
Detecting Change Patterns in Aspect Oriented Software Evolution:

Rule-based Repository Analysis

Hanene Cherait
1
 and Nora Bounour

2

Computer Science Department, LISCO research laboratory

Badji Mokhtar–Annaba University, P.O. Box 12, 23000 Annaba, Algeria
1
hanene_cherait @yahoo.fr,

2
nora_bounour@yahoo.fr

Abstract

Interesting information and Meta-information about software systems can be extracted by

analyzing their evolution histories. This information has been proved useful for

understanding software evolution, predicting future changes, and performing an efficient

change impact analysis. A rich source code repository is a prerequisite for a high quality

evolution analysis. Nonetheless, the evolutionary information contained in current versioning

systems for Aspect Oriented (AO) software is incomplete and of low quality, hence limiting

the scope of AO software evolution analysis. In spite of AO Programming (AOP)

characteristics, none of current versioning tools match the need of controlling and storing the

AO software evolution, they do not perform well with obliviousness and quantification found

in AO code. In this paper, we suggest a rule-based repository for AO software evolution, and

specifically for AspectJ programming language. This repository is dedicated to handle the

proper characteristics of AO paradigm. In our proposal changes are formulated as rewriting

rules and recorded in the repository when they are applied. Then, this last is analyzed to

detect change patterns in AspectJ software evolution. We give here, the details of our rule-

based repository, as well as the proposed approach for change pattern detection. We present

a tool validation and some experimentation to prove the feasibility and the efficiency of our

proposals.

Keywords: Aspect oriented programming, software evolution, change-based versioning

systems, graph rewriting, evolution analysis, change pattern detection

1. Introduction

To understand why software systems become less maintainable when they are

changed continuously and to predict their future changes; we have to investigate their

version repositories. The research field of this investigation is known as software

evolution analysis. It is the retrospective analysis of the evolution, i.e. history, of a

software system [16]. This field analyzes and cross-links the rich data available in

software repositories to uncover interesting and actionable information about the

software evolution and its future development. Analyzing evolution history can help to

identify necessary changes, understand the impact of changes, and provide a facility to

track the changes and to deduce logical relations between changed entities.

We focus in this paper on the AO software evolution analysis, and specifically the

AspectJ program evolution. Since AO software systems are becomes more and more

popular, they will be the legacy software of the future. The past decade has seen the

increased use of Aspect Oriented Software Development (AOSD) techniques [14] as a

means to modularize crosscutting concerns in software systems, the ¾Major Industrial

248

Projects Using AOSD¾ highlights notable applications of AOSD, of which the most

prominent is the IBM WebSphere Application Server [9]. One of the main challenges of

AOP lies in the evolution of the software, so techniques and approaches are essential to

analyze the evolution of such systems; in order to study and predict its development.

Since, large amount of techniques is presented in the literature, to analyze the evolution

of different programming paradigms (e.g., procedural, object oriented etc.,), seldom

effort has been made for AO paradigm.

AOP [23] is a technique for modularizing crosscutting concerns. AspectJ [32] is a well-

established AOP language. It is the original and still the best implementation of AOP. AspectJ

provides a new kind of modules, called aspects that allow one to modularize the

implementation of crosscutting concerns which would otherwise be spread across various

modules. This is done in terms of join points, pointcuts, advices, and introductions. They

define precisely how behavioral and structural crosscutting has to take place. Join points

represent well-defined points in the execution of a program, such as method calls, object field

accesses and so on. After we identify join points useful for a crosscutting functionality, we

need to select them using the pointcut construct. Pointcut is a construct that picks out a set of

join points based on given criteria, such as method names and so on. AspectJ defines several

primitive pointcut designators that can identify all types of join points. Advice defines

additional code to be executed whenever a join point selected by a particular pointcut is

reached. An advice can execute before, after, or around the join point. Finally, introductions

are used to crosscut the static type structure of classes. They can be used by an aspect to add

new fields, constructors, or methods (even with bodies) into given interfaces or classes.

AOP is characterized by obliviousness and quantification. Obliviousness states that

one cannot know whether the aspect code will execute by examining the body of the

base code [15] i.e., the system code should be unaware to any aspects. Since the

quantification is the idea that one can write an aspect that can affect arbitrarily many

non-local places in a program [29]. These characteristics make AO software versioning

a serious problem, current versioning systems unable to handle the crosscutting nature

of AOP. Consequently, their repositories are not a good source of information for an

efficient AO software evolution analysis.

In this paper, we suggest a rule-based repository for AspectJ software to store the

maximal amount of information about its evolution, taking into account the proper

characteristics of AOP. In our proposal, we treat change as a first class entity. In

contrast to the file-based nature of classic versioning systems, we believe that change-

based principle can present the complete view of AO software evolution i.e. “the

fundamental unit of software evolution is the source code change, all other information

is maintained to help understand, rationalize, and manage source code changes” [21].

Practically, we use the program representation presented in our previous work [7],

where, the AspectJ program is converted to an attributed colored graph. And, changes

are formulated as rewriting rules on the proposed program graph. Every applied rewrite

rule is stored ¾directly¾ in our proposed rule-based repository. In this last, every

version of the software (graph) is the set of rewrite rule sequences, where, every rewrite

rule sequence presents a specific change request.

Besides, in order to analyze our proposed repository we suggest a change pattern

detection approach to identify change patterns in AspectJ program evolution. So, the

rule-based repository is investigated (Mined) to detect rule patterns using the Apriori

algorithm [1]. Since these rules are the formulation of source code changes, we believe

that our approach allows detecting change patterns in AspectJ source code. These

patterns can be used to understand AO software evolution, predict future changes,

 249

identifying potential faults, detecting new crosscutting concerns and develop new

refactoring algorithms.

