
Adaptive Hardware Implementation for the Deblocking

Filter Used in H.264/AVC Using System Generator

Kamel Messaoudi Amira Yahi Nawfel Messaoudi

Electrical engineers department

Mohemed Cherif Mssaadia University

Souk-Ahras, Algéria

kamel.messaoud@univ-annaba.org

El-Bay Bourennane Salah Toumi

LE2I Laboratory - Burgundy University, France

LERICA Laboratory – Badji Mokhtar University, Algeria

ebourenn@u-bourgogne.fr

salah.toumi@univ-annaba.org

Abstract—Xilinx System Generator is a Matlab/Simulink high-

level based design tool especially for the development of complex

digital circuits using Hardware Description Language (HDL). In

this paper we propose a high level model for the deblocking filter

used in H.264/AVC using System Generator of Matlab/Simulink.

Synthesis results are compared with implementations realized using

RTL level. The proposed model allows for rapid edits of the

architectures and permits the implementation of filters used in

other standards and norms (HEVC for example). The proposed

implementations are verified using Xilinx-Virtex5 platforms.

Keywords—Deblocking Filter; H.264/AVC codec; Hardware

IPs; System-Generator; System-on-Chip.

I. INTRODUCTION

The deblocking filter is one of new tools used in the
H.264/AVC. This adaptive filter is used both in the encoder
and in the decoder to eliminate the artifacts on the block
boundaries [1]. In fact, the original frames used in H.264/AVC
are partitioned into blocks and macroblocs of pixels and all
processing are based on them which introduces artifacts on the
block boundaries. This filter is used to increase the coding
efficiency and to improve the decoded video quality [2].

Recently, several software and hardware implementations
are proposed for the deblocking filter. The reconfigurable
computing and FPGAs have been successfully used in recent
years to implement complex algorithms into hardware,
obtaining astonishing results compared to processor-based
solutions in terms of performances and reusability [3]. The
hardware implementations for the deblocking filter are based
on various filtering orders to limit the access to memories in
FPGA and to give the possibility of parallel processing
[4][5][6][7]. Generally, these implementations used the
hardware description languages (HDL) level which is still
visible only by specialists with various difficulties
encountered when switching between architectures. Edit the
HDL codes remains a very difficult stage even for specialists
who realize such codes. The use of graphical tools, such as
Matlab/Simulink, has become a necessity in most
implementations.

The System Generator of MATLAB/Simulink is a fully-
featured tool for simulation programs for the FPGA. It is also
possible to provide system modeling and automatic code
generation from MATLAB/Simulink [8]. Using the Xilinx-

specific blocksets, System Generator gives the ability to
simulate a Simulink model and generate a synthesizable HDL.
System Generator integrates RTL, embedded IP, MATLAB
and hardware components. Using System Generator for DSP,
developers with little FPGA design experience can quickly
create and implemented FPGA designs.

The main idea of this work is to realize a new model for
the deblocking filter using MATLAB/Simulink. This model is
based on the Xilinx System Generator tool and we used the
same hardware architectures proposed in [9][10] using the
VHDL. System Generator allows self-generation of VHDL
code for the deblocking filter from the initial Simulink model.
The new model is beneficial where the objective is to
implement the filter without requiring detailed knowledge of
hardware design and HDL. It’s also beneficial especially when
we seek to edit the same implementation or when switching
from one implementation to another. The advantage of this
approach is also highlighted in terms of reducing concept-to-
Silicon design time and effort.

The rest of this paper is organized as follows: in Section 2
we give an overview of the deblocking filter used in the
H.264/AVC. In Section 3 we give the related works. In
Section 4 we introduce the System Generation tool integrated
in Matlab/Simulink. In Section 5 we describe firstly the
hardware implementations used for the deblocking filter.
Secondly, we detailed the new model for the deblocking filter
based on System Generator. Simulation and synthesis results
are given in this section. Finally, in Section 6 we present the
conclusions and outline future work.

II. THE DEBLOCKING FILTER USED IN H.264/AVC

The H.264/AVC was jointly developed in an open standard
process by the world leading experts of the ITU-T Video
Coding Experts Group and the ISO/IEC Moving Pictures
Experts Group [11]. Actually, the H.264/AVC is well suited
for various types of video services including mobile phone
applications, broadcast SDTV and HDTV services via
satellite, cable or terrestrial transmission, HD-DVD and
Digital Cinema, etc. in-fact, the H.264/AVC achieves a
significant improvement in coding efficiency when compared
to other coding methods. It can save as much as 25% to 45%
and 50% to 70% of bitrate when compared to MPEG-4 and
MPEG-2 respectively [12].

I

B

B

B

P

t

Intra

Prediction

Motion

estimation

Intra

Inter

Core coding

 Transform

Motion

Compensation

Quantization
Entropy

Coder

Rate

Distortion

Control

Inverse

Quantization

Inverse

Transform

Reconstructed

frames

Deblocking

Filter

Network

Packetize

Bit

Stream

Motion vector & Inter mode(s)

Intra mode (s)

Memory

+

-

+

-

+

+

Decoder blocs

Neighborhood

Inter

Intra

Motion vector & Inter mode

Intra mode

Bit

Stream

Entropy

Decoder

Inverse

Quantization
Inverse

Transfor

m

Intra

inter

Intra

Prediction

D
eb

lo
ck

in
g

F
ilter

I-frame

+
+

 P-frame

Motion

Compensation

+

+

I’

B’

B’

B’

P’

t

P

B

Neighborhood

I-frame

Fig. 1. The deblocking filter location in the H.264/AVC.

