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Abstract—Xilinx System Generator is a Matlab/Simulink high-

level based design tool especially for the development of complex 

digital circuits using Hardware Description Language (HDL). In 

this paper we propose a high level model for the deblocking filter 

used in H.264/AVC using System Generator of Matlab/Simulink. 

Synthesis results are compared with implementations realized using 

RTL level. The proposed model allows for rapid edits of the 

architectures and permits the implementation of filters used in 

other standards and norms (HEVC for example). The proposed 

implementations are verified using Xilinx-Virtex5 platforms. 

Keywords—Deblocking Filter; H.264/AVC codec; Hardware 

IPs; System-Generator; System-on-Chip. 

I.  INTRODUCTION 

The deblocking filter is one of new tools used in the 
H.264/AVC. This adaptive filter is used both in the encoder 
and in the decoder to eliminate the artifacts on the block 
boundaries [1]. In fact, the original frames used in H.264/AVC 
are partitioned into blocks and macroblocs of pixels and all 
processing are based on them which introduces artifacts on the 
block boundaries. This filter is used to increase the coding 
efficiency and to improve the decoded video quality [2]. 

Recently, several software and hardware implementations 
are proposed for the deblocking filter. The reconfigurable 
computing and FPGAs have been successfully used in recent 
years to implement complex algorithms into hardware, 
obtaining astonishing results compared to processor-based 
solutions in terms of performances and reusability [3]. The 
hardware implementations for the deblocking filter are based 
on various filtering orders to limit the access to memories in 
FPGA and to give the possibility of parallel processing 
[4][5][6][7]. Generally, these implementations used the 
hardware description languages (HDL) level which is still 
visible only by specialists with various difficulties 
encountered when switching between architectures. Edit the 
HDL codes remains a very difficult stage even for specialists 
who realize such codes. The use of graphical tools, such as 
Matlab/Simulink, has become a necessity in most 
implementations. 

The System Generator of MATLAB/Simulink is a fully-
featured tool for simulation programs for the FPGA. It is also 
possible to provide system modeling and automatic code 
generation from MATLAB/Simulink [8]. Using the Xilinx-

specific blocksets, System Generator gives the ability to 
simulate a Simulink model and generate a synthesizable HDL. 
System Generator integrates RTL, embedded IP, MATLAB 
and hardware components. Using System Generator for DSP, 
developers with little FPGA design experience can quickly 
create and implemented FPGA designs. 

The main idea of this work is to realize a new model for 
the deblocking filter using MATLAB/Simulink. This model is 
based on the Xilinx System Generator tool and we used the 
same hardware architectures proposed in [9][10] using the 
VHDL. System Generator allows self-generation of VHDL 
code for the deblocking filter from the initial Simulink model. 
The new model is beneficial where the objective is to 
implement the filter without requiring detailed knowledge of 
hardware design and HDL. It’s also beneficial especially when 
we seek to edit the same implementation or when switching 
from one implementation to another. The advantage of this 
approach is also highlighted in terms of reducing concept-to-
Silicon design time and effort. 

The rest of this paper is organized as follows: in Section 2 
we give an overview of the deblocking filter used in the 
H.264/AVC. In Section 3 we give the related works. In 
Section 4 we introduce the System Generation tool integrated 
in Matlab/Simulink. In Section 5 we describe firstly the 
hardware implementations used for the deblocking filter. 
Secondly, we detailed the new model for the deblocking filter 
based on System Generator. Simulation and synthesis results 
are given in this section. Finally, in Section 6 we present the 
conclusions and outline future work. 

II. THE DEBLOCKING FILTER USED IN H.264/AVC 

The H.264/AVC was jointly developed in an open standard 
process by the world leading experts of the ITU-T Video 
Coding Experts Group and the ISO/IEC Moving Pictures 
Experts Group [11]. Actually, the H.264/AVC is well suited 
for various types of video services including mobile phone 
applications, broadcast SDTV and HDTV services via 
satellite, cable or terrestrial transmission, HD-DVD and 
Digital Cinema, etc. in-fact, the H.264/AVC achieves a 
significant improvement in coding efficiency when compared 
to other coding methods. It can save as much as 25% to 45% 
and 50% to 70% of bitrate when compared to MPEG-4 and 
MPEG-2 respectively [12]. 
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Fig. 1. The deblocking filter location in the H.264/AVC. 

