted arauned \vec{R}_{i} state $|i\rangle$
Tight-binding homptomin: $i=1, N_{s}$

annitiliction opercor
$c k+2 \pi=\sum \operatorname{Ne}^{-12 \pi n}(b)=c_{k} \Rightarrow k \in 1 B Z=C-\frac{\pi}{C}$

(k) engemeitor with eigemnolue $e^{i k a}+e^{k} N_{s} e^{i k o}$ $\left.\left(N_{s}+1\right)\right]$

Check: $C_{n}=\sum_{k \in 1 B z} \frac{1}{\sqrt{N_{s}}} e^{\frac{1}{k n-a}} c^{1}$

$$
\frac{\hat{\rho}(\vec{r}) \pm \int d r_{1} \alpha \mu_{2} f\left(r_{1}-\vec{r}\right)}{\left(\hat{\rho}(\vec{r})=\psi\left(\frac{1}{r_{2}}-\bar{r}\right) \psi\left(\overrightarrow{r_{1}}\right) \psi\left(r_{2}\right)\right.}
$$

$$
\hat{\rho}(\vec{r})-\psi+(\bar{n}) \psi(\bar{r})
$$

$-\left|\lambda_{1}\right\rangle=\left|k_{1}\right|$

$$
\varphi_{1}(\pi)=\frac{1}{\sqrt{V}} e^{i k_{1}} \pi
$$

$$
\begin{aligned}
& { }_{l} d_{1}=\left\lvert\, k_{1} \quad \varphi_{1}(\pi)=\frac{1}{\sqrt{V}} e^{i k_{1}} \lambda_{1}\right. \\
& \hat{j}(\lambda)=k_{1} \quad-k_{2}\left(k_{1}-k_{2}\right) \sqrt{2} k_{1}^{+} c k_{2}
\end{aligned}
$$

$$
E J=V \delta k_{2}-k_{1}, \quad k_{1}=k_{2}-1
$$

$$
\begin{aligned}
& \hat{f}(\vec{\rho})=\sum\left\langle<\lambda_{1} \mid \hat{\rho_{1}} \lambda_{1+1}(\vec{r}) \quad \lambda_{2}\right\rangle d_{1}+\lambda_{1} C \lambda_{2} \\
& =\sum_{\lambda_{1} \lambda_{2}}\left\langle\lambda_{1} \mid \vec{r}\right\rangle\left\langle\tilde{r}^{1} \mid \lambda_{2}\right\rangle c_{\lambda_{1}}^{+}\left(\lambda_{2}=\sum_{\lambda_{1} \lambda_{2}}\left(\varphi_{\lambda_{1}} \mid \vec{R}\right)\right)^{*} \varphi_{\lambda_{2}}\left(\frac{\pi}{\tau}\right)
\end{aligned}
$$

$$
\begin{aligned}
& c_{d_{1}}=M_{\left(z_{1}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{H}=-t \sum_{n}\left(\sum_{k_{1}} \frac{1}{\sqrt{r}} e^{x^{i} n^{n} a} c_{k_{1}}^{t}\right)\left(\sum_{k_{2}} e^{-i^{\prime} k_{2}(n+1) a} c_{k_{2}}\right. \\
& =\sum_{k_{1} k_{2}} \frac{1}{\left(\sqrt{\left.r_{1}\right)^{2}}\right.}(-t)\left(\sum_{n} e^{e^{n} q\left(k_{1}-k_{2}\right)}\right) e^{N_{S} k_{2} a_{1}, k_{2}} c_{k_{1}} c_{k_{2}+h_{1}} \\
& =\sum_{k_{1}}-t\left(\vec{e}^{i k_{1} a}+t^{i+1 k^{1 a}}\right) c_{k_{1}}^{+} C k_{1} \\
& \hat{H}=\sum_{k}^{2}-2 t \cos k \quad c^{+} c k \quad c^{2} k \\
& \text { 9.1poct opentor: } \\
& f^{n-1}(\vec{r})=|\vec{r}\rangle<\vec{r} \mid \\
& 2^{44} \text { anoution: }
\end{aligned}
$$

2- Spi openotor:

$$
\frac{1}{S}=\sum_{d} a_{N} \alpha^{\prime} \sigma_{\alpha} c_{\alpha} C_{d}
$$

 (ceppected uncices).