As shown in figure 1, the encoding system is composed of
the forward path (encoding) and the inverse path (decoding).
The forward path predicts each macroblock using intra-
prediction or inter-prediction; it also transforms and quantizes
the residual, then it forwards the result to the entropy encoder
module. Finally, it generates the output packets in the NAL
module. The inverse path involves the reconstruction of the
macroblock from the previously transformed data by utilizing
the inverse transform and quantization, the reconstruction
module and the deblocking filter [13]. The decoder is
composed practically by the same modules in the inverse path.

A. The Deblocking filter

H.264/AVC was proposed to take advantage of the
temporal and spatial redundancy occurring in successive
visual images [14]. In a video sequence, the video
compression efficiency achieved by this standard is not the
result of any single feature but rather a combination of a
number of encoding tools and algorithms, one of these tools
being the adaptive deblocking filter [1]. In-fact, H.264/AVC is
a block-based coding system: the original frame is partitioned
into blocks of pixels, and the algorithm performs the
prediction, transformation and quantization based on them [4].
However, the use of block-based processing often introduces
artifacts on the block boundaries [15]. For this reason the
deblocking filter is used to decrease these artifacts, which
increases the coding efficiency and improves the decoded
video quality [2].

Previous video codecs utilize a post-filter only in the
decoder to improve visual quality at the output. At the
encoder, specifically at the motion-compensation module,
unfiltered decoded frames are used as reference to reconstruct
further frames [11]. In H.264, the filter is used in the encoder
and in the decoder (Figure 1) in order to manipulate the same
reference images [5]. However, the deblocking algorithm used
in the H.264/AVC is more complex than the filter used in
previous video compression standards [6]. Some of the
complexities of this filter explained as follows. First of all, the
H.264 deblocking filter is highly adaptive and applied to each
boundary of all the 4×4 luma and chroma blocks of pixels in a
16×16 macroblock of pixels. Second, it can update 3 pixels in
each direction, in which the filtering takes place. Third, in
order to decide whether the deblocking filter will be applied to
a boundary, the related pixels in the current and the
neighborhood blocks must be read from memory. Because of
these complexities, the deblocking filter can easily account for
one-third of the computational complexity of an H.264/AVC
[1].

B. Software architecture of the DBF

According to the H.264/AVC software reference, the
deblocking filter module receives as input the reconstructed
macroblocs of pixels, from the Inverse Transform and
Quantization modules. These modules generate the
reconstructed macroblock, one 4×4 block at a time. In
H.264/AVC, the filtering stage is applied to each 4×4 block
boundary, in a specific order, as shown in Figure 2.a. Vertical
boundary edges (A, B, C and D) are filtered first, followed by
the horizontal ones (E, F, G and H) [16]. All filtering steps
take place from left to right and from top to bottom. Moreover,
macroblocks are processed in a raster-scan order over the
frame. The deblocking filtering process consists of modifying
pixels at the four block edges by an adaptive filtering process.
This process is performed using one of the five different
standardized filters, selected through the means of a Boundary
Strength (BS) calculation [11]. Figure 2.b defines graphically
some notions employed in the deblocking Filter.

A B C D

E

F

G

H

A B

C

D

16x16 Luma

8x8 Chroma

(a) Filtering order

p30 P20 p10 p00 q00 Q10

q20 q30

p block

(Previous block)

q block

(Current block)

Vertical Boundary

p30

p20

p10

p00

q00

q10

q20

q30

p block

q block

Horizontal Boundary

p31 p21 p11 p01 q01 q11

q21 q31

p32 P22 p12 p02 q02 q12

q22 q32

p33 p23 p13 p03 q03 q13

q23 q33

p31

p21

p11

p01

q01

q11

q21

q31

p32

p22

p12

p02

q02

q12

q22

q32

p33

p23

p13

p03

q03

q13

q23

q33

 (b) Pixels and blocks designation

Fig. 2. Edge filtering order in macrobloc and pixels adjacent to boundaries.

 Boundary Strength

The boundary strength is obtained from the block type and
some pixel arithmetic calculation are used to determine if the
existing pixel differences along the block border are a natural
image edge or an artifact [2]. Through this process, it is
decided whether or not the filtering is necessary, and how
much strength has to be applied. The filtering outcome
depends on the BS and on the gradient of the image samples
across the boundary [4].

Cond.1

Cond.2

Cond.3

Cond.4

bS = 0 bS = 1 bS = 4 bS = 2 bS = 3

Cond.1: One of the blocs is intra & the boundary is MB edge

Cond.2: One of the blocks is intra

Cond.3: One of the blocks has non-zero trans. Coeff

Cond.4: Diff. frames or Diff. of MVs ≥ 4
Yes

Yes

Yes

Yes

No

No

No

No

Start

BS

.

BS = 0

FALSE

FALSE

FALSE

BS > 0

TRUE

TRUE

TRUE

TRUE

TRUE

BS

BS = 4 0 < BS < 4

FALSE TRUE

FALSE

BS

BS = 4

FALSE TRUE

0 < BS < 4

FALSE

TRUE

BS

BS = 4 0 < BS < 4

FALSE TRUE

FALSE

BS BS = 4

0 < BS < 4

Fig. 3. The Deblocking filter algorithm used in H.264/AVC.