The rest of the paper is organized as follows. The next section gives the different

ripple effects caused by AO software evolution. Section 3 proves that the information

contained in current versioning repositories cannot reflect the AO software evolution.

Section 4 gives the details of our proposed rule-based repository for AspectJ software

systems. A change pattern detection technique is presented in Section 5. The

implementation of our repository as well as the change pattern detection approach is

given in Section 6. Section 7 shows the experimentation of our proposal. We pass

briefly on the related work in Section 8. And we conclude our discussion in Section 9.

2. Ripple Effects of AO Software Evolution

Along with its advantages, AOP has some potential pitfalls that we must be aware of

in evolution. Given, that AOP has set out to modularize crosscutting concerns, but by

its mechanics breaks modularity [29]. In the AO software systems, researchers

uncovered significant evidence of ripple effects, whereby changes propagated to

seemingly unrelated modules. This was caused by interdependencies, created by

pointcuts and inter-type declarations, between the base code and aspects. The improved

separation of concerns within the AO versions makes the changes less obvious as

unexpected modules were affected [27].

Previous research has mainly focused on defining the different challenges in evolving

AOP software [2, 3, 29]. For instance, previous research has indicated that the use of

certain AOP mechanisms can violate module encapsulation [2] and even introduce new

types of faults [3]. In particular, some researchers claim that these faults are likely to be

amplified in the presence of evolutionary changes [22]. For example, Pointcuts appear

to be a double-edged sword: while they enable certain changes to be absorbed and

thereby increase a design’s stability, they are also the source of ripple effects that

reduce stability [27].

Others have proved with empirical evidence the AOP evolution problems that occur

in practice. Their analysis confirms that the lack of awareness between base and

aspectual modules (obliviousness) tends to lead to incorrect implementations. Ferrari et

al., [13], for example, examined how obliviousness influences the presence of faults in

evolving AO programs. They found that obliviousness facilitates the emergence of

faults under software evolution conditions. They showed that 40% of reported faults

were due to the lack of awareness among base code and aspects. And they indicated that

the AOP mechanisms present similar fault-proneness when we consider both the overall

system and concern-specific implementations. The results revealed the negative impact

of obliviousness on the fault-proneness of programs implemented with AspectJ.

To resume up, -thanks to obliviousness- logical dependencies exist in AO software

which makes its evolution more and more difficult i.e., for example, change in a

specific class may require a change in other classes or aspects, although; there exists no

traditional dependencies (e.g., data and control flow) between these AO software

entities. Hidden (logical) dependencies exist in any programming paradigm, but

according to the ripple effects of AO software evolution presented above, the existence

of such dependencies in AO software is voluminous and ramous.

We believe that the analysis of a rich AO software evolution repository can give a

more clear view of its dependencies. This clarity helps to avoid the effects of

250

obliviousness and quantification in AO software evolution, tasks like change impact

analysis and change propagation will be more easy and efficient.

3. AO Software Evolution versus Current Versioning Repositories

Hence, AOP, by preventing code tangling and scattering, improves code quality in

one area, and at the same time, by introducing quantification and obliviousness [15],

makes its versioning more difficult. Version control in AOP development is more

complex than in the traditional software.

The obliviousness property of AOP implies that the developers of core functionality

need not be aware of, anticipate or design code to be advised by aspects [15]. Since, the

body of an advice is much like a method body—it encapsulates the logic to be executed

upon reaching a join point. In contrast to the methods of traditional object -oriented

languages, advices are not called explicitly. Instead, the execution of an advice is

automatically "triggered" when the control flow reaches the join point that is

designated. Consequently, the program modules, in which the events in their control -

flow are designated, are also oblivious to the corresponding advices. This restricts the

evolvability of the AO software and makes its versioning more difficult.

In spite of AOP characteristics, CVS, Subversio, etc., none of these tools match the

need of controlling the AO software evolution. They were never fully adapted to AOP

paradigm i.e., versioning systems do not perform well with obliviousness and

quantification found in AO code. When classes are oblivious to aspects, so, the

crosscutting effect of aspects is not tracked by the versioning system [20].

Most current versioning systems are file-based, rather than entity-based [6]. They

manage revisions of programs as text documents organized in files, so, it is not possible

to present and track the effects of changes in the base code or the aspects i.e. versioning

systems are associated with the storing and retrieving of unwoven files and are ignorant

of any weaving information (transversal dependencies). However, AOP by nature defies

this principle. First, concerns crosscut the file structure. Second, obliviousness leaves

certain crosscutting effects undetected in the (textual) display of files and changes [20].

To resume up, current versioning systems does not manage, store, or display the

crosscutting information. Thus, their repositories are not complete enough for an

efficient AO software evolution analysis.

We believe that for an efficient AO software evolution analysis, the logical elements

in a software system such as Class, Aspect, and Method… should be units of version

control. This can help to follow the evolution of every entity in the software, and

consequently, preserving the dependencies between the AO software entities

independently of the files they belong to.

To achieve this goal, we adopt an approach to store changes on the AO source code

¾when they occur¾ in a rule-based repository, where the change is treated as a first-

class entity. This repository can be a fundamental source of information for AO

software evolution analysis, and will open new ways for both developers and

researchers to better understand and explore the AO software evolution. The details of

our proposal are presented in the next section.

 251

4. Rule-based Repository for AspectJ Programs

4.1. Overview of our Approach

A rich evolution repository can be the subject of an interesting AO software

evolution analysis e.g., mining change patterns or discovering logical coupling between

AO software entities. However, the research field of AOP software versioning remains

very limited which lead to the absence of a suitable evolution repository (e.g., do not

record changes of the transversal dependencies in AO software). Concerned with these

issues, we propose a rule-based repository for AO source code evolution; where change

is treated as a first class entity.