As shown in figure 1, the encoding system is composed of 
the forward path (encoding) and the inverse path (decoding). 
The forward path predicts each macroblock using intra-
prediction or inter-prediction; it also transforms and quantizes 
the residual, then it forwards the result to the entropy encoder 
module. Finally, it generates the output packets in the NAL 
module. The inverse path involves the reconstruction of the 
macroblock from the previously transformed data by utilizing 
the inverse transform and quantization, the reconstruction 
module and the deblocking filter [13]. The decoder is 
composed practically by the same modules in the inverse path. 

A. The Deblocking filter  

H.264/AVC was proposed to take advantage of the 
temporal and spatial redundancy occurring in successive 
visual images [14]. In a video sequence, the video 
compression efficiency achieved by this standard is not the 
result of any single feature but rather a combination of a 
number of encoding tools and algorithms, one of these tools 
being the adaptive deblocking filter [1]. In-fact, H.264/AVC is 
a block-based coding system: the original frame is partitioned 
into blocks of pixels, and the algorithm performs the 
prediction, transformation and quantization based on them [4]. 
However, the use of block-based processing often introduces 
artifacts on the block boundaries [15]. For this reason the 
deblocking filter is used to decrease these artifacts, which 
increases the coding efficiency and improves the decoded 
video quality [2]. 

Previous video codecs utilize a post-filter only in the 
decoder to improve visual quality at the output. At the 
encoder, specifically at the motion-compensation module, 
unfiltered decoded frames are used as reference to reconstruct 
further frames [11]. In H.264, the filter is used in the encoder 
and in the decoder (Figure 1) in order to manipulate the same 
reference images [5]. However, the deblocking algorithm used 
in the H.264/AVC is more complex than the filter used in 
previous video compression standards [6]. Some of the 
complexities of this filter explained as follows. First of all, the 
H.264 deblocking filter is highly adaptive and applied to each 
boundary of all the 4×4 luma and chroma blocks of pixels in a 
16×16 macroblock of pixels. Second, it can update 3 pixels in 
each direction, in which the filtering takes place. Third, in 
order to decide whether the deblocking filter will be applied to 
a boundary, the related pixels in the current and the 
neighborhood blocks must be read from memory. Because of 
these complexities, the deblocking filter can easily account for 
one-third of the computational complexity of an H.264/AVC 
[1]. 

B. Software architecture of the DBF 

According to the H.264/AVC software reference, the 
deblocking filter module receives as input the reconstructed 
macroblocs of pixels, from the Inverse Transform and 
Quantization modules. These modules generate the 
reconstructed macroblock, one 4×4 block at a time. In 
H.264/AVC, the filtering stage is applied to each 4×4 block 
boundary, in a specific order, as shown in Figure 2.a. Vertical 
boundary edges (A, B, C and D) are filtered first, followed by 
the horizontal ones (E, F, G and H) [16]. All filtering steps 
take place from left to right and from top to bottom. Moreover, 
macroblocks are processed in a raster-scan order over the 
frame. The deblocking filtering process consists of modifying 
pixels at the four block edges by an adaptive filtering process. 
This process is performed using one of the five different 
standardized filters, selected through the means of a Boundary 
Strength (BS) calculation [11]. Figure 2.b defines graphically 
some notions employed in the deblocking Filter. 
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Fig. 2. Edge filtering order in macrobloc and pixels adjacent to boundaries. 

 Boundary Strength  

The boundary strength is obtained from the block type and 
some pixel arithmetic calculation are used to determine if the 
existing pixel differences along the block border are a natural 
image edge or an artifact [2]. Through this process, it is 
decided whether or not the filtering is necessary, and how 
much strength has to be applied. The filtering outcome 
depends on the BS and on the gradient of the image samples 
across the boundary [4].  
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Fig. 3. The Deblocking filter algorithm used in H.264/AVC. 
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Fig. 4. Filtering order proposed by the H.264/AVC standard, by Li et al and by Chen et al. 