P (H)

V
er

ti
ca

l
B

o
u
n
d
ar

y

Horizontal Boundary

P

(V)

P

(V)

P

(V)

P

(V)

B1

B5

B9

B13

P (H)

B2

B6

B10

B14

P (H)

B3

B7

B11

B15

P (H)

B4

B8

B12

B16

1

P (H)

P

(V)

P

(V)

B1

B5

P (H)

B2

B6

Luma 16x16 MB

Chroma 8x8 B

5 9 13

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

2 6 10 14

3 7 11 15

4 8 12 16

1 3

5 6

7 8

2 4

P (H)

V
er

ti
ca

l
B

o
u

n
d

ar
y

Horizontal

P

(V)

P

(V)

P

(V)

P

(V)

B1

B5

B9

B13

P (H)

B2

B6

B10

B14

P (H)

B3

B7

B11

B15

P (H)

B4

B8

B12

B16

1

Luma 16x16 MB

2 3 4

3 4 5 6

8 9 10 11

13 14 15 16

18 19 20 21

6 7 8 9

11 12 13 14

16 17 18 19

P (H)

V
er

ti
ca

l
B

o
u

n
d

ar
y

Horizontal

P

(V)

P

(V)

P

(V)

P

(V)

B1

B5

B9

B13

P (H)

B2

B6

B10

B14

P (H)

B3

B7

B11

B15

P (H)

B4

B8

B12

B16

1

Luma 16x16 MB

2 3 4

3 4 5 6

7 8 9 10

11 12 13 14

15 16 17 18

5 6 7 8

9 10 11 12

13 14 15 16

 (a) (b) (c)

Fig. 4. Filtering order proposed by the H.264/AVC standard, by Li et al and by Chen et al.

The BS parameter is chosen according to the rules given
by the standard, as shown in Figure 3. The result of applying
these rules is the fact that the filter is stronger at places where
blocking distortion is significant, such as the boundary of an
intra coded MB or a boundary between blocks that contain
coded coefficients [17]. When filtering a block boundary,
eight pixels are involved and some of them may be modified
according to the BS value. In H.264/AVC, BS is set to five
different levels (0 to 4) and the bigger BS is, the stronger the
filtering will be. When BS=0, no filtering is applied and none
of the pixels are changed; when BS=4, the strongest filtering
may modify six pixels in the process. When BS lies between 1
and 3 means some weaker filtering, modifying four pixels
only [15].

 Filter Selection

Once the BS has been calculated in the block, the filtering
of boundary samples is determined by analyzing each pixel on
the block boundary. A Group of samples from the set (p2, p1,
p0, q0, q1, q2) are filtered only if BS > 0 and |p0-q0| < α and
|p1-p0| < β and |q1-q0|≤ β [1]. α and β are thresholds defined
in the standard [17]. They increase with the average Quantize
Parameter (QP) of the two blocks p and q. The effect of the
filter decision is to ‘switch off’ the filter when there is a
significant change across the block boundary in the original
image. When QP is small, a very small gradient across the
boundary is likely to be applied to image features. In contrast,

block effects should be preserved and so the thresholds α and
β are low. When QP is larger, blocking distortion is likely to
be more significant and α, β are higher so that boundary
samples are filtered [11].

Figure 3 shows the overall algorithm of the highly adaptive
deblocking filter used in H.264/AVC. There are several
conditions that determine whether a 4×4 block boundary will
be filtered or not. There are additional conditions that
determine the strength of the filtering for each 4×4 block
boundary. This filter can change the values of up to 3 pixels
on both sides of a block boundary depending on the outcomes
of these conditions [1].

III. RELATED WORK

The most important restriction imposed by the deblocking
filter used in H.264 CODECs is the filtering order of pixels.
The sequential filtering order proposed by H.264/AVC [17] is
shown in Figure 4.a. The restriction imposed is that if a pixel
is involved in vertical and horizontal filtering, then the
horizontal filtering should precede the vertical. This is rather
loose and offers opportunities for implementation optimization
by exploring different filtering schedules, aiming faster
operation through the use of parallelism or at solutions that
consume less memory. Several authors have proposed
different filtering orders to limit the access to memory and to
give the possibility of parallel processing. Khurana et al. [18]

proposed different filtering orders where horizontal and
vertical filtering alternate. Sheng et al. [19] proposed an order
where a higher frequency of vertical-horizontal filtering
direction changes is observed. Li et al. [7] proposed another
solution involving a degree of parallelism with vertical and
horizontal filtering occurring at the same time, speeding up the
filtering at the cost of having to use two filtering units. The
scheduling for this solution is presented in Figure 4.b.

Chen et al. [15] proposed a new strategy with only 18 steps
instead of 21 steps for the luminance (Figure 4.c). The authors
used 4×4 pixel register, one transpose array, one 16×32Bit
SRAM and two 1-D filter units (one for filtering the vertical
boundary and the other for filtering the horizontal boundary).
The use of two filters in pipeline architecture reduces the
number of clock cycles required to process a macroblock of
pixels to 120. Messaoudi et al. [9][10] proposed new hardware
architectures for the deblocking filter used in H.264/AVC.
These architectures use the same filtering order used in [15]
where the two elementary filters (horizontal and vertical
filters) are decomposed into four directional filters, each for
one direction (left, right, top and bottom). An additional
directional filter (vertical right) is used specifically to filter the
left neighborhood blocks [9]. This technique also eliminates
the need for the transpose circuit, simplifies the control unit
and allows for pipelined architectures [10] particularly when
using a 128-bit data bus [9]. In these implementations for the
deblocking filter a new strategy for memory management is
used. Several on-chip memories are employed to support
efficient parallel access in order to speed up the entire filtering
process.