In our approach, we created a software repository designed to store a maximal

amount of information about evolving AspectJ software. In particular, we do not use a

versioning system, but built from the ground up a rule-based software repository. In

contrast to current versioning systems, changes to the software system are stored

directly in the repository. So, we do not view the history of an AspectJ software system

as a sequence of versions (versions of files), but as the sum of changes which brought

the system to its actual state. The typical realization of a software change is a

modification to the source code, so, a new version is created when a source code change

occurs.

Figure 1 depicts the overview of our approach, which can be divided in three main

steps: (1) as presented in Figure 1.a, the evolved AspectJ source code is considered as

an attributed colored graph [7], and the changes to the software are formalized as

rewriting rules that transform the graph G to a graph G’; in order to achieve the

evolution requests; (2) the software maintainer modifies the colored graph of the

AspectJ source code by applying sequences of rewrite rules in a certain order (Figure

1.b); (3) the colored graph is imported to the repository, and the software version is

checked-in by storing rewrite-rule sequences applied by the maintainer. So, any version

can be checked-out just by applying the related rule-sequences on the evolved AspectJ

colored graph (Figure 1.c).

Figure 1. Overview of our Approach

Software maintainer

Graph

transformation

environment

Rewriting

rules

Colored graph of
the AspectJ source

code

Modify
Graph after

evolution

Import

Rule-based

repository

Rewriting rule

sequences

Check-out

Check-in

Version 1

Version 2

Version 3

Version n

AspectJ

source

code

Program

modeling

(a) (b) (c)

Change

requests

Change

modeling

252

The use of graph rewriting help to well track and control changes in AO software

evolution. We store in the repository the complete change i.e., we do not store only the

change in the base code (or in the aspects) independently of its effects on the software

aspects (or the base code). Rewriting rules give the complete view of the changed

entities and their dependencies. For example, if we delete a method which is crosscuted

with a particular pointcut, the edge between this method and the pointcut will be deleted

too i.e., a pointcut should not capture a deleted method. Here, we can say that our

approach can reduce the negative effects of obliviousness in AO software evolution.

4.2. Program Representation

In our approach, the evolved AspectJ source code is represented as an attributed

colored graph. The program graph is generated directly from the AspectJ source code.

We use therefore; a type graph [10] that plays the role of a Meta-model. A graph is

called typed graph or instance graph, if there exist a distinguished graph , called

type graph, and a graph morphism , called typing graph morphism.

The AspectJ type graph, shown in Figure 2, specifies how to create well-formed

colored graph of AspectJ software. It represents the different entities of the AspectJ

program and their dependencies. Any well-formed AspectJ source code can be

represented as a graph that conforms to this type graph. This Type graph guarantees the

consistency of the graph to every transformation, which specifies what i t means for a

model to be valid. More details about this representation can be found in our previous

work [7].

Figure 2. Type Graph of the AspectJ Program [7]

4.3. Change Representation

We represent changes to the program as explicit rewriting rules to its colored graph

[7]. A graph rewrite rule [12] consists of a tuple , whereas the Left Hand Side

(LHS) of the rule is called pattern graph and the Right Hand Side (RHS) of the rule is

the replacement graph. Rules are compared with an input graph called host graph. If a

 253

matching is found between the LHS of a rule and a sub-graph in the host graph, then the

rule can be applied and the matching sub-graph of the host graph is replaced by the

RHS of the rule. Furthermore, rules may also have conditions (e.g., Negative

Application Conditions “NACs”) that must be satisfied in order for the rule to be

applied, as well as actions to be performed when the rule is executed. A graph rewriting

system iteratively applies matching rules in the grammar to the host graph, until no

more rules are applicable.

For example, Figure 3 depicts a rewriting rule which create a new public Aspect “A”.

The NAC presented in the left side of this figure, is used here to avoid the existence of

other aspect with the same name.

Figure 3. Create a public Aspect “A”

When a rewrite rule is applied takes as input a program state and returns an altered

program state. Since each state is an attributed colored graph, rewriting rules are graph

operations. The basic rewriting rules are the following:

- Addition rule: add a new node or edge to the program graph;

- Deletion rule: deletes an existing node and all its dependencies. Or the deletion

of just an edge;

- Modification rule: modify the proprieties of a node or an edge of the graph.

The combination of several basic rules will be able to give birth to other rewriting

rules, or to rewriting rule sequences. A rewrite rule sequence is a set of rewrite rules

applied in a certain order to achieve a specific change request.

4.4. The rule-based Repository

Our proposed rule-based repository contains incremental changes to the AO system

under study. The sequence of the rewrite rules that a developer is performing is

acquired in real-time using the graph transformation environment, and stored in the

repository. Figure 4 shows the overview of our proposed repository. Instead of

recording the entire changed graph as a version, we only records the rewriting rule

sequences applied on this graph. So a Version is a group of rewriting rule sequences

applied to the AspectJ graph formulating a given evolution requests.

Figure 4. Rule-based Repository

Rule-based

repository

Version 1

Version 2

Version 3

Version n

254

We can reproduce every version of the system by the application of the associated

rewrite rule sequences stored in the repository as part of that version.

Changes are stored in a formal format as rewriting rules, which makes the repository

more rich and reliable. In contrast to the text format of the change, the rewrite rule is

more meaningful, because it contains the full information about the change: pre-

condition, post-condition, conditions, action etc. This full information facilitates the

comprehension of the change, and thereafter storing change in this format makes the

repository more accurate for a high quality evolution analysis.