$$
\sigma_{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

2. $\quad \nu=x, y, 3$

$$
\left.C \hat{S} v_{1} \hat{S}_{\nu^{\prime}}\right]=\sum_{\alpha} \sum_{d}\left[{ }^{\prime}{ }^{\prime}{ }^{\prime} \alpha \mid\right]
$$

$C D=0$ if $\lambda \neq d$

$$
\begin{aligned}
& c_{d}^{+}=\left(c_{+1}^{+} c_{d}^{+}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =A \alpha_{1} \alpha_{2} \alpha_{1} \alpha_{2}^{C} \alpha_{\alpha_{2}} C_{4} C_{\alpha_{3}}{ }^{B} C_{\beta} \alpha_{\beta} \alpha_{4}\left[\alpha_{4}\right] \\
& {\left[c_{1}^{\frac{1}{2}} c_{2} p_{1}^{+} c_{4}\right]=c_{1}^{+}\left[c_{2}, c_{3}^{+} c_{4}\right]+\left[c_{1}^{1}, c_{3} c_{4}\right] c_{2}} \\
& =\delta_{2}, 3 c_{1}^{4} c_{4}-S_{14} c_{3}^{+} c_{2} \\
& {[1]=A_{\alpha_{1}}+\alpha_{2} B \alpha_{3} \alpha_{4}\left(\delta_{\alpha_{2} \alpha_{3}} C \alpha_{1}+C \alpha_{4}-\delta_{\alpha_{1} \alpha_{4}} C_{\alpha_{3}}^{+} C_{\alpha_{2}}\right)} \\
& =C_{\alpha_{1}}^{+} A_{\alpha_{1} \alpha_{2}} \beta_{\alpha_{2} \alpha_{4} c_{\alpha}} \\
& \text { - } C_{\alpha_{3}^{+}}^{+} B \alpha_{3} \alpha_{4} A \alpha_{1 \alpha+} C \alpha_{2}^{2} \\
& =C+A B C-C+B A C \\
& =\frac{c+[A+B] C}{N \times N-\sqrt{2}+C}
\end{aligned}
$$

$$
\begin{equation*}
=i \Sigma v x^{\prime} v^{\prime \prime} \hat{S}^{\prime \prime} \quad(\hbar=11) \tag{12}
\end{equation*}
$$

 (Liagrap $\left.{ }^{\prime} S \cup(2)^{\prime \prime}\right)$.
3. 1st quantination:

$$
\hat{s}=\sum_{i=1}^{N}(\hat{s}+i) ; \text { Adition: } N \text { spinin } 1 / 2
$$

Total spaia $\left\{\begin{array}{l}0 \text { Neten } \\ \frac{1}{2} N_{0} d a\end{array}\right\} \leq \frac{N}{2}$

$$
\frac{s^{2}}{2}-\hbar^{2} s(s+1) .
$$

$$
\begin{aligned}
& \text { 4. } \hat{S}^{+}=S_{x}+i S_{y} \\
& =\frac{1}{2} \sum_{\lambda} c_{\lambda_{x}}^{+}\left(\sigma_{x}+1 \sigma_{y}\right)_{h_{\alpha} \alpha} c_{\lambda \alpha} \\
& \frac{1}{2}\left(\sigma x+1 \sigma_{y}\right)=\left(\begin{array}{cc}
0 & \frac{1}{2}\left(1-1^{2}\right) \\
\left(\frac{1}{2}+i^{2}\right) & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array} \quad \alpha \quad \alpha=1 / \alpha=-10\right. \\
& \hat{S}^{+}=\sum_{\lambda} c_{\lambda \lambda}^{+} c_{\lambda \downarrow} \quad \hat{S}_{z}=\frac{1}{2} \sum_{\lambda} c_{\lambda 1}^{+} c_{d} r-c_{\alpha L}^{+}+ \\
& \hat{S}=\sum_{\lambda} c_{\lambda \downarrow}^{+} c_{\lambda \uparrow}
\end{aligned}
$$