IV. HIGH-LEVEL MODELING TOOLS FOR SYSTEM-ON-CHIPS

Computation intensive multidimensional data applications
are more and more present in several domains such as image
and video processing. These systematic applications are
characterized by a very large amount of data-parallelism and
the processing of multidimensional data arrays. Generally, real
time and critical conditions should be ensured in these
applications [3]. The modeling of highly repetitive structures
in graphical form poses a particular challenge if a hierarchical
approach is not adopted [20]. Currently, several high level
modeling tools are used to perform embedded systems,
namely: MDSDF (Multi-dimensional Synchronous Dataflow),
Daedalus system-level design [21], GASPARD2 [22] and
MATLAB/Simulink [23][24]. Using these high level modeling
environments, several examples are given as to how the
structure described is subsequently mapped into VHDL code
[25]. These tools are beneficial where the objective is to
implement the algorithms without requiring detailed
knowledge of hardware design and hardware description
languages.

MATLAB is interactive software proposed by MathWorks
for numerical computations that simplifies the implementation
of linear algebra routines. Powerful and matrix operations can
be performed by using MATLAB commands. Simulink [23] is
an additional MATLAB toolbox that provides for modeling,
simulating and analyzing dynamic systems within a graphical
environment [8]. Recently, MathWorks and Xilinx engineers
have finalized tools specifically to generate HDL code from

Simulink models containing both native Simulink blocks and
Xilinx-specific blocks. In-fact, Xilinx System Generator is a
MATLAB Simulink blockset that facilitates FPGA hardware
design [23]. It extends Simulink in many ways to provide a
modeling environment that is well suited to hardware design.
System Generator provides access to underlying FPGA
resources through low-level abstractions, allowing the
construction of highly efficient FPGA designs. It integrates
RTL, embedded, IP, MATLAB and hardware components.
With System Generator for DSP, developers with less FPGA
knowledge can create promptly FPGA implementation in a
very short time compared to traditional RTL development one.

System Generator complements HDL design tasks by
providing an easily configured test bench for both functional
simulation and hardware verification. System Generator uses
the built-in interface to HDL simulators like ModelSim to
simulate the HDL codes within MATLAB environment. It
also permits the Real-time hardware verification. The design
can be tested in hardware at the targeted input rate and
clocking frequency. The output of the hardware is captured
into MATLAB and compared with the output test vectors. In-
fact, we can used Xilinx-specific blocks for simulation, for
code generation and for post-simulation. System Generator
has a varied blocksets which can be automatically compiled to
an FPGA target. For developers already familiar with HDL,
System Generator provides additional advantages with even
the possibility of incorporated already developed HDL
modules using the Simulink Black-Box.

Figure 5 shows the System Generator design flow. System
Generator works within the Simulink model-based design
methodology [24]. Firstly, the application or the algorithm can
be developed and implemented using the standard Simulink
blocksets. Matlab/Simulink uses floating-point numerical
precision and without hardware detail. This software
implementation can be verified using Simulink simulation
results. System Generator can be used to specify the hardware

 Application
Specification

Develop
Simulink

Architecture

RTL

Simulink Blockset

Simulink Simulation &
Formal verification

Develop
System Generation

Architecture

Xilinx DSP Blockset
(Hardware IPs)

Testbench
Generation

System Generator
Simulation

Automatic RTL
Generation

Xilinx Cores
Generation

Xilinx
implementation flow

Bitstream

Download to FPGA

Co-simulation

Post-Simulation S
ys

te
m

 G
e
n

e
ra

to
r

(M
a

tla
b

/S
im

u
lin

k)

Fig. 5. System Generator design flow.

implementation details for the FPGA devices using Xilinx
DSP blockset. The hardware implementation can be verified
both using Simulink simulation and System generator
simulation. Simulation results can be compared in order to
propose necessary modifications. System Generator invokes
Xilinx Core Generator to generate the vhdl code, the NGC file
or the Bitstream for the specified FPGA device. As mentioned
in [23] [24], several steps are required before and after the
generation of synthesizable codes.

The authors in [25] present a good example concerning the
methodology for implementing real-time applications on
reconfigurable logic platform using Xilinx System Generator.
A new architecture is detailed using System Generator for
Color Space Conversion for video processing. The proposed
methodology aims to improve the design verification
efficiency for such complex system.

V. HARDWARE IMPLEMENTATION FOR THE FILTER

A. The used implementation

Firstly, we use hardware implementations for the
deblocking filter proposed in [9] and [10]. We used RTL-level
of these implementations. These implementations are realized
based on four and five directional filters respectively. In [15]
the main idea is the use of two elementary filters in pipeline
architecture instead of a single filter used in other
implementations. In [9][10], each elementary filter is divided
into two directional elementary filters (left and right for the
vertical filter and high and low for the horizontal filter). A
fifth directional filter is added in [9] specifically to filter the
left neighborhood blocks of the current macroblock of pixels
(Figure 6). This subdivision allows us to better manage the
internal memory; it also clearly separates the data input/output
for each elementary filter. In addition, the two
implementations utilize a 32-bit or 128-bit data width. The
128-bit data width is used in order to avoid the transposition
circuits.

 Implementation strategy

As mentioned in Figure 7, the used hardware
implementations for the deblocking filter are based on three
steps:

 Defining a strategy for loading and storing blocks in order

to limit the access to external memories.

 Defining a processing strategy using the elementary

modules (elementary filter).