Our repository is change based rather than file-based. So, it breaks the walls between

software files and stores the change in its natural format i.e., changes of software

entities and their dependencies rather than just changes in the lines of code.

4.5. Discussion

As presented above, every rewrite rule is self explanatory, it contains as much

information as possible to formulate the change and control its application. We believe

that this format can help to handle the crosscutting nature of AOP. Representing and

storing change as rewriting rules can make the AO software dependencies more visible

in the repository i.e., the obliviousness effects in the AO source code can be stored

explicitly.

For example, if we delete a pointcut, we have to delete their dependencies too; the

rewrite rule that formulates this change is depicted in Figure 5. Here we can see that the

crosscutting dependency between the pointcut P and the Method M is deleted too.

Figure 5 proved again that three entities that belong to different files (method M

belongs to the file of the class C, the aspect A and the pointcut P belong to the file of

the aspect A) are presented and stored as parts of a single change which is not possible

in traditional versioning repositories.

Figure 5. Delete a Pointcut P

5. Our Approach for Change Pattern Detection

Understanding how programs evolve or how they continue to change is a key

requirement before undertaking any task in software engineering or software evolution.

Extracting change-patterns is important during evolution and maintenance because they

provide guidance to maintainers to carry out complete and consistent modifications [5].

We present in this section a change pattern detection approach for AspectJ source code.

We define the change patterns to answer the question: given an AspectJ software

system and a specific change performed, what others changes must be applied to the

system to stay coherent?

 255

5.1. Change Extraction

Most of the change pattern detection approaches use sophisticated tools and

techniques to analyze the version repository. These techniques try to extract a suitable

representation of changes to be the input for a specific Data Mining algorithm in order

to detect change patterns. This is performed by the differentiation between the

successive versions stored in the repository i.e., version differencing [25].

The main two steps of this process are: the identification of atomic change sets and

grouping these last to transactions. The problem of finding all atomic changes and next

the different transactions is not trivial because the performance can be exponential with

respect to the number of versions (evolution repository). Thereby, it requires a non-

trivial effort; it is an expensive task in term of performance and space memory. It

makes up approximately 58 % of run time [31]. Researchers are more interested in

gaining convenient access to the extracted data in an easy to process format [17]. So,

avoiding this step is very interesting to better enhance the change pattern de tection

(evolution analysis).

In our approach, changes are stored in the repository while they occur, raising change

to a first class concept. There is no need for differencing since the changes are recorded

and stored, and thus do not need to be derived later on. Change recording is, in general,

more precise and potentially enables to gather more information than version

differencing. In contrast to version differencing, recorded change sequences include all

intermediate changes. Besides, version differencing does not comprise an order of

applied changes, which is, however, usually the case with recorded changes.

So, using our rule-based repository version differencing which is the very costly and

difficult task in evolution analysis is not needed and omitted.

Table 1 gives the concepts used in any change pattern detection technique, for

traditional approaches. And, it explains the presentation of these concepts in our

context. These concepts are more explained in the next sub-sections.

Table 1. Our Approach versus Traditional Approaches

Concept Traditional approaches Our approach

Repository Versions of source code files Versions of rewrite rule sequences

Changes Changes in the lines of the

source code.

Changes in software entities and

their dependencies (Rewrite rules)

Atomic changes Addition, deletion,

modification of source code

elements.

Creation, deletion of graph

elements (nodes/edges).

Transaction The set of atomic changes for

a specific change request.

The rewrite rule sequence

formulated a specific change
request.

Change pattern Atomic changes that happen

frequently among the atomic

change transaction.

Graph operations (element

creation/deletion) that are

duplicated enough among the

rewrite rule sequences.

5.2. Atomic Change Set

In our proposal we represent change as rewrite rule(s). According to the definition of

a rewriting rule, any rule can be easily broken up into a set of creation and/or deletion

of source code (graph) elements. Consequently, every rule consists of atomic operations

256

i.e., creation or deletion of elements (nodes) or dependencies (edges). For example, if

we describe the rewrite rule in Figure 6, we distinguish the following atomic changes:

deletion of the dependency between A and B, deletion of the node B, creation of node

F, creation of node E, creation of a dependency between F and E.

Figure 6. Exemple of a Rewrite Rule

Therefore, we do not have to analyze the rule-based repository to generate the atomic

changes (operations) as in traditional techniques. We can define the atomic change as

the creation/deletion of any element of our graph (source code). In our repository, every

single rewrite rule is recorded directly when it is applied. So, we do not need to use an

external tool (e.g., diff) to compare the different versions of a program to detect such

rules (changes). The different atomic rewrite rules in our proposal are shown in Table 2.

Table 2. Atomic Rewrite Rules

 The create atomic rewrite rules The delete atomic rewrite rules

Abbreviation Atomic rewrite rule Abbreviation Atomic rewrite rule

Nodes

CC Create a Class DC Delete a Class

CA Create an Attribute DA Delete an Attribute

CM Create a Method DM Delete a Method

CP Create a Parameter DP Delete a Parameter

CR Create a Return value DR Delete a Return value

CAS Create an ASpect DAS Delete an ASpect

CPO Create a POintcut DPO Delete a POintcut

CAD Create an ADvice DAD Delete an ADvice

CI Create an Introduction DI Delete an Introduction

Edges

CECA Create Edge CAlls DECA Delete Edge CAlls

CEIA Create Edge Introduces

Attribute

DEIA Delete Edge Introduces

Attribute

CEIM Create Edge Introduces

Method

DEIM Delete Edge Introduces

Method

CECR Create Edge CRosscuts DECR Delete Edge CRosscuts

5.3. Atomic Change Transactions

An atomic change transaction includes prerequisites for a specific change i.e., it is a

set of atomic changes for a specific change request.

