NONLINEAR ELLIPTIC SYSTEMS INVOLVING

\((p(x), q(x))\)–LAPLACIAN

* ABDELMALEK Brahım¹, DJELLIT Ali² and TAMRABET Sameh³

¹ Souk-Ahras Univ, Algeria ² MDM labo. Annaba Univ. ³ Khenchela Univ, Algeria
b_abdelmalekb@yahoo.com a_djellit@hotmail.com stamrabet@ymail.com

Key Words: nonlinear elliptic systems; \(p(x)\)–Kirchhoff-type problems; mountain pass theorem; fourth-order elliptic systems.

Abstract: In this talk, by using the mountain pass theorem, we obtain the existence of non trivial weak solutions of the following nonlocal elliptic system

\[
- M_1 \left(\int_{\Omega} \frac{1}{p(x)} |\Delta u|^{p(x)} \, dx \right) \Delta (|\Delta u|^{p(x)-2} \Delta u) = F_u(x, u, v) \quad \text{in } \mathbb{R}^N,
\]

\[
- M_2 \left(\int_{\Omega} \frac{1}{q(x)} |\Delta v|^{q(x)} \, dx \right) \Delta (|\Delta v|^{q(x)-2} \Delta v) = F_v(x, u, v) \quad \text{in } \mathbb{R}^N,
\]

(1)

\(p\) and \(q\) are real valued functions satisfying \(1 < p(x), q(x) < N\) \((N \geq 2)\) for every \(x \in \mathbb{R}^N\), and \(M_1\) and \(M_2\) are continuous and bounded functions. The real valued function \(F \in C^1(\mathbb{R}^N \times \mathbb{R}^2)\) satisfies some assumptions. The unknown real valued functions \(u\) and \(v\) stay in appropriate spaces. The operator \(\Delta_{p(x)}u = \text{div} \left(|\nabla u|^{p(x)-2} \nabla u\right)\) designates the \(p(x)\)-Laplacian.

Références