 Defining a processing strategy in each elementary filter in

3 stages: BS selection, filtering decisions and filtering

implementation.

For the first step, two approaches are possible to save
blocks of pixels being processed and their neighboring blocks
of pixels: either through the use of internal memories or
external memories. In the used implementations, we utilize
internal memories to record the current macrobloc (16 blocks
of pixels) being processed (macroblock Buffer in Figure 6),
the four neighborhood blocks at the left (4 Left-Block Buffer
in Figure 6) and all the neighborhood blocks in the same row
at the top of the current macroblock (4 Up-locks Buffer or 4
Line Buffer in Figure 6). At the end of treatment of a
macrobloc, the four blocks of pixels at the right are stored in
the neighborhood left memory to serve as left neighborhood
for the next macrobloc. The four blocks of pixels at bottom in
the treated macrobloc are stored in the neighborhood top
memory. These blocks are used to serve as top neighborhood
of the next row of macrobloc s. This strategy has the following
advantages:

 It limits the number of accesses to external memories,

which means a gain from the perspective of processing

time and reduction in power consumption.

 Memory reuse to save different successive blocks.

 Provides several reading strategies of data for the

processing modules to improve data-parallelism.

 Uses memories with inputs/outputs of 128-bits, instead of

registers. It does so by consuming only 36 Kbits memory,

which represents a BRAM block in the used devices.

In Figure 7, BS values for each block of pixels are
assumed to be provided by the upstream processing modules;
these values are calculated based on the used processing
method, the position and type of the processed block of pixels,
and the selected partitioning strategy in the prediction modules
of the encoder.

 The processing strategy used in deblocking filter

To implement the deblocking filter in the first architecture,
we use four cascaded directional filters in order to obtain a
parallel processing of blocks as indicated in figure 8.a. In the
second architecture, an additional vertical-right filter is used in
parallel with the vertical-left filter specifically to process the
left neighborhood blocks of the current macrobloc (Figure
8.b). In this implementation, the two vertical right-filters run
alternatively (in ping-pong manner), if the first works the

Filter 1
(Vertical

left)

Filter 2
(Vertical

right)

Filter 4
(Horizontal

up)

Filter 3
(Horizontal

low)
32/128

bit

 4 Up-Blocks Buffer
or 4 Line Buffer

4 Left-Blocks
Buffer

q

p p
q P Q

q

p

q

p

Macro-Block
Buffer

Buffer

Q

P

Buffer

32/128
bit

Filter 1
(Vertical

left)

Filter 2
(Vertical

right)

Filter 4
(Horizontal

up)

Filter 3
(Horizontal

low)

Filter 5
(Vertical
right 2)

 4 Up-Blocks Buffer
or 4 Line Buffer

4 Left-Blocks
Buffer

q

p

p

q

p q P Q

q
Q

p

q

p

P
Macro-Block

Buffer
32/128

bit

32/128
bit

The implementation based on 4 filters The implementation based on 5 filters

Fig. 6. The used hardware implementations for the deblocking filter [9][10].

Internal Memories

BS

Selection

Blocks
input

Filter

Decision

Elementary Filters
Implementations

Current and
Previews Blocks

Output Partition
Information

Memory Neighborhood top (BRAM)

N
e

ig
h

b
o

rh
o

o
d

 l
e

ft

m
e

m
o

ry
 (

B
R

A
M

)

C
u

rr
e

n
t
M

B

m
e

m
o

ry
 (

B
R

A
M

)

Fig. 7. Deblocking filter implementation strategy.

other is set to idle by the selection command line. If the
second works, the first is set to idle by forcing the value of BS
to zero (no filtering). This is true for the blocks B4, B8, B12
and B16 (Figure 8.c), where the edges on the right are not
filtered. Using an additional filter has the following
advantages:

 We eliminated multiplexers that are between the

elementary modules in figure 6.a. The selection conditions

will be solely used on the control inputs.

 Intermediate buffers (which lie between the elementary

filters) are also deleted.

In Figure 8 (a and b) are depicted the filter ordering of
different blocks of pixels in each elementary filter. We also
show the order and timing of output data and intermediate
blocks of pixels that will be recorded in the neighborhood
memories. At the deblocking filter output, the following
orders of the processed blocks are observed: V1 (Lf1), H1
(Up1), H2-4, V2, B1-3, V3, B5-11 (Figure 8.c). At the end of
treatment, the other blocks will be recorded as follows:

 The blocks B4, B8, B12 and B16 are stored in the

neighborhood-left memory to serve as neighborhood-left

of the next macroblock.

 The Blocks V4, B13, B14, B15 and B16 are stored in

neighborhood-top memory to serve as neighborhood-up of

the next row of macroblocks.

At the data output of the deblocking filter, it is necessary
to add an addressing system to rearrange the processed blocks
in their correct positions in macroblocks stored in external
memories. Blocks at image boundaries are not filtered,
because there are no neighbors. This is not the case for other
blocks with neighbors in four directions. This causes an
irregularity and, consequently, increases the complexity of the
control unit of the filter. In order to avoid this inconvenience,
we propose to apply the filter for all blocks and to just change
the values of BS.

 Elementary filter hardware architecture

Each directional filter is used to process the current blocks
of an input in one direction, according to the input values (BS,
Alpha, Beta and tc0) calculated in the main module. As shown
in Figure 2.b, for each filter operation, eight pixels (p3-0, q0-
3) on both sides of the edge act as the input of the deblocking
filter (Figure 9). By using the chart in Figure 3, the internal
architecture is almost the same for the five directional filters.
The filtering equations are the same; the only differences are
theirs outputs which depend on filter direction.