In our rule-based repository, every version of the program is recorded in the

repository as a set of rewriting rule sequences (rewrite rules recorded in a certain

order). Every rewrite rule sequence formulates a specific change request i.e. in our

context, rule sequences present change transactions. So, we do not need to pre -process

the repository to generate such transactions.

 257

On the other hand, every rule sequence is an ordered list of rules. Thus, we already

have the semantic dependencies between rules (changes). A rule sequence contains the

set of rules for a specific change. That is, rules in a rule sequence are always applied

together. As a result, to detect the change-patterns in our approach, we have just to

analyze the different rule sequences in our rule-based repository.

5.4. Detecting Change Patterns

In this stage, we analyze the rule-based repository in order to identify change

patterns. We define change-patterns as common and recurring modifications of software

systems in time, during the evolution of such systems. So, we extract atomic sets

(atomic rewrite rules) that happen frequently enough among the rule sequences. In our

context, such sets, called rule-patterns or change patterns, refer to atomic changes

(creation/deletion) that occur (always) together.

We use the traditional Apriori algorithm [1] to detect change patterns in our rule-

based repository. Let be a set of atomic rules i.e. creation or deletion

of graph elements or dependencies (Table 2), and a rule-set. We define database

(repository) as a set of rule-sequences: , where

 and . Also, let be the set of rule-sequences that contain rule-

set , formally . Finally, the support of a rule-set is the

fraction of rule-sequences in the database that contain : . Then

is called a frequent rule-set when its support is higher than a given minimum

support: .

In other word, the strength of the pattern , where each is an atomic

rewrite rule (change), is measured by support which is the number (or percentage) of

rule sequences containing . A frequent pattern describes a set of atomic rules

that have support greater than a predetermined threshold called min_support.

6. Validation

6.1. The Repository

The overview of our validation is depicted in Figure 7, which can be resumed in the

following parts:

(1) Convertor Tool: to represent the AspectJ source code as an attributed colored

graph, we have implemented a convertor tool. This last convert the AspectJ source code

to an attributed colored graph in GXL (Graph Exchange Language) [34] format. This

graph is imported in the AGG (Attributed Graph Grammar) tool [28] to perform the

necessary transformations. For more implementation details, please refer to [7].

(2) Change requests: every change request is formulated as a rewrite rule-sequence

i.e., set of rewrite rules applied in a certain order. Then, we use AGG to apply these

rules on the attributed colored graph. We can also formulate properties, constraints;

analyze the graph…etc.

(3) Rule-based Repository: we record every rewrite rule-sequence in the repository

when it is applied. Our repository can be defined practically, as a set of GXL

documents. Every GXL document presents a version of the program (graph) . This is the

set of rewrite rule sequences applied in an evolution session. Figure 8 shows the

structure of a version. The structure of a rule sequence is depicted in the right hand side

of Figure 8; it is constituted of rewrite rules.

258

Figure 7. Repository Validation

Figure 8. Structure of a Version

Every rule is the combination of preserved, deleted, created and condition, they

describe the elements which must be preserved, deleted, and the conditions of the rule

respectively.

Note: Graph elements (nodes/edges), rewrite rules and rewrite rule sequences hold

unique identifier, in order to keep their identities in the repository. This help in change

tracking and repository querying.

6.2. Change Pattern Detection

Since, our repository is a set of GXL documents, the problem of detecting rewrite

rule patterns from the rule-based repository is converted to extracting patterns from

GXL documents. Every GXL document is an XML (eXtended Markup Language) [30]

<sequence id=’’ name=’’>

< rule id=’’ name=’’>
<preserved>

<node>….</node>

<edge>….</edge>
………………….

</preserved>

<deleted>
<node>….</node>

<edge>….</edge>

…………………..
</deleted>

<created>
<node>….</node>

<edge>….</edge>

………………..
</created>

<condition>

……………….
</condition>

</ rule>

…………………..
</sequence>

<version id=’’ Developer=’’>

< sequence id=’’ name=’’/>
< sequence id=’’ name=’’/>

…………………………….

……………………………..

</version>

AGG

Tool

AspectJ

source

code

Convertor

Tool

Colored
graph

Format .GXL

Change

Requests

Rewrite

rule
sequences

New colored
graph

 Rewrite rule-

based repository

 259

document. So, we use the XQuery implementation of the Apriori algorithm proposed by

Wan et al., [33] to extract such patterns. They propose a set of functions written only in

XQuery which implement together the Apriori algorithm. In order to create an

appropriate XML document to be the input of the XQuery Apriori algorithm; we follow

the pipeline in Figure 9. This last includes 3 steps:

Figure 9. Detecting Rewrite Rule Patterns

Step 1: as depicted in the above sub-section, our rule-based repository is a set of

GXL documents (versions). Every GXL document is a set of rule sequences. We

regroup all the rule sequences in every version into a single GXL document. This

document represents the transactions that must be mined by the change pattern

detection algorithm.