The BS parameter is chosen according to the rules given 
by the standard, as shown in Figure 3. The result of applying 
these rules is the fact that the filter is stronger at places where 
blocking distortion is significant, such as the boundary of an 
intra coded MB or a boundary between blocks that contain 
coded coefficients [17]. When filtering a block boundary, 
eight pixels are involved and some of them may be modified 
according to the BS value. In H.264/AVC, BS is set to five 
different levels (0 to 4) and the bigger BS is, the stronger the 
filtering will be. When BS=0, no filtering is applied and none 
of the pixels are changed; when BS=4, the strongest filtering 
may modify six pixels in the process. When BS lies between 1 
and 3 means some weaker filtering, modifying four pixels 
only [15]. 

 Filter Selection  

Once the BS has been calculated in the block, the filtering 
of boundary samples is determined by analyzing each pixel on 
the block boundary. A Group of samples from the set (p2, p1, 
p0, q0, q1, q2) are filtered only if BS > 0 and |p0-q0| < α and 
|p1-p0| < β and |q1-q0|≤ β [1]. α and β are thresholds defined 
in the standard [17]. They increase with the average Quantize 
Parameter (QP) of the two blocks p and q. The effect of the 
filter decision is to ‘switch off’ the filter when there is a 
significant change across the block boundary in the original 
image. When QP is small, a very small gradient across the 
boundary is likely to be applied to image features. In contrast, 

block effects should be preserved and so the thresholds α and 
β are low. When QP is larger, blocking distortion is likely to 
be more significant and α, β are higher so that boundary 
samples are filtered [11]. 

Figure 3 shows the overall algorithm of the highly adaptive 
deblocking filter used in H.264/AVC. There are several 
conditions that determine whether a 4×4 block boundary will 
be filtered or not. There are additional conditions that 
determine the strength of the filtering for each 4×4 block 
boundary. This filter can change the values of up to 3 pixels 
on both sides of a block boundary depending on the outcomes 
of these conditions [1].  

III. RELATED WORK 

The most important restriction imposed by the deblocking 
filter used in H.264 CODECs is the filtering order of pixels. 
The sequential filtering order proposed by H.264/AVC [17] is 
shown in Figure 4.a. The restriction imposed is that if a pixel 
is involved in vertical and horizontal filtering, then the 
horizontal filtering should precede the vertical. This is rather 
loose and offers opportunities for implementation optimization 
by exploring different filtering schedules, aiming faster 
operation through the use of parallelism or at solutions that 
consume less memory. Several authors have proposed 
different filtering orders to limit the access to memory and to 
give the possibility of parallel processing. Khurana et al. [18] 



proposed different filtering orders where horizontal and 
vertical filtering alternate. Sheng et al. [19] proposed an order 
where a higher frequency of vertical-horizontal filtering 
direction changes is observed. Li et al. [7] proposed another 
solution involving a degree of parallelism with vertical and 
horizontal filtering occurring at the same time, speeding up the 
filtering at the cost of having to use two filtering units. The 
scheduling for this solution is presented in Figure 4.b. 

Chen et al. [15] proposed a new strategy with only 18 steps 
instead of 21 steps for the luminance (Figure 4.c). The authors 
used 4×4 pixel register, one transpose array, one 16×32Bit 
SRAM and two 1-D filter units (one for filtering the vertical 
boundary and the other for filtering the horizontal boundary). 
The use of two filters in pipeline architecture reduces the 
number of clock cycles required to process a macroblock of 
pixels to 120. Messaoudi et al. [9][10] proposed new hardware 
architectures for the deblocking filter used in H.264/AVC. 
These architectures use the same filtering order used in [15] 
where the two elementary filters (horizontal and vertical 
filters) are decomposed into four directional filters, each for 
one direction (left, right, top and bottom). An additional 
directional filter (vertical right) is used specifically to filter the 
left neighborhood blocks [9]. This technique also eliminates 
the need for the transpose circuit, simplifies the control unit 
and allows for pipelined architectures [10] particularly when 
using a 128-bit data bus [9]. In these implementations for the 
deblocking filter a new strategy for memory management is 
used. Several on-chip memories are employed to support 
efficient parallel access in order to speed up the entire filtering 
process.  