Filtre VLeft B1L B2L B3L B4L B5L B6L B7L B8L B9L B10L B11L B12L B13L B14L B15L B16L

Filtre VR Lf1 B1R B2R B35 Lf2 B5R B6R B7R Lf3 B9R B10R B11R Lf4 B13R B14R B15R

Filtre HLow B11L B12L Up1 Up2 Up3 Up4 B1L B2L B3L B4L B5L B6L B7L B8L B9L B10L

Filtre HUp B15U B16U B1U B2U B3U B4U B5U B6U B7U B8U B9U B10U B11U B12U B13U B14U

Filter Output

Up memory

Left memory

Filter input BUFFER

The first architecture

Filtre VLeft B1L B2L B3L B4L B5L B6L B7L B8L B9L B10L B11L B12L B13L B14L B15L B16L

Filtre VR B1R B2R B35 B5R B6R B7R B9R B10R B11R B13R B14R B15R

Filtre VR2 Lf1 Lf2 Lf2 Lf4

Filtre HLow B11L B12L Up1 Up2 Up3 Up4 B1L B2L B3L B4L B5L B6L B7L B8L B9L B10L

Filtre HUp B15U B16U B1U B2U B3U B4U B5U B6U B7U B8U B9U B10U B11U B12U B13U B14U

Filter Output

Up memory

Left memory

Filter input

(b) The second architecture

P(H1)

V
e
rt

ic
a

l
B

o
u

n
d

a
ry

Horizontal

P

(V1)

P

(V2)

P

(V3)

P

(V4)

B1

B5

B9

B13

P(H2)

B2

B6

B10

B14

P(H3)

B3

B7

B11

B15

P(H4)

B4

B8

B12

B16

P (H)

P

(V)

P

(V)

B1

B5

P (H)

B2

B6

Luma 16x16 MB

Chroma 8x8 B

(c) Deblocking filter outputs.

Fig. 8. Timing and order of filtered blocks of pixels and filter outputs.

Load

Directional filter

(0-3 pixels are filtered

in one direction)

(3 clock cycles max)

Data_out P or Q

Data_in_p

tc0

BS

Alpha/beta

Data_out_val

Data_in_q

 Calculation

conditions and

absolute values

Intermediates

results

Example (qinter

=p1+q0+q1+q2+2)

Output

calculations

Example (qout

=qinter /2)
Data_in Data_out

Fig. 9. Elementary filter inputs/outputs.

In each elementary filter, we propose to use registers for
each condition to avoid the use of multiplexers. This increases
the number of internal registers, but offers the possibility of
pipelining the elementary filters. According to the proposed
architectures, the pipeline is necessary in both horizontal
filters to avoid overlapping blocks.

 Synthesis results

The two architectures decrypted in Figure 6 are
implemented in vhdl and synthesized to Xilinx Virtex5
XUPV5 platform. We used ModelSim6.1 for simulation and
ISE12.2 tool for project design and synthesis. The first
architecture proposed in this work takes a maximum number
of clock cycles equal to 75 cycles to process one macroblock
(16x16 pixels). The second one takes a maximum number of
clock cycles equal to 71, which is about 40% less than the best
of the competing proposals. A comparison is given in Table I
concerning the number of clock cycles necessary to process
one macrobloc, the number of used elementary filters, the area
occupied by the required amount of memory and the type of
used memories to store neighborhood blocs.

TABLE I. VARIOUS IMPLEMENTATIONS PROPOSED FOR THE

DEBLOCKING FILTER USED IN H.264/AVC.

 Cycles

per MB

Filter

Cores

Memory for

current MB

Memory for

neighb. blocks

H.264/AVC 192 1 512 Off-chip

Khurana et al. [18] 192 1 128 Off-chip

Sheng et al. [19] 192 1 80 Off-chip

Li et al. [7] 140 1 112 Off-chip

Chen et al. [15] 120 2 / On-chip

Messaoudi et al [10] 59-75 4 256 On-chip

Messaoudi et al [9] 55-71 5 256 On-chip

Table II shows the synthesis results of the implemented

filters. The filter in the first implementation consumes 9,274
LUTs and was able to run at 165.44 MHz. In the second
implementation, the filter occupied 7,506 LUTs and was able
to run at 170.95 MHz. Both proposals produce the same
quality of filtered images. However, the addition of a fifth
directional filter in the second implementation provides the
following benefits:

 The elementary filters are connected directly without need

for multiplexers. Therefore, the number of Luts used in the

second proposal is decreased despite the use of a fifth

elementary filter. In-fact, according to the results of

synthesis, the number of Luts is reduced by 24%.

 The number of clock cycles required for processing a MB

is reduced to 71 cycles in the second implementation;

which is about 40% less than the best of the competing

proposals.

TABLE II. SYNTHESIS RESULTS OF THE TWO IMPLEMENTATIONS.

 Four filters based

implementation

Five filters based

implementation

Used % Used %

Number of Slice Registers 5,812 8 6,286 9

Number of Slice LUTs 9,274 13 7,506 10

Number of Block RAM/FIFO 10 7 12 8

Maximum operating frequency 165.44MHz 170.95MHz

Clock cycles per macrobloc 59 – 75 55 – 71

 The High-level model using system generator

Firstly, a black-box of each elementary filter is created as
mentioned in figure 10. We felt that these elementary filters
are already optimized using the vhdl and it is not necessary to
reproduce them using the Simulink blockset. This is one of the
highlights of System Generator that enables the use of black-
box to insert hdl codes in Simulink. The simulation of the
overall pattern will be carried out according to these codes.
During generation of the overall code System Generator uses
the hdl codes of each black-box and seeks other codes of
Simulink blocks in the Xilinx blocksets.