Step 2: via the power of XSLT (XML Stylesheet Language Transformation) [8], we

transform the rule-sequences document produced in the first step to a simple XML

document. This last must be as simple as possible, in order to detect rule patterns

efficiently. We convert every atomic rewrite rule to a simple tag with the abbreviation

of the atomic rewrite rule as value (Table 2). For example, the rewrite rule formulated

the creation of a node “Aspect” is represented in GXL format as follows:

<created>

<node id="I173">

<type name="Aspect"/>

<attr name="Name">

<string>A</string>

</attr>

</node>

</created>

This fragment is

converted to the

following simple tag :

<item>CAS</item>

Step 3: the XML document produced in the above step is queried with an XQuery

processor; according to the XQuery Apriori algorithm (we must fix a specific min

support). The output of this step is an XML document representing the rewrite rule

patterns in our rule-based repository. These rules represent changes to the AspectJ

XQuery

Apriori
algorithm

Rewrite
rule

patterns

l

j
k

Transformed via

XSLT

Grouped

Algo

Versions
Rewrite rule
sequences

<sequences>

<items>

<item> CC</item>

<item> CAS</item>

<item> CEIT</item>

</items>

</sequence>

…………………………….

XQuery

Processor

260

source code. Consequently, our approach allows detecting change patterns in AspectJ

source code.

7. Experimentation

To validate our claims we need first to gather some data supporting our proposal.

Since no change-based versioning system dedicated to AOP is proposed before.

Besides, no system has been recording changes in rewrite rule format; we cannot rely

on pre-existing software repositories as data sources. So, we choose two AspectJ

programs for the experiment: Figure Editor and Tracing. Then, we applied different

evolution scenarios to these programs for generating different versions. As a result we

have built 5 versions of the Figure Editor program and 3 versions of the Tracing

program. Information about the number of Line of Code (LOC), versions and rule

sequences for these programs are shown in Table 3.

Table 3. Subject Programs

Programs LOC #version #rule sequence

Figure Editor 393 5 25

Tracing 1059 3 5

The number of the different atomic rewrite rules in every version of the Figure Editor

and Tracing programs are shown in Figure 10 and 11 respectively. We predefine

min_support threshold to 20% for the both programs. After the application of our rule

pattern detection approach, Table 4 summarizes the generated rewrite rule patterns.

Figure 10. Atomic Rules in Figure Editor Program

0

1

2

3

4

5

6

7

C
M C
R

C
P

C
A

S

C
P

O

C
A

D

C
E

C
R

C
E

C

C
E

T

C
E

A

C
E

R
T

D
A

D
M D
R

D
E

C

D
E

R
T

V1

V2

V3

V4

V5

 261

Figure 11. Atomic Rules in Tracing Program

Table 4. Rewrite Rule Patterns

Pattern Support Program

CM, CP, CECA 0.33 Tracing

CAS, CPO, CAD, CECR, CECA 0.33 Tracing

CAD, CP 0.24 Figure Editor

CPO, CP, CECR 0.20 Figure Editor

Result Analysis. We have detected two rule patterns for the Tracing program. The

first one depicts that frequently, the creation of methods leads to the creation of

parameters and edges of the type Calls (calls to other methods). The second one depicts

that the creation of an Aspect leads to the creation of pointcuts and advices. And the

creation of edges of the type Crosscuts, to specify the Join points. This leads also to the

creation of edges calls between advices and methods.

For the Figure Editor program, we have detected two patterns too. The two atomic

rules “creation of advice” and the “creation of parameter” are frequently applied

together. And the atomic rules: “creation of pointcut”, “creation of parameter” and

“creation of edge crosscuts” are always applied together. Such rule patterns can help the

developer to achieve a complete change i.e. he should not applied a specific change in a

pattern without applying the other ones. We believe that the application of our

approach to other case studies with large rule-based repository can detect more

interesting change patterns.

8. Related Work

This section of the paper presents related work discussing the benefits of our

proposal in contrast to the other ones. There are three distinct research areas that are

directly related to our work, change-based evolution, AO versioning repositories, and

change pattern detection:

Change-based evolution repository: Based on our study of the field, there is a very

little work in this research area. The first work that treats this idea for object oriented

software is the one of Lanza et al., [24]. They represent a state of a program as an

0

2

4

6

8

10

12

14

CM CAS CAD CEC CEA DM CC CECA DP DECA DAD

V1

V2

V3

262

abstract syntax tree (AST) of its source code. Then, changes to the program are

represented as explicit change operations to its AST. Hattori et al., [18] extend this

change-based software evolution model [24] into a multi developer context by

modelling the evolution of a system as a set containing sequences of changes .

Although, the idea of these works is similar to our proposal where the change is treated

as a first-class entity, but the use of the AST is not a good choice for software evolution

analysis. The AST captures the source code structure but it does not coverage it’s

semantic, so the change repository is not sufficient for evolution analysis. In contrast,

our proposal is promising to better improve and accurate the change repository. We can

capture structural as well as semantic information about the change (rewriting rules).

AO versioning repositories: As we presented in Section 3, version repositories of

current versioning systems are not satisfactory for AO software evolution analysis. This

is why some research works try to adapt current versioning systems to handle the AOP

characteristics. For instance, the work in [20] contributes a mechanism that checks-in

with the source code versions of crosscutting metadata for tracking the effect of aspects.

In [4] the tool TOFRA is presented to address the problem of configuration

management in the context of Crosscutting Frameworks (CFs) [11]. However, these

works keep the traditional mechanism of classic versioning (file-based, snapshot-

based).which do not record the complete information about the AO software evolution.

In the other side, the analysis of their repositories becomes a research challenge because

the data is unstructured, unlabeled, and noisy. In contrast, our work provides a change-

based repository, which stores the complete evolution process, facilitate change

extraction, and improve evolution analysis.