IV. HIGH-LEVEL MODELING TOOLS FOR SYSTEM-ON-CHIPS  

Computation intensive multidimensional data applications 
are more and more present in several domains such as image 
and video processing. These systematic applications are 
characterized by a very large amount of data-parallelism and 
the processing of multidimensional data arrays. Generally, real 
time and critical conditions should be ensured in these 
applications [3]. The modeling of highly repetitive structures 
in graphical form poses a particular challenge if a hierarchical 
approach is not adopted [20]. Currently, several high level 
modeling tools are used to perform embedded systems, 
namely: MDSDF (Multi-dimensional Synchronous Dataflow), 
Daedalus system-level design [21], GASPARD2 [22] and 
MATLAB/Simulink [23][24]. Using these high level modeling 
environments, several examples are given as to how the 
structure described is subsequently mapped into VHDL code 
[25]. These tools are beneficial where the objective is to 
implement the algorithms without requiring detailed 
knowledge of hardware design and hardware description 
languages. 

MATLAB is interactive software proposed by MathWorks 
for numerical computations that simplifies the implementation 
of linear algebra routines. Powerful and matrix operations can 
be performed by using MATLAB commands. Simulink [23] is 
an additional MATLAB toolbox that provides for modeling, 
simulating and analyzing dynamic systems within a graphical 
environment [8]. Recently, MathWorks and Xilinx engineers 
have finalized tools specifically to generate HDL code from 

Simulink models containing both native Simulink blocks and 
Xilinx-specific blocks. In-fact, Xilinx System Generator is a 
MATLAB Simulink blockset that facilitates FPGA hardware 
design [23]. It extends Simulink in many ways to provide a 
modeling environment that is well suited to hardware design. 
System Generator provides access to underlying FPGA 
resources through low-level abstractions, allowing the 
construction of highly efficient FPGA designs. It integrates 
RTL, embedded, IP, MATLAB and hardware components. 
With System Generator for DSP, developers with less FPGA 
knowledge can create promptly FPGA implementation in a 
very short time compared to traditional RTL development one. 

System Generator complements HDL design tasks by 
providing an easily configured test bench for both functional 
simulation and hardware verification. System Generator uses 
the built-in interface to HDL simulators like ModelSim to 
simulate the HDL codes within MATLAB environment. It 
also permits the Real-time hardware verification. The design 
can be tested in hardware at the targeted input rate and 
clocking frequency. The output of the hardware is captured 
into MATLAB and compared with the output test vectors. In-
fact, we can used Xilinx-specific blocks for simulation, for 
code generation and for post-simulation. System Generator 
has a varied blocksets which can be automatically compiled to 
an FPGA target. For developers already familiar with HDL, 
System Generator provides additional advantages with even 
the possibility of incorporated already developed HDL 
modules using the Simulink Black-Box. 

Figure 5 shows the System Generator design flow. System 
Generator works within the Simulink model-based design 
methodology [24]. Firstly, the application or the algorithm can 
be developed and implemented using the standard Simulink 
blocksets. Matlab/Simulink uses floating-point numerical 
precision and without hardware detail. This software 
implementation can be verified using Simulink simulation 
results. System Generator can be used to specify the hardware 
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Fig. 5. System Generator design flow.  



implementation details for the FPGA devices using Xilinx 
DSP blockset. The hardware implementation can be verified 
both using Simulink simulation and System generator 
simulation. Simulation results can be compared in order to 
propose necessary modifications. System Generator invokes 
Xilinx Core Generator to generate the vhdl code, the NGC file 
or the Bitstream for the specified FPGA device. As mentioned 
in [23] [24], several steps are required before and after the 
generation of synthesizable codes.  

The authors in [25] present a good example concerning the 
methodology for implementing real-time applications on 
reconfigurable logic platform using Xilinx System Generator. 
A new architecture is detailed using System Generator for 
Color Space Conversion for video processing. The proposed 
methodology aims to improve the design verification 
efficiency for such complex system. 

V. HARDWARE IMPLEMENTATION FOR THE FILTER  

A. The used implementation 

Firstly, we use hardware implementations for the 
deblocking filter proposed in [9] and [10]. We used RTL-level 
of these implementations. These implementations are realized 
based on four and five directional filters respectively. In [15] 
the main idea is the use of two elementary filters in pipeline 
architecture instead of a single filter used in other 
implementations. In [9][10], each elementary filter is divided 
into two directional elementary filters (left and right for the 
vertical filter and high and low for the horizontal filter). A 
fifth directional filter is added in [9] specifically to filter the 
left neighborhood blocks of the current macroblock of pixels 
(Figure 6). This subdivision allows us to better manage the 
internal memory; it also clearly separates the data input/output 
for each elementary filter. In addition, the two 
implementations utilize a 32-bit or 128-bit data width. The 
128-bit data width is used in order to avoid the transposition 
circuits. 