5. Single sita. Hilbat space: $\{|0\rangle,|\uparrow\rangle,|\downarrow\rangle| | \downarrow\rangle\}$

$$
\text { Dumension: } \left.: 4 \hat{A}\left|\sigma=d^{+}\right| 0\right\rangle
$$

$$
|\hat{|p\rangle}\rangle=\alpha+1 \alpha+|0\rangle
$$

6. $\hat{H}|0\rangle=0, \hat{H}|\hat{\lambda}\rangle=\Sigma \alpha|\hat{}| \hat{H} \hat{H}|\downarrow\rangle=\varepsilon \alpha|\downarrow\rangle$

$$
\hat{H}|\hat{\psi}\rangle=(2 \varepsilon L+U) \mid \hat{\psi}
$$

$$
\left(\begin{array}{ccc}
0 & & 0 \\
0 & \varepsilon_{d} & \\
0 & 2 \varepsilon d+u
\end{array}\right)
$$

Spir of each eigurstate.

$$
\begin{aligned}
& 103: s=0 \\
& 1 \lambda \lambda: 5=\frac{1}{2} \quad 14 \lambda-s=\frac{1}{2}
\end{aligned}
$$

$114\rangle-5=0$
Proto:

$$
\begin{aligned}
& \left.S^{+}|T \downarrow\rangle=d_{+}^{+} d d_{1}^{+} \alpha_{t}^{+} 10\right\rangle \\
& =\frac{-k^{+}+d^{t}}{=0} d d^{+}+10 \lambda=0 \\
& \hat{s}-|T \nu\rangle=\alpha^{+}=0 \quad 2 x-\alpha+10 \lambda \\
& =(-1)^{2}-1+\alpha+\frac{\left(\alpha^{+}\right)^{2}}{=0}=0 \\
& \left.\hat{S}_{z}|\uparrow \downarrow|=\frac{1}{2}\left(\alpha_{1}^{+} \alpha \tau-\alpha_{\psi}^{+\alpha}\right) \text { d } 1+\alpha \mid 10\right\} \\
& =\left(\frac{1}{2}-\frac{1}{2}\right) \&+d t \operatorname{los}-0
\end{aligned}
$$

3. Harthe-Fock $H=1+\hat{1}$
4. Coname stabe of the man-iatinacting uyytem.

Fenni-Sea
2. Bumbation vheory 1 sp $\operatorname{setan} \operatorname{tin} \mathrm{V}$.

$$
\begin{aligned}
& i_{1}\left(k_{1}+9, \sigma_{1}\right)=\left(k_{1}, \sigma_{1}\right) \\
& \left(k_{2}-6, \sigma_{2}\right)
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \left(k_{2}-q_{1}, \sigma_{2}\right)=\left(k_{2}\right)=\left(k_{1}\right) \\
& \left(k_{1}+\sigma_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(k_{1}+\sigma_{1}\right)=\left(k_{2}, \sigma_{2}\right) \\
& \left(k_{2}-9, \sigma_{2}\right)=\left(k_{1}, \sigma_{1}\right)
\end{aligned}
$$

i) $-1=0,<>=<S_{1} C$ ch
\#offf $\left|k_{1}\right|<k=$

Habtree contirt ques o, iburmafetpatheneight.

$$
\begin{aligned}
& \frac{1}{2 v} \sum_{e^{2}}^{\sum\left(\sigma_{2}\left(k_{1} \theta\left(k_{c}-k_{1}\right)\right)\right)\left(\sum_{k_{2}} \theta\left(k_{c}-\left(k_{2}\right)\right)\right.} \\
& \quad A V \in R \in E N-1
\end{aligned}
$$

$$
\begin{aligned}
& \left|k_{2}\right|<k F
\end{aligned}
$$

$$
\begin{aligned}
& N B\left(k_{1} \sigma_{n}\right)=\left(b_{2} \sigma_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{G E =} \mathrm{FSI} \hat{V} \mid F S S
\end{aligned}
$$

$$
\begin{aligned}
& \text { Therefore the omerictot } \rightarrow \text { (urelem. mefueton) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (A) } \sigma_{2}=\sigma_{1} \quad k_{2}=k_{1}+q
\end{aligned}
$$

$$
\begin{aligned}
& =0 \theta\left(k_{F}=\left(k_{1}\right)\right) \theta\left(k_{F}=\left(k_{1}+1\right)\right) \\
& I b q=0 \quad<\left(c^{+}+1,0 \pi\right)^{2}\left(c_{1} 1,0_{1}\right)^{2}>=-0
\end{aligned}
$$