Detecting change patterns: There is a plenty of research made on Mining change

patterns for procedural or object-oriented programs [21, 17]. Seldom effort is made for

AO programs. Qian et al., [26] treat the detection of change patterns in AspectJ

programs. They first analyze the successive versions of an AspectJ program, and then

decompose their differences into a set of atomic changes. Finally, they employ the

Apriori data mining algorithm to generate the most frequent item-sets. However they

are based on the repository of current versioning systems, which are not fully adapted

to AOP characteristics (Section 3). And need a sophisticated process to extract atomic

changes and transactions. Our proposal avoids these problems, where we are based on a

rule-based repository. This last stores changes when they occur in more precise and

formal format as rewriting rules. This repository is an interesting subject to detect

change patterns in AspectJ programs.

9. Conclusion

A sustainable success of an evolution analysis approach depends to a large extent on

the version repository used for this analysis. Our research interest is in recording AO

software evolution and extracting meta-data from its repository to ease its evolution and

predict its future development. In this paper we presented the principles behind a

change-based repository for AO software and how they can address some of the

problems of AO software evolution.

We proposed a rewriting rule-based repository for AspectJ programs. The evolved

AspectJ program is represented as an attributed colored graph, and changes are

formulated as rewrite rules. Every rewrite rule is stored directly in the repository when

it is applied. Our approach is dedicated to handle the obliviousness characteristic of

AOP. It helps to improve program comprehension by making aspect base interaction

 263

more explicit. This does not reduce the obliviousness among system modules, because

every module (aspect, class) can be easily observed as an independent module with our

representation. Besides, representing and storing changes as rewriting rules preserve the

complete information about the change (changed entities, their dependencies,

constraints,…etc.). This format helps to make the evolution repository more adequate to

the crosscutting nature of AO software avoiding the limits of current file -based

versioning systems i.e., in contrast to file-based principle of classic versioning tools,

our proposal track and store changes in software entities and their dependencies

independently of the files they belong to. So, changes in crosscutting dependencies are

well stored in our repository.

Besides, we proposed a change pattern detection approach for AspectJ source code.

This approach is based on our rule-based repository to extract atomic rewrite rule

patterns which are considered as change patterns in AspectJ source code. Those change

patterns can be used as measurement aid and fault predication for AspectJ software

evolution. This is very important to predict future evolution of AspectJ software,

improve the comprehensibility of the software system and consequently decrease the

evolution cost.

Using our proposed change pattern detection approach, we proved that it is easier to

extract changes from our repository because they are stored in an explicit way. This

improves the quality of results of mining efforts. So, we believe that our repository can

be an interesting source for a high quality evolution analysis

Finally, we believe that the fundamental approach presented in this paper is generic

enough to be adapted to other object oriented or AO programming languages.

References

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules in large databases”, B. Bocca, M.

Jarke, and C. Zaniolo, editors, Proceedings of 20th International Conference on Very Large Data Bases,

Santiago, Chile, (1994) September 12-15, pp. 487-499.

[2] J. Aldrich, “Open Modules: Reconciling Extensibility and Information Hiding”, Proceedings of SPLAT

AOSD’04 Workshop, (2004).

[3] R. T. Alexander, J. M. Bieman and A. A. Andrews, “Towards the Systematic Testing of Aspect-Oriented

Programs”, Report CS-04-105, Colorado State University, Fort Collins-USA, (2004).

[4] M. M. Arimoto, M. I. Cagnin and V. V. de Camargo, “Version control in crosscutting framework-based

development”, Proceedings of the 23rd Annual ACM Symposium on Applied Computing (SAC’08),

Fortaleza, Ceara, Brazil, (2008), pp. 753-758.

[5] S. Bouktif, Y. G. Guéhéneuc and G. Antoniol, “Extracting Change-patterns from CVS Repositories”,

Proceedings of 13th Working Conference on Reverse Engineering (WCRE '06), [DOI:

10.1109/WCRE.2006.27], (2006), pp. 221-230.

[6] H. Cherait and N. Bounour, “Modeling Software Evolution through Version Control System”, Proceedings

of 11th African Conference on Research in Computer Science and Applied Mathematics (CARI’12), Algiers,

Algeria, (2012) October 13-16.

[7] H. Cherait and N. Bounour, “Rewriting Rule-based Model for Aspect Oriented Software Evolution”,

International Journal of Computer Applications in Technology-Special Issue on Current Trends &

Improvements in software Engineering Practices (in press), to appear, (2013/2014).

[8] J. Clark, “XSL, Transformations (XSLT) Version 1.0”, Recommandation 16, November edition,

http://www.w3.org/TR/xslt, (1999).

[9] A. Colyer and A. Clement, “Large-Scale AOSD for Middleware”, Proceedings of 3rd International

Conference of Aspect-Oriented Software Development, (2004), pp. 56-65.

[10] A. Corradini, U. Montanari and F. Rossi, “Graph processes”, Fundamenta Informaticae, vol. 26, no. 3-4,

(1996), pp. 241-265.

[11] V. V. De Camargo and P. C. Masiero, “A pattern to design crosscutting frameworks”, Proceedings of the

23rd Annual ACM Symposium on Applied Computing (SAC’08), Fortaleza, Ceara, Brazil, (2008), pp. 759-

764.

264

[12] H. Ehrig, K. Ehrig, U. Prange and G. Taentzer, “Fundamentals of Algebraic Graph Transformation”, EATCS

Monographs in Theoretical Computer Science, Springer, ISBN 978-3-540-31187-4, (2006).

[13] F. Ferrari, R. Burrows, O. Lemos, A. Garcia, E. Figueiredo, N. Cacho, F. Lopes, N. Temudo, L. Silva, S.

Soares, A. Rashid, P. Masiero, T. Batista and J. Maldonado, “An Exploratory Study of Fault-Proneness in

Evolving Aspect-Oriented Programs”, Proceedings of ICSE '10, Cape Town, South Africa, ACM press

[DOI : 978-1-60558-719-6/10/05], (2010) May 2-8, pp. 65-74.