 Implementation strategy 

As mentioned in Figure 7, the used hardware 
implementations for the deblocking filter are based on three 
steps: 

 Defining a strategy for loading and storing blocks in order 

to limit the access to external memories. 

 Defining a processing strategy using the elementary 

modules (elementary filter). 

 Defining a processing strategy in each elementary filter in 

3 stages: BS selection, filtering decisions and filtering 

implementation. 

For the first step, two approaches are possible to save 
blocks of pixels being processed and their neighboring blocks 
of pixels: either through the use of internal memories or 
external memories. In the used implementations, we utilize 
internal memories to record the current macrobloc (16 blocks 
of pixels) being processed (macroblock Buffer in Figure 6), 
the four neighborhood blocks at the left (4 Left-Block Buffer 
in Figure 6) and all the neighborhood blocks in the same row 
at the top of the current macroblock (4 Up-locks Buffer or 4 
Line Buffer in Figure 6). At the end of treatment of a 
macrobloc, the four blocks of pixels at the right are stored in 
the neighborhood left memory to serve as left neighborhood 
for the next macrobloc. The four blocks of pixels at bottom in 
the treated macrobloc are stored in the neighborhood top 
memory. These blocks are used to serve as top neighborhood 
of the next row of macrobloc s. This strategy has the following 
advantages: 

 It limits the number of accesses to external memories, 

which means a gain from the perspective of processing 

time and reduction in power consumption. 

 Memory reuse to save different successive blocks. 

 Provides several reading strategies of data for the 

processing modules to improve data-parallelism. 

 Uses memories with inputs/outputs of 128-bits, instead of 

registers. It does so by consuming only 36 Kbits memory, 

which represents a BRAM block in the used devices.  

In Figure 7, BS values for each block of pixels are 
assumed to be provided by the upstream processing modules; 
these values are calculated based on the used processing 
method, the position and type of the processed block of pixels, 
and the selected partitioning strategy in the prediction modules 
of the encoder. 

 The processing strategy used in deblocking filter    

To implement the deblocking filter in the first architecture, 
we use four cascaded directional filters in order to obtain a 
parallel processing of blocks as indicated in figure 8.a. In the 
second architecture, an additional vertical-right filter is used in 
parallel with the vertical-left filter specifically to process the 
left neighborhood blocks of the current macrobloc (Figure 
8.b). In this implementation, the two vertical right-filters run 
alternatively (in ping-pong manner), if the first works the
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Fig. 6. The used hardware implementations for the deblocking filter [9][10]. 
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Fig. 7. Deblocking filter implementation strategy. 

other is set to idle by the selection command line. If the 
second works, the first is set to idle by forcing the value of BS 
to zero (no filtering). This is true for the blocks B4, B8, B12 
and B16 (Figure 8.c), where the edges on the right are not 
filtered. Using an additional filter has the following 
advantages: 

 We eliminated multiplexers that are between the 

elementary modules in figure 6.a.  The selection conditions 

will be solely used on the control inputs. 

 Intermediate buffers (which lie between the elementary 

filters) are also deleted. 

In Figure 8 (a and b) are depicted the filter ordering of 
different blocks of pixels in each elementary filter. We also 
show the order and timing of output data and intermediate 
blocks of pixels that will be recorded in the neighborhood 
memories. At the deblocking filter output, the following 
orders of the processed blocks are observed: V1 (Lf1), H1 
(Up1), H2-4, V2, B1-3, V3, B5-11 (Figure 8.c). At the end of 
treatment, the other blocks will be recorded as follows:  

 The blocks B4, B8, B12 and B16 are stored in the 

neighborhood-left memory to serve as neighborhood-left 

of the next macroblock.  

 The Blocks V4, B13, B14, B15 and B16 are stored in 

neighborhood-top memory to serve as neighborhood-up of 

the next row of macroblocks. 