Fock contilentione

$$
\begin{aligned}
& \frac{1}{2 V} \sum_{\phi=0}^{\infty} \frac{e^{2}}{\sum_{0} q^{2}}\left[\sum_{k_{1}} \theta\left(k_{F}-1 k_{1} 1\right) \quad 0\left(k_{f}-1 k_{1+7}\right)\right] \\
& \text { iftext } C D=v_{9}=\frac{1}{62+3} \frac{\left.4 \pi k f^{3}-1-\frac{3}{4}+\frac{1}{16}\left(\frac{1}{k+}\right)^{3}\right]}{1}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{16 \pi 4} \frac{1}{2}^{2} \mathrm{Rf}^{4} \\
& \begin{array}{|c|c|}
\hline \frac{f f_{0 c h}}{V}-\frac{k^{4}}{4 \pi^{3}} \frac{e^{2}}{4 \pi \varepsilon_{0}} \\
\hline
\end{array}
\end{aligned}
$$

4. Fimite temperalare and themodymamics:

$$
\text { 1. } z=T_{2}\left[e^{\beta\left(z_{\lambda}\left(\varepsilon_{\lambda}-\mu\right) \hat{\mu}_{\lambda}\right)}\right]
$$

Bosis of Fack stater.

$$
\begin{array}{ll}
\ln _{\lambda_{1}} n_{\lambda_{2}} \quad 1> & F \cdot n_{\lambda}=0,1 \\
& B-n_{1}=0,41_{2}
\end{array}
$$

$$
\begin{aligned}
& \text { Tnb! } \\
& \left.=\left(\sum_{n \lambda_{n}=-1} e^{\beta\left(\sum \lambda_{1}\right.} \mu\right) \|_{n}\right)\left(\sum_{n \lambda_{2}}=\right. \\
&)(1) \\
& Z=Z \lambda_{1} \cdot z \lambda_{2} \cdots=z_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& z \lambda=\frac{1}{\left[1-\bar{e}^{\beta(\varepsilon \lambda-\mu)]}\right.}(\varepsilon \lambda-\mu>0!)
\end{aligned}
$$

$B_{1}\left\langle\hat{n}_{\lambda}\right\rangle=\frac{1}{z} \sum_{n_{1}-0, p_{2}=0,1-1} \sum_{n_{\lambda}=0,1,} n_{\lambda} e^{\beta\left(\varepsilon_{d}-\mu\right) n_{\lambda}}$

$$
\begin{aligned}
& =\frac{\lambda_{1} \neq \lambda \lambda_{1}\left[\sum_{n \lambda=-} n \lambda e^{\beta(z d-\mu) n d}\right]}{\lambda_{1} \neq \lambda \lambda_{1}\left[\sum_{n}=e^{\beta(\Sigma \lambda-\mu) n \lambda]}\right.} \\
& \langle\hat{n} \lambda\rangle=\frac{1}{\beta} \frac{\partial}{\partial \mu} \frac{(z \lambda)_{+}}{z \lambda}=\frac{1}{\beta} \frac{\alpha(\log z \lambda)_{T}}{\partial \mu}
\end{aligned}
$$

$$
\begin{aligned}
& \beta:<\hat{i} \phi\rangle=-\frac{1}{\beta} \frac{\alpha}{2 \mu}\left(\log \frac{1}{z_{i}}\right)=-\frac{1}{\beta}\left(-\beta^{-\beta(z a+\mu)}\right. \\
& \left.\langle\hat{\mu} \hat{\prime}\rangle=\frac{1}{\left[e^{\beta(\varepsilon x-\mu)}-1\right]}\right] \text { Bese Einatan' }
\end{aligned}
$$

[^0]: ${ }^{1}$ Restricted to (anti-)symmetrized wavefunctions, \mathcal{F}_{2} is a subset of the larger space $\mathcal{H}_{1} \otimes \mathcal{H}_{1}$.
 ${ }^{2} \mathrm{~A}$ different choice for the set of single-particle states $|\lambda\rangle$ gives, using Eq. (1), a different many-particle basis that nevertheless spans the same Hilbert space \mathcal{F}_{N}.

[^1]: ${ }^{4}$ The states $\left|n_{\lambda}\right\rangle$ are chosen to be normalized to 1 .

[^2]: ${ }^{5}$ Note the ordering of indices which, in the product of annihilation operators, is reversed with respect to the ordering in the matrix element.