[14] R. E. Filman, T. Elrad, S. Clarke and M. Aksit, “Aspect-Oriented Software Development”, Addison-Wesley

(2004).

[15] R. E. Filman and D. Friedman, “Aspect-Oriented Programming is Quantification and Obliviousness”, In:

Aspect-Oriented Software Development, Addison-Wesley, (2004).

[16] B. Fluri, “Change Distilling Enriching Software Evolution Analysis with Fine-Grained Source Code Change

Histories”, Dissertation for the Degree of a Doctor in Informatics, Department of Informatics, University of

Zurich, (2008) October.

[17] A. E. Hassan, “The road ahead for mining software repositories”, Frontiers of Software Maintenance, (2008),

pp. 48–57.

[18] L. Hattori and M. Lanza, “Syde: A tool for collaborative software development”, Proceedings of 32nd

ACM/IEEE International Conerence on Software Engineering, IEEE Computer Society [DOI:

10.1145/1810295.1810339], (2010), pp. 235-238.

[19] R. Heckel, J. M. Kuster and G. Taentzer, “Confluence of Typed Attributed Graph Transformation Systems”,

In Proceedings of First International Conference, ICGT’02, Barcelona, Spain. Springer-Verlag, LNCS, [DOI:

10.1007/3-540-45832-8_14], vol. 2505, (2002), pp. 161-176.

[20] S. Ifrah and D. H. Lorenz, “Crosscutting Revision Control System”, Proceedings of ICSE, Zurich,

Switzerland, IEEE Computer Society [DOI: 978-1-4673-1067-3/12], (2012), pp. 321-330.

[21] H. Kagdi, M. L. Collard and J. I. Maletic, “A Survey and Taxonomy of Approaches for Mining Software

Repositories in the Context of Software Evolution”, Journal of Software Maintenance and Evolution:

Research and Practice, vol. 19, no. 2, (2007), pp. 77-131.

[22] C. Kastner, S. Apel and D. Batory, “A Case Study Implementing Features Using AspectJ”, Proceedings of

SPLC’07, (2007), pp. 223-232.

[23] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. M. Loingtier and J. Irwin, “Aspect-oriented

programming”, Proceedings of 11th European Conference on Object-Oriented Programming, Springer-

Verlag, LNCS, [DOI: 10.1007/BFb0053381], vol. 1241, (1997), pp. 220-242.

[24] M. Lanza and R. Robbes, “A Change-based Approach to Software Evolution”, Electronic Notes in

Theoretical Computer Science (ENTCS). Elsevier, [DOI: 10.1016/j.entcs.2006.06.015], vol. 166, (2007), pp.

93-109.

[25] T. Mens, “A state-of-the-art survey on software merging”, IEEE Trans. Softw. Eng, vol. 28, no. 5, (2002),

pp. 449-462.

[26] Y. Qian, S. Zhang and Z. Qi, “Mining Change Patterns in AspectJ Software Evolution”, Proceedings of

International Conference on Computer Science and Software Engineering, (2008), pp. 108-111.

[27] A. Rashid, T. Cottenier, P. Greenwood, R. Chitchyan, R. Meunier, R. Coelho, M. Südholt and W. Joosen,

“Aspect-Oriented Software Development in Practice: Tales from AOSD-Europe”, Published by the IEEE

Computer Society, (2010) February.

[28] T. Schultzke and C. Ermel, “AGG Environnement: A Short Manual”, Short manual edition, User Manual,

http: //tfs.cs.tuberlin.de/ agg/ShortManual.ps, (2013) January.

[29] F. Steimann, “The Paradoxical Success of Aspect- Oriented Programming”, Proceedings of OOPSLA’06,

(2006), pp. 481-497.

[30] J. Suzuki and Y. Yamamoto, “Managing the software design documents with xml”, Proceedings of the 16th

annual international conference on Computer documentation, ACM Press: New York [DOI:

10.1145/296336.296366], (1998), pp. 127-136.

[31] G. Taentzer, C. Ermel, P. Langer and M. Wimmer, “A fundamental approach to model versioning based on

graph modifications: from theory to implementation”, Software and Systems Modeling, Springer-Verlag,

[DOI 10.1007/s10270-012-0248-x], (2012).

[32] The AspectJ Team, The AspectJ Programming Guide, Online manual, http://eclipse.org/aspectj/, (2012)

December.

[33] J. W. W. Wan and G. Dobbie, “Extracting Association Rules from XML Documents using XQuery”,

Proceedings of WIDM’03, New Orleans, Louisiana, USA, (2003) November 7-8, pp. 94-97.

[34] A. Winter, B. Kullbach and V. Riediger, “An overview of the GXL graph exchange language”, Proceedings

of International Seminar Dagstuhl Castle, Germany, (2001), Springer-Verlag, LNCS, [DOI:10.1007/3-540-

45875-1_25], vol. 2269, pp. 324-336.

Authors

 265

Hanane Cherait is a Ph.D student in Complex Software Engineering. She obtained her

Master of Science degree in Computer Science from the University of Badji Mokhtar –

Annaba (UBMA), Algeria in 2009. Her research interests include software evolution; aspect

oriented programming and software reverse engineering.

Dr Nora Bounour received her Doctorate degree in the department of computer science at

the University of Badji Mokhtar -Annaba (UBMA), Algeria in the year 2007. She is presently

working in the same department as associate professor. She is the head of the research group

on reengineering and evolution of complex systems at the Laboratory of complex system

engineering (LISCO). Her research interests include software evolution and reverse

engineering methodologies, separation of concerns and aspect oriented programming.

266