At the data output of the deblocking filter, it is necessary 
to add an addressing system to rearrange the processed blocks 
in their correct positions in macroblocks stored in external 
memories. Blocks at image boundaries are not filtered, 
because there are no neighbors. This is not the case for other 
blocks with neighbors in four directions. This causes an 
irregularity and, consequently, increases the complexity of the 
control unit of the filter. In order to avoid this inconvenience, 
we propose to apply the filter for all blocks and to just change 
the values of BS. 

 Elementary filter hardware architecture   

Each directional filter is used to process the current blocks 
of an input in one direction, according to the input values (BS, 
Alpha, Beta and tc0) calculated in the main module. As shown 
in Figure 2.b, for each filter operation, eight pixels (p3-0, q0-
3) on both sides of the edge act as the input of the deblocking 
filter (Figure 9). By using the chart in Figure 3, the internal 
architecture is almost the same for the five directional filters. 
The filtering equations are the same; the only differences are 
theirs outputs which depend on filter direction. 
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(c) Deblocking filter outputs. 

Fig. 8. Timing and order of filtered blocks of pixels and filter outputs. 
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Fig. 9. Elementary filter inputs/outputs. 

In each elementary filter, we propose to use registers for 
each condition to avoid the use of multiplexers. This increases 
the number of internal registers, but offers the possibility of 
pipelining the elementary filters. According to the proposed 
architectures, the pipeline is necessary in both horizontal 
filters to avoid overlapping blocks. 

 Synthesis results    

The two architectures decrypted in Figure 6 are 
implemented in vhdl and synthesized to Xilinx Virtex5 
XUPV5 platform. We used ModelSim6.1 for simulation and 
ISE12.2 tool for project design and synthesis. The first 
architecture proposed in this work takes a maximum number 
of clock cycles equal to 75 cycles to process one macroblock 
(16x16 pixels). The second one takes a maximum number of 
clock cycles equal to 71, which is about 40% less than the best 
of the competing proposals. A comparison is given in Table I 
concerning the number of clock cycles necessary to process 
one macrobloc, the number of used elementary filters, the area 
occupied by the required amount of memory and the type of 
used memories to store neighborhood blocs. 



TABLE I.  VARIOUS IMPLEMENTATIONS PROPOSED FOR THE 

DEBLOCKING FILTER USED IN H.264/AVC. 

 Cycles 

per MB 

Filter 

Cores 

Memory for 

current MB 

Memory for 

neighb. blocks 

H.264/AVC 192 1 512 Off-chip 

Khurana et al. [18] 192 1 128 Off-chip 

Sheng et al. [19] 192 1 80 Off-chip 

Li et al. [7] 140 1 112 Off-chip 

Chen et al. [15] 120 2 / On-chip 

Messaoudi et al [10] 59-75 4 256 On-chip 

Messaoudi et al [9] 55-71 5 256 On-chip 

 
Table II shows the synthesis results of the implemented 

filters. The filter in the first implementation consumes 9,274 
LUTs and was able to run at 165.44 MHz. In the second 
implementation, the filter occupied 7,506 LUTs and was able 
to run at 170.95 MHz. Both proposals produce the same 
quality of filtered images. However, the addition of a fifth 
directional filter in the second implementation provides the 
following benefits: 

 The elementary filters are connected directly without need 

for multiplexers. Therefore, the number of Luts used in the 

second proposal is decreased despite the use of a fifth 

elementary filter. In-fact, according to the results of 

synthesis, the number of Luts is reduced by 24%. 

 The number of clock cycles required for processing a MB 

is reduced to 71 cycles in the second implementation; 

which is about 40% less than the best of the competing 

proposals. 

TABLE II.  SYNTHESIS RESULTS OF THE TWO IMPLEMENTATIONS. 

 Four filters based 

implementation 

Five filters based 

implementation 

Used % Used % 

Number of Slice Registers 5,812 8 6,286 9 

Number of Slice LUTs 9,274 13 7,506 10 

Number of Block RAM/FIFO 10 7 12 8 

Maximum operating frequency 165.44MHz 170.95MHz 

Clock cycles per macrobloc 59 – 75 55 – 71  

 

 The High-level model using system generator  

Firstly, a black-box of each elementary filter is created as 
mentioned in figure 10. We felt that these elementary filters 
are already optimized using the vhdl and it is not necessary to 
reproduce them using the Simulink blockset. This is one of the 
highlights of System Generator that enables the use of black-
box to insert hdl codes in Simulink. The simulation of the 
overall pattern will be carried out according to these codes. 
During generation of the overall code System Generator uses 
the hdl codes of each black-box and seeks other codes of 
Simulink blocks in the Xilinx blocksets. 