Fig. 10. Black box for one elementary filter (Vertical-Left Filter).

The next step is to connect the elementary filters to realize
the two architectures presented in figure 6. We use memories
for recording pixels of blocks being processed and
neighboring pixels of neighboring blocks. We also use ROM
for recording constant, multiplexers and de-multiplexers and
counters for addressing the used memories, and comparators,
concatenation operations, etc.

 Self-generation of HDL codes

After the creation and simulation of Simulink description,
several steps are required before self-generation of hdl code.
We define firstly the system 'clocking'. In this dialog the icon
"FPGA clock period (ns)" defines the period in nanoseconds
of the clock used. Secondly, we define the location of input /
output on the FPGA plan (Allocation of pins). Knowledge of
reserved addresses is needed from the datasheet each FPGA
platform. Table III shows the synthesis results of the vhdl self-
generated using System generator for the two implementations
based on four and five elementary filters.

TABLE III. SYNTHESIS RESULTS OF THE TWO IMPLEMENTATIONS

SELF-GENERATED USING SYSTEM-GENERATOR.

 Four filters based

implementation

Five filters based

implementation

Used % Used %

Number of Slice Registers 6,214 9 6,084 9

Number of Slice LUTs 9,724 14 8,122 10

Number of Block RAM/FIFO 10 7 13 9

Maximum operating frequency 165.44MHz 170.95MHz

 Simulation results

Matlab/Simulink allows simulation models performed a
large number of tools in Simulink blocksets. We can also use
other HDL simulators for the verification of self-generated
codes. From Matlab/Simulink, we can, for example, appeal to
the ModelSim simulator MenthorGraphics. This co-simulation
is used to verify and compare the simulation results before
going to the hardware implementation. In this work, we
preferred the HDL simulation codes generated by System
Generator using the same testbench files used for
implementations of the first part. In-fact, all hardware
architectures are simulated using a testbench file which can
read images from extern files to feed them on the deblocking
filter module and finally retrieve and rearrange the results.
Figure 11 shows the simulation results of the proposed
implementations. We used two images of Lena (256×256
pixels) : the first is a filtered image after compression-
decompression using the DCT and inverse DCT with a
compression ratio of 1/4 ; similarly for the second image with
a compression ratio of 1/16. In the filtered images, we notice
that the filter is adaptive; it allows filtering and smoothing
surfaces away from image edges. On the natural image edges
the filtering is conditioned by several parameters as mentioned
in Figure 3. In these image areas, pixels are almost filtered or
unfiltered to keep the contours of objects in the image. Other
simulation methods are used to simulate the HDL in System
Generator using a black box of the top VHDL entity as
detailed in [8]. The co-simulation is realized using the
ChipScope Analyzer. It’s used where the complete HDL
module is mapped onto hardware for real time simulation. The

ChipScope Analyzer utilizes the JTAG connections mapped to
the Xilinx-XUPV5 board and load information from FPGA
device.

Original image Image with a compression

ratio of 1/16
Filtered image

Original image Image with a compression

ratio of ¼

Filtered image

Fig. 11. Simulation results of the proposed implementation.

VI. CONCLUSION

In this paper, we have presented and compared hardware
implementations of the deblocking filter used in H.264/AVC.
We have used two hardware implementations based on four
and five elementary filters respectively using hdl level. The
choice of using five elementary filters is made in order to
reduce the number of clock cycles required to process a
macroblock of pixels and to simplify the control unit circuitry,
reducing as well the number of multiplexers and consequently
the number of FPGA resources used. After, we have used
System Generator to propose a high level model for each
implementation. These models allow for rapid edits of the
architectures and permit the implementation of filters used in
other standards. Simulations and Synthesis results are
compared with implementations realized using RTL level
using Xilinx-Virtex5 platforms.

REFERENCES

[1] M. Parlak, and I. Hamzaoglu. Low Power H.264 Deblocking Filter
Hardware Implementations. IEEE Trans. on Consumer Elect., 54(2):
808-816, May 2008.

[2] K. YANG, C. ZHANG, and Z. WANG. Design of adaptive deblocking
filter for H.264/AVC decoder SOC. Elsevier Science Direct, 16(1): 91-
94, 2009.

[3] K. Messaoudi, E. B. Bourennane, S. Toumi, H. Mayache, N. Messaoudi,
O. Labbani, ‘Use of the Array-OL specification language for self-
generation of a memory controller especially for the H.264/AVC’,
InderScience, International Journal of Embedded Systems, Vol. 7, No. 2,
2015, pp. 133-147, 2015.

[4] S. H. Shin, D. W. Oh, Y. J. Chai, and T. Y. Kim. Performance
Improvement of H.264/AVC Deblocking Filter by Using Variable Block
Sizes. Springer-Verlag Berlin Heidelberg 732-743, 2007.

[5] S. Wang, S. Yang, H. Chen, C. Yang and J. Wu. A Multi-core
Architecture Based Parallel Framework for H.264/AVC Deblocking
Filters. Springer, Sign Process Syst, 2008.

[6] P. List, A. Joch, J. Lainema, G. Bjøntegaard, and M. Karczewicz.
Adaptive Deblocking Filter. IEEE Transactions on Circuits and Systems
for Video Technology, 13(7): 614-619, 2003.