 
Fig. 10. Black box for one elementary filter (Vertical-Left Filter). 

The next step is to connect the elementary filters to realize 
the two architectures presented in figure 6. We use memories 
for recording pixels of blocks being processed and 
neighboring pixels of neighboring blocks. We also use ROM 
for recording constant, multiplexers and de-multiplexers and 
counters for addressing the used memories, and comparators, 
concatenation operations, etc. 

 Self-generation of HDL codes 

After the creation and simulation of Simulink description, 
several steps are required before self-generation of hdl code. 
We define firstly the system 'clocking'. In this dialog the icon 
"FPGA clock period (ns)" defines the period in nanoseconds 
of the clock used. Secondly, we define the location of input / 
output on the FPGA plan (Allocation of pins). Knowledge of 
reserved addresses is needed from the datasheet each FPGA 
platform. Table III shows the synthesis results of the vhdl self-
generated using System generator for the two implementations 
based on four and five elementary filters.  

TABLE III.  SYNTHESIS RESULTS OF THE TWO IMPLEMENTATIONS 

SELF-GENERATED USING SYSTEM-GENERATOR. 

 Four filters based 

implementation 

Five filters based 

implementation 

Used % Used % 

Number of Slice Registers 6,214 9 6,084 9 

Number of Slice LUTs 9,724 14 8,122 10 

Number of Block RAM/FIFO 10 7 13 9 

Maximum operating frequency 165.44MHz 170.95MHz 

 

 Simulation results 

Matlab/Simulink allows simulation models performed a 
large number of tools in Simulink blocksets. We can also use 
other HDL simulators for the verification of self-generated 
codes. From Matlab/Simulink, we can, for example, appeal to 
the ModelSim simulator MenthorGraphics. This co-simulation 
is used to verify and compare the simulation results before 
going to the hardware implementation. In this work, we 
preferred the HDL simulation codes generated by System 
Generator using the same testbench files used for 
implementations of the first part. In-fact, all hardware 
architectures are simulated using a testbench file which can 
read images from extern files to feed them on the deblocking 
filter module and finally retrieve and rearrange the results. 
Figure 11 shows the simulation results of the proposed 
implementations. We used two images of Lena (256×256 
pixels) : the first is a filtered image after compression- 
decompression using the DCT and inverse DCT with a 
compression ratio of 1/4 ; similarly for the second image with 
a compression ratio of 1/16. In the filtered images, we notice 
that the filter is adaptive; it allows filtering and smoothing 
surfaces away from image edges. On the natural image edges 
the filtering is conditioned by several parameters as mentioned 
in Figure 3. In these image areas, pixels are almost filtered or 
unfiltered to keep the contours of objects in the image. Other 
simulation methods are used to simulate the HDL in System 
Generator using a black box of the top VHDL entity as 
detailed in [8]. The co-simulation is realized using the 
ChipScope Analyzer. It’s used where the complete HDL 
module is mapped onto hardware for real time simulation. The 



ChipScope Analyzer utilizes the JTAG connections mapped to 
the Xilinx-XUPV5 board and load information from FPGA 
device. 

   
Original image Image with a compression 

ratio of 1/16 
Filtered image 

   
Original image Image with a compression 

ratio of ¼ 

Filtered image 

Fig. 11. Simulation results of the proposed implementation. 

VI. CONCLUSION  

In this paper, we have presented and compared hardware 
implementations of the deblocking filter used in H.264/AVC. 
We have used two hardware implementations based on four 
and five elementary filters respectively using hdl level. The 
choice of using five elementary filters is made in order to 
reduce the number of clock cycles required to process a 
macroblock of pixels and to simplify the control unit circuitry, 
reducing as well the number of multiplexers and consequently 
the number of FPGA resources used. After, we have used 
System Generator to propose a high level model for each 
implementation. These models allow for rapid edits of the 
architectures and permit the implementation of filters used in 
other standards. Simulations and Synthesis results are 
compared with implementations realized using RTL level 
using Xilinx-Virtex5 platforms. 
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