[7] L. Li, S. Goto, and T. Ikenaga. ‘A highly parallel architecture for
deblocking filter in H.264/AVC’, IEICE Trans. on Inform.and Syst.,
E88(7):1623-1628, 2005.

[8] T. Saidani , D. Dia, W. Elhamzi, M. Atri and R. Tourki, ‘Hardware Co-
simulation For Video Processing Using Xilinx System Generator’, in
proceedings of the World Congress on Engineering (WCE 2009), Vol. 1,
London, U.K, July, 2009.

[9] K. Messaoudi, E.B. Bourennane, S. Toumi and G. Ochoa, ‘Performance
Comparison of Two Hardware Implementations of the Deblocking Filter
Used in H.264 by Changing the Utilized Data Width’, IEEE conference,
The 7th Inter. Work. on Syst. , Sig.Proc. and their Applic., Algeria, pp.
55-58, May 2011.

[10] K. Messaoudi, E. Bourennane, S. Toumi, M. Touiza, A. Yahi, ‘A Highly
Parallel Hardware Implementation of the Deblocking Filter Used in
H.264/AVC codecs’, Inter. Conf.on Soft. Eng. and New Tech., pp. 26-
38, Tunisie, Dec. 2012.

[11] I. E. G. Richardson. H.264 and MPEG-4 Video Compression, John
Willey & Sons. the Robert Gordon University, Aberdeen, UK, 2003.

[12] Chen, T., Lian, C. and Chen, L. ‘Hardware Architecture Design of an
H.264/AVC Video Codec’, IEEE Vol.7D, No. 3, pp.750-757, 2006.

[13] K. Babionitakis, G. Doumenis, G. Georgakarakos, G. Lentaris, K.
Nakos, D. Reisis, I. Sifnaios, ‘A real-time H.264/AVC VLSI encoder
architecture’, Springer, Real-Time Image Proc, pp. 43–59, 2008.

[14] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra. Overview of
the H.264/AVC Video Coding Standard. IEEE Transactions On Circuits
And Systems For Video Technology 13(7):560-576, 2003.

[15] Z. CHEN, W. UAO, U. WANG, M. ZHANG, and W. ZHENG. A
performance optimized architecture of deblocking filter for H
.264/AVC. The Journal of China Universities of Posts and
Telecommunications 14: 83-88, 2007.

[16] Xilinx. Inc. http://www.xilinx.com/support/documentation/ip_docu-
mentation/ h264_deblock_prodbrief_ds594.pdf.

[17] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG. Draft of
Version 4 of H.264/AVC (ITU-T Recommendation H.264 and ISO/IEC
14496-10 (MPEG-4 part 10) Advanced Video Coding), 2003.

[18] G. Khurana, A. A. Kassim, T. P. Chua, and M. B. Mi. A pipelined
hardware implementation of In-loop Deblocking Filter in H.264/AVC.
IEEE Transactions on Consumer Electronics, 52(2):536–540, 2006.

[19] C. C. Sheng, T. S. Chang, and K. B. Lee. ‘An In-Place Architecture for
the Deblocking Filter in H.264/AVC’, IEEE Transactions on Circuits
and Systems, 53(7): 530-534, 2006.

[20] S. Wood, D. Akehurst, G. Howells and K. M. Maier, ‘Array OL
Descriptions of Repetitive Structures in VHDL’, 4th European
conference on Model Driven Architecture: Foundations and
Applications, pp. 137-152, Springer-Verlag Berlin, Heidelberg, 2008.

[21] A. D. Pimentel , T. Stefanov , M. Thompson , S. Polstra , E. F.
Deprettere, ‘Tool Integration and Interoperability Challenges of a
System-Level Design Flow: A Case Study’, Proceedings of the 8th
international workshop on Embedded Computer Systems: Architectures,
Modeling, and Simulation, pp.167-176, 2008.

[22] O. Labbani, J. L. Dekeyser, P. Boulet and É. Rutten, ‘Introducing
Control in the Gaspard2 Data-Parallel Metamodel: Synchronous
Approach’, International Workshop MARTES: Modeling and Analysis
of Real-Time and Embedded Systems, Montego Bay, Jamaica, 2005.

[23] Xilinx doc., ‘Sys. Gen. for DSP User Guide’, UG640, Oct. 2012.

[24] Xilinx doc., ‘Sys. Gen. for DSP, Getting Started Guide’, UG639, Oct.
2012.

[25] S. K. Wood, D. H. Akehurst, W. G. J. Howells and K. M. Maier,
‘Mapping the Design of Repetitive Structures onto VHDL’,
Inter.Workshop ModEasy'07, Forum on specification & Design
Languages, Spain, pp. 13-16, Sept. 2007.

http://dl.acm.org/author_page.cfm?id=81339537163&coll=DL&dl=ACM&trk=0&cfid=121174317&cftoken=28850917
http://dl.acm.org/author_page.cfm?id=81339537163&coll=DL&dl=ACM&trk=0&cfid=121174317&cftoken=28850917
http://dl.acm.org/author_page.cfm?id=81100494749&coll=DL&dl=ACM&trk=0&cfid=121174317&cftoken=28850917
http://dl.acm.org/author_page.cfm?id=81100483706&coll=DL&dl=ACM&trk=0&cfid=121174317&cftoken=28850917
http://dl.acm.org/author_page.cfm?id=81100076079&coll=DL&dl=ACM&trk=0&cfid=121174317&cftoken=28850917